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From lattice studies of Polyakov loop correlations, we determine the potential for a static 
quark-antiquark pair in a thermal SU(2) gauge field system above the deconfinement tempera- 
ture. We perform a high statistics, finite size analysis of the heavy quark potential. We investigate 
the functional form of the potential at intermediate distances and compare it to continuum 
perturbation theory predictions. 

1. Introduction 

The temperature dependence of the potential between a static quark and anti- 

quark in a deconfining medium is of considerable interest for several reasons. The 

effect of such a medium on heavy quark bound states, in particular on the J/~k, 
appears to provide an experimentally accessible signal for quark deconfinement in 

nuclear collisions [1]; a quantitative understanding of colour screening is necessary 

for these considerations [2]. In particular, the functional form of the potential at 

moderate distances r ~< 1.0 fm and temperatures T =  200-300 MeV seems to be 
most relevant for the quantitative analysis of J/~b bound state formation in the 

QCD plasma. In terms of the dimensionless quantity rT, we are thus mainly 
interested in the regime 0 ~< rT  < 1.5. A non-perturbative analysis is needed in this 

parameter range, as perturbative results are expected to become applicable only in 
the large-distance, high-temperature limit of the potential. 

On a more theoretical level, asymptotic freedom implies that statistical QCD 
should at a sufficiently high temperature approach the perturbative limit. However, 
the well-known infra-red problems in finite-temperature perturbative expansions 
signal that above certain length scales non-perturbative effects will be of relevance 
even at very high temperatures. The presence of a non-vanishing screening length in 
the QCD plasma phase is in itself a manifestation of these non-perturbative effects. 
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Through its definition as the zero momentum limit of the time component of the 
polarization tensor, the Debye mass /~(T) (i.e. the inverse screening length) is 
related to the asymptotic behaviour of the potential at r ~ oe. It has been calculated 
perturbatively only at high temperature, where the gauge coupling tends to zero. 
Recently it was noted that this does not necessarily reflect the behaviour of the 
potential at intermediate distances and temperatures [3]. Moreover, the perturbative 
definition of the Debye mass through the polarization tensor itself is not without 
problems, as this is a gauge invariant concept only in leading order. It even has been 
argued that higher order corrections may not be calculable in perturbation theory. 
These problems make the perturbative analysis of the heavy quark potential 
questionable [4, 5]. 

Unlike thermodynamic quantities such as the energy density, which shows pertur- 
bative behaviour in the deconfinement phase already close to Tc, the heavy quark 
potential led in first Monte Carlo studies to an unexpectedly large value for the 
Debye screening mass in the plasma phase [6, 7]. Also the functional form of the 
potential turned out not to be in agreement with perturbation theory for quite a 
large temperature range. This might hint toward a breakdown of perturbation 
theory, as speculated in ref. [5]. However, it could also indicate that on finite lattices 
it is much harder to reproduce the subtle long-distance properties of the plasma 
phase than the short-distance features, which give the main contribution to, for 
instance, the energy density [8]. In a recent paper [9] it was shown that for quite a 
large temperature interval above the deconfinement point, the heavy quark potential 
at intermediate distances does not lead to simple Debye screened Coulomb be- 
haviour. 

Although indications were found for the onset of perturbative behaviour at 
temperatures of the order of 10To, the agreement turned out to be still quite poor. 
The analysis was performed for SU(3) gauge theory on a lattice of fixed size 123 x 4. 
Is such a lattice large enough to approximate continuum physics? Certainly at large 
distances we are sensitive to finite size effects. For instance, on the 123 x 4 lattice 
the potential is periodic around rT = 1.5 and thus at this distance will certainly be 
affected by the finite lattice size. 

Here we want to analyze in detail the influence of the finite temporal (N,) and 
spatial (No) extension of the lattice on the heavy quark potential. In order to be able 
to collect high statistics data, we work with the SU(2) gauge group on lattices of size 
N 3 x N, where N o varies between 4 and 24 and N, between 4 and 8; thus the 
smallest lattice used was 44 and the largest one was 243 x 8. We find that at high 
temperatures finite size effects in the potential V(r, T) are well parametrized by 

V(r, T) = V~(r, T ) exp[ - c ( r ,  T)(  gr/No)3] ; (1) 

close to To, the volume dependence seems to be more complicated. Thus the 
high-temperature behaviour appears to be closely related to the finite size correc- 
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tions found for scattering states in massive scalar field theories [10], although in our 
case, a similar rigorous justification for the finite size behaviour is still missing at 
present. On the basis of the above formula we are, however, able to extract the 
potential in the infinite volume limit. 

This paper is organized as follows. In sect. 2 we give a non-perturbative definition 
of the heavy quark potential at finite temperature, free of divergent self-energy 
terms. Sect. 3 deals with the volume dependence of the heavy quark potential in the 
deconfinement phase. We discuss the influence of finite size effects on the screening 
mass and perform a quantitative analysis of the volume dependence. Sect. 4 
contains our conclusions. 

2. The heavy quark potential 

In lattice QCD, the potential for a static qC t pair separated by a distance r is 
either obtained from the asymptotic behaviour of Wilson loops W(R, S), S --* ~ ,  or 
from the correlation function {L(O)L+(R)) for two Polyakov loops L, which are R 
lattice spacings a apart, i.e. R = r/a. It is this latter method which can be applied 
directly to the finite temperature situation and allows a general analysis of the 
temperature dependence of the heavy quark potential 

(L(O)L+( R )} - exp[- f lVq¢(r ,  T ) ] ;  (2) 

here fl = 1 / T  is the inverse temperature of the medium and 

1 U~ 
L ( x )  = - - T r  I-I U~,. (3) 

N i = 1  ' 

We assume an isotropic (ao = a,) underlying lattice of size N 3 X N,, with o and ~- 
designating space and temperature directions, respectively. The gauge group element 
Ux. i is associated to the ith temperature link at the spatial site x; N specifies the 
colour group. The limit R ---, oo of the correlation function leads to the deconfine- 
ment measure Z 

L =  lira {L(O)L+(R)) 1/2, (4) 
R ---~ or3 

where L = { L )  is the Polyakov loop expectation value with L defined as 

C = ( 1 / N o ) 3 E L ( x ) .  (5) 
x 

Since in pure gauge theory, confinement implies that l i m r ~ V ( r  , T ) =  oo for 



422 J. Engels et al. / Heavy quark potential 

T ~< T c, i ,  in this case constitutes a genuine order parameter, associated to a global 
Z N symmetry of the lagrangian [11]. 

It is well known that the definitions (2) and (4) for the heavy quark potential and 
the order parameter do not lead to finite physical expressions in the continuum 
limit. Both expressions still contain self-energy terms which lead to divergences as 
the lattice cut-off 1/a is removed [12]; thus the potential Vq~(r, T) in eq. (2) 
consists of the actual qY: 1 interaction part, V(r, T), and a self-energy term for the q 
and ct charges, V o - - g 2 / r ,  which diverges at short distances. On the lattice, 
fl = N~a, and the shortest distance is the lattice spacing r = a, so that 

< L(O)L +( R )> - e x p [ - f l V ( r ,  T) - const, gENt]. (6) 

As a consequence of eq. (6), both (L(O)L+(R)> and L are not lattice-size 
independent; they vanish exponentially as N, is increased. There have been at- 
tempts [13] to remove this lattice size dependence by dividing out the weak-coupling 
limit of Z 

Lw~ = 1 + cx( N., N.)g  2 + c2( N ~, No)g  4 + O(g6), (7) 

and considering JT-,phy s ~- L/Lwc as the physical (and hence scaling) order parameter. 
However, the N, dependence of Zwc requires the inclusion of ever higher orders in 
g2 with increasing N~, and hence such a method does not provide a general solution. 

To obtain a physically meaningful definition of the heavy quark potential, we 
have to eliminate the self-energy contributions in a non-perturbative way. This can 
be done by looking at differences of the potential only. Just as one forms Creutz 
ratios to eliminate the perimeter and comer singularities in the definition of the 
string tension, we may consider ratios of Polyakov loops as physical observables 

PL(  Rx, R2) = < L(O)L + ( R1)>/< L(O)L + ( R2) > . (8) 

These quantities are directly related to the difference of the potential at distance r~ 
and r2; the additative self-energy terms are now eliminated 

[V(r,, T)  - V(r 2, T ) ] / T =  - l n [ P L ( R  1, R2) ] . (9) 

In the following we will consider a special case: we normalize the potential to be 
zero at infinity 

V(r, T ) / T =  - I n [ e L ( R ,  oo)1. (lo) 

In practice, we have to specify more carefully what we mean by PL(R,  oo), since on 
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any finite lattice L will become zero by "spin flips". We thus define more precisely 

[7] 

P L ( R ,  ce) - ( L ( O ) L + ( R ) ) / ( I L I )  2. (11) 

This definition coincides with that of eq. (8) when N o ~ oc, and R 2 --* o0. As these 
quantities are now free of self-energy divergences, they should become asymptoti- 
cally independent of the temporal lattice size N,. They will, however, still contain 
the usual size effects, which we will discuss together with the Monte Carlo data in 

sect. 3. 
In order to compare measurements of the potential on lattices with different N,, 

we have to ensure that the temperature stays constant and that the potential is 
measured for the same physical separation. On a given lattice, one studies the 
variation of V(r, T)  with r at fixed temperature, i.e. at fixed coupling g2; as already 
mentioned, the separation r is measured in units of the lattice spacing a(g2), 

R = r / a  = 1,2 . . . . .  No/2 .  (12) 

The upper  limit No/2 arises from periodic spatial boundary conditions. If we now 
want to measure the correlation at a fixed temperature T - 1 =  N , a ( g  2) on lattices 
with different N,, then the g2 values associated to this temperature will of course 

depend on N,. As a result, a given q~ separation of e.g. two lattice spacings then 
corresponds to a different physical separation distance for each N,. To obtain a 
basis for comparing results from different lattices, we consider the dimensionless 
quanti ty V(r, T ) / T ,  defined through eq. (11), at fixed T as a function of the 
dimensionless variable rT  = R / N , .  For fixed T the potential will then still depend 
on the ratio No~N,, even if both N o and N, are large. By keeping N o / N  , fixed and 
taking the limit N o ~ o0, N, ~ oo we simulate continuum physics at finite tempera- 
ture in a finite box with volume V and temperature T related by VI/3T = N o / N  ,. 

The infinite volume limit is then reached for N o / N  , ~ o0, N, ~ o0, while tempera- 
ture T =  1 / N , a ( g  2) is kept fixed. 

In order to study the scaling behaviour of the heavy quark potential we thus have 
to ensure that the temperature stays constant when we change the lattice size, and 
we have to control possible effects related to the small finite extension of the lattice 
in temporal  and spatial directions. The variation of the temperature as a function of 
g2 is a problem close to T c, where we are not yet in the asymptotic scaling regime, at 
least not for small values of N,. To avoid this difficulty in the beginning, we have 
first analyzed the potential at very high temperatures, where we expect the asymp- 
totic scaling relation to be valid; it then allows us to calculate the temperature as a 
function of g2. The temperature was chosen to be T/AI.---250; on the basis of 
results for N, = 3-5, this corresponds to T / T  c = 6, where T~ is the deconfinement 
temperature  [13]. 
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Fig. 1. The  in t e rqua rk  potent ia l  - V(r, T ) / T  versus rT at fixed tempera ture  T = 250A e. The coupl ings  
used  in  the s imu la t ion  are fl = 2.988 ( N  T = 4), /3 = 3.147 (N~ = 6) and  / 3 =  3.26 (NT = 8). The dashed  

curve gives the po ten t ia l  ex t rapola ted  to inf in i te  volume.  

For  large enough N o and N, we expect the potential to be a function of N o / N  T 
only. In fig. 1 we show results for the potential obtained for No/N,  = 1, 2, 3 and 
N, = 4, 6 and 8. This figure summarizes results from 9 different lattices ranging in 
size from 4 4 tO 243 × 8. On each of these lattices we performed 100 000 iterations, 
except for the smallest and largest ones, where we used 200000 and 50000, 
respectively. Measurements of Polyakov loop correlation functions were carried out 
every 10th iteration. Errors were calculated by dividing the data sample in 10 blocks 
of equal size. On these blocks, the heavy quark potential was calculated using eqs. 
(10) and (11). The error was then determined as the statistical error of these 10 

independent  measurements of the potential. 
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A more detailed discussion of our fits will be given in sect. 3. Here we only want 
to note that we do indeed find universal curves for all N, at fixed No/N,; the 
scattering of results from different N, is well within statistical errors. The prescrip- 
tion for the elimination of unphysical self-energy terms given in eq. (11) thus seems 
to work quite well. We also see from fig. 1 that the potential depends strongly on 
the ratio N o / N  ,. In particular for rT>~ 0.5 this was to be expected, as we start 
feeling the periodicity of the lattice. Let us now try to analyze these finite size 
effects. 

3. The volume dependence of the potential 

The heavy quark potential in the deconfinement phase is expected to he of the 
generic Debye screened form 

V(r, T) a(T) .(T)r (13) - - -< - -  , 

with a temperature-dependent coupling ~ and a screening mass/~. High-temperature 
perturbation theory predicts d =  2 as the power of the 1 / r  term in eq. (13). In 
perturbation theory, the screening mass /~ = 2m D is usually defined as the zero 
momentum limit of the zeroth component of the vacuum polarization tensor 

rn~ = lim Hoo(O, k )  = ~ Ngz¢ T ) T 2. (14) 
k--*0 

Therefore, a simple Debye screened potential of the form given by eq. (13) is 
predicted only in the large distance (zero momentum) limit. Finite momentum 
corrections to the polarization tensor are found to be negative [14] and of the same 
order in g2. At intermediate distances one would thus expect [3] deviations from the 
simple Debye form given by eq. (13). In particular, one would expect a smaller 
screening mass in this regime, and consequently also in a finite volume. This is 
indeed what was found in perturbative calculations on a finite lattice [15]. A weak 
coupling analysis of the QCD vacuum polarization tensor at finite temperature 
[15, 16], shows that the Debye mass is smaller on finite lattices and scales with VT 3 
on large lattices. For large No/N T one recovers the continuum result in a finite box 
given by 

- - =  }'. sinh n I - t - n 2 - I - n  3 , n i = O , + l  +2,  (15) 
IJ, L 2 V T  3 n, -- . . . . .  

Here 32' indicates that the zero-mode contribution is left out in the summation. The 
volume dependence of the perturbative continuum Debye mass given by eq. (15) is 
shown in fig. 2. 

We expect this to be the dominant source of finite volume effects at high 
temperature. Close to Tc, however, there is a competing mechanism for finite size 
effects, related to the large correlation length near deconfinement. With increasing 
lattice size, the correlation length tends to increase and thus would lead to a lower 
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Fig. 2. Volume dependence of the Debye mass from cont inuum perturbation theory in a finite box. 
Shown is the square of the ratio ~ / ~  between the Debye mass in a finite and in an infinite volume, as 

function of 1 / V T  3. 

screening mass. As the deconfinement transition for SU(2) is second order, the 
correlation length actually diverges at T c [7]. This may become the dominant source 
of finite volume dependence close to T c. 

In order to study the dependence on N o / N  , = VZ/3T in more detail, we have 
calculated the potential for N, = 6 and various spatial lattice sizes. The restriction to 
one value of N, is justified, since we saw in sect. 2 that the potential depends only 
on N o / N , .  Our analysis was performed for two values of the temperature, T / A  L ~- 

55 (/3 = 2.567) and T / A  5 = 250 (/3 = 3.147). In units of the deconfinement tempera- 
ture, this corresponds to T / T ~ - -  1.45 and T / T  c -- 6, respectively. In fig. 3, we show 
the heavy quark potential for various intermediate values of N o / N ,  and fixed N,. 
Again we have performed 100000 iterations on each lattice and the error analysis 
was carried out as described above. We notice that even for rather large values of 
the ratio N J N , ,  finite size effects are clearly visible in the potential at both 
temperatures. It seems, however, that the asymptotic infinite volume limit is reached 
faster close to T~. To study the systematics of the observed finite volume effects, we 
show in fig. 4 V(r,  T ) / T  at fixed distance r T  as a function of (N~/No)  3. This 
suggests a parametrization of the finite volume dependence in the form given by eq. 
(1); for the logarithms of the potential we find a linear dependence on ( N , / N o )  3 = 
1 / V T  3 

ln[ V~o(r, T ) / T ]  = ln [V(r ,  T ) / T  ] - c(  r, T ) / V T  3 . (16) 

However, while this linear relation seems to hold at T / A  L ~ 250 already for 
moderate  sizes of the volume, V T  3 > 4, it appears to set in much later close to T c. 
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Us ing  the above  ansatz,  we can ex t rapola te  our  M o n t e  Car lo  da ta  for the 

po t en t i a l  to inf in i te  la t t ice size. F i t s  for some values of rT are also shown in fig. 4. 

The  fit p a r a m e t e r s  V~(r, T), c(r, T)  for bo th  t empera tu res  are summar ized  in table  

1. W e  no te  tha t  c(r, T)  is smal ler  close to Tc, which means  that  f inite volume 

cor rec t ions  are  indeed smal ler  here. I t  is also appa ren t  that  the s lope pa rame te r  

c(r, T )  increases  with increasing rT. Indeed  one would  expect  that  c(r, T)  is 

d i rec t ly  p r o p o r t i o n a l  to rT, if the finite volume correct ions  for the po ten t ia l  are 

m a i n l y  due  to a volume dependence  of  the screening mass /~ .  In  this case eq. (16) 

s ta tes  tha t  f ini te  volume correct ions  to the screening mass  are po rpo r t i ona l  to 1/V.  
F o r  a po t en t i a l  of  the form given by  eq. (13) one would  then deduce  f rom eq. (16) 
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Fig. 3. As in fig. 1, but for fixed N, = 6 and various values of N o. Fig. 3a shows results for T = 55A L 

(fl = 2.567) and fig. 3b for T= 250A L (fl = 3.147). 
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Fig. 3 (continued). 

where g ( T ) =  c(r, T ) / rT .  From table 1 we find that, indeed, this relation holds 
quite well at T / A  L = 250. We obtain at this temperature 

g ( T ) = 1 3 . 8 + 0 . 4  at T / T  c = 6 .  (18) 

This simple rT dependence of the finite volume corrections, however, does not seem 
to hold close to T c. This situation was in fact expected and reflects the more 
complicated structure due to the competing mechanisms for finite volume effects 
discussed above. In any case c(r, T)  is clearly positive and increasing with rT at 
both  temperatures. This leads to a steeper potential decrease in a larger volume. We 
thus conclude that at least for temperatures larger than 1.5 T~ finite volume effects 
tend to decrease the effective screening mass. 

We now want to 'perform a more quantitative analysis of the potentials obtained 
in sects. 1 and 2. We will try to extract the effective screening mass both from fits to 
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the potential as well as from ratios of the potential at subsequent lattice sites. We 
would like to stress that we distinguish between an effective screening mass 
characterizing the exponential decay of the potential at intermediate distances and 
the actual Debye mass defined through the asymptotic behaviour of the potential at 
large distances. 

In order to analyze the functional form of the potential for r T  <~ 1.0 in more 
detail, we fit the potential using the general form (13). We thus allow an arbitrary 
power d in the "Coulomb term" and assume an exponential decay characterized by 
an effective screening mass /~ for this range of r T  values. In the actual fit we, of 
course, take into account the periodicity of our lattices. Let us first analyze the 
potential at T -  250A L shown in fig. 1. The results of a three-parameter X2-fit based 
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Fig. 4. The interquark potential - V(r, T ) / T  v e r s u s  (Nr/No) 3 for various values of rT at T =  55A L 
(fig. 4a) and at T = 250A L (fig. 4b). The solid lines are fits to the data using the form (16). The dashed 

line in fig. 4b gives the extrapolation of our  data at rT = 1 using eq. (16) with c( r, T)  = 13.8. 
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Fig. 4 (continued). 

on eq. (13) are summarized in table 2. We note that although the fits are based on 
data points from three independent data samples (three different N, values), the 
data for fixed N, are strongly correlated. The errors quoted in the table are thus to 
be taken with some caution. The power d we find from the fit does not agree with 
the value d = 2 expected from perturbation theory; it is, however, consistent with 
our earlier result for the heavy quark potential in SU(3) gauge theory [9]. 

The fits indicate that the screening mass increases with increasing volume. The 
deviation between our largest lattices, with N , / N  T = 3, and the infinite volume 
extrapolation is about 20%. This result is in good agreement with the extrapolation 
formula, eq. (17), which would give t t o o / T  = 2.8 _+ 0.1. We thus find indeed that 
finite volume corrections mainly lead to a modification of the screening mass. 

Further information on the volume dependence of the screening mass can be 
obtained from the data shown in fig. 3. Due to the fewer number of points we did 
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TABLE 1 

Fit parameters for the infinite volume extrapolation shown in fig. 4 

431 

T =  55A L T = 250A L 

rT V:c(r, T) c(r, T) V~c(r, T) c(r, T) 

1 / 8  0.2346 1.5790 - -  - -  

1 / 6  0.1321 2.2403 0 .5007 0 .3404 
1 / 4  0 .05348 3.2425 - -  - -  

1 / 3  0 .02679 4.9923 0 .1384 0 .8448 

1 / 2  0 .008662 7.1997 0 .05192 1.3931 
3 / 4  0 .002282 10.7125 - -  

2 / 3  - -  0 .02206 2 .9670 

5 / 6  - -  - -  0 .01124  4 .8586 

TABLE 2 

Parameters for the fits shown in fig. 1 ( T  = 250AL)  

N~/N~ ~ d ~/T 

1 0 .0386 1.30(1) 0.13(2) 

2 0.0085 1.72(1) 0.81(3) 

3 0 .0127 1.58(1) 2.30(8) 

o~ 0 .0119 1.61(1) 2.87(20) 

not  perform a three-parameter fit here, but rather fixed the power d in eq. (19) to 
the value obtained from a three-parameter fit on our 183 x 6 lattices. Best fits were 
obtained for d =  1.2 at T = 5 5 A  L and d - - 1 . 6  at T =  250A L. We then performed 
two parameter x2-fits for the smaller lattices. The results are summarized in table 3 
for both temperatures. Again this shows that the volume dependence is weaker close 
to T c, although the screening mass still rises with increasing volume size. 

TABLE 3 
Parameters for the fits shown in fig. 3 

T =  55A L T = 250A L 

No~N, ~ ~/T ~ ~/T 

1.00 0 .1198 2.14 0 .0178 - 1 . 0 1  

1.33 0 .1042 1.47 0 .0147 - 1.14 

1.67 0 .0879 1.85 0 .0113 - 0.29 

2.00 0.0895 2.34 0.0111 0.95 
2.33 0.0923 2.59 - -  - -  

3.00 0 .0907 2.58 0 .0120 2.21 

oo 0.0936 2.83 0.0121 2.90 
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The  screening mass  de te rmined  in our  fits character izes  the behav iour  of  the 

po t en t i a l  a t  re la t ively  short  distances,  r T  <<, 1.0. In  o rder  to clar i fy its re la t ion to the 

ac tua l  D e b y e  mass  at large distances,  we def ine R-dependen t  screening masses  

t h rough  ra t ios  of the poten t ia l  at d is tances  separa ted  by  one lat t ice unit.  The 

effect ive screening m a s s  ~R,d at d is tance R = r / a  for fixed value of  d is then 

de f ined  th rough  [9] 

V ( R - 1 ,  T )  

V ( R , T )  

( R  - 1 ) - d e x p [ - - I Z R , d ( R  -- 1)] + ( N  o - R + 1 ) - a e x p [ - - # R , d ( N , ,  -- R + 1)] 

R-dexp( - - I~R,d  R )  + ( N  o -- R ) - d e x p [ - - t ~ R , d ( N o  -- R ) ]  

(19) 

Resul t s  for  d = 1.0, 1.5 and 2.0 are shown in fig. 5 for our  largest  latt ice,  243 × 8 at 

T / A  L ~ 250. F o r  large r T  the masses  should become independen t  of d. W e  see that  

effect ive masses  ext rac ted  for d = 1 and 2 give upper  and lower bounds  for the 

screening masses  in the r T  ~ oo l imit.  Wi th  increas ing r T  these b o u n d s  become 

m o r e  s t r ingent .  F o r  ins tance at  r T  = 1 we f ind 

2.0 < t t / T <  3.0,  (20) 

which  is in good  agreement  with our  fits. 

/, 

3 

/,c, 
O.S 

rT 

1.0 

Fig. 5. Effective screening masses Itg,d for d= 1 (a), 1.5 (b) and 2 (c) versus R = r/a on a 243 X 8 
lattice at T= 250A L (fl = 3.26). For clarity we only show errors on curve (b), those on (a) and (c) are 

similar. Lines are drawn to guide the eye. 
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Fig. 6. Volume dependence of the effective screening masses ttR, a for d = 0 and various values of 
N . / N  7, Results shown are for N7 = 6 and T =  55A L (fig. 6a) and T = 250A L (fig. 6b). For clarity we only 

show errors for the smallest and largest lattice. Lines are drawn to guide the eye. 
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The above analysis of the screening mass has the advantage that it does not have 
to rely on any fits. This way we can also analyze the finite volume effects on the 
Debye mass. In fig. 6 we show #R,d for d = 0 for various lattice sizes. We clearly see 
that at fixed distance the screening mass increases with increasing size of the spatial 
volume, while for a given volume the mass decreases with increasing distance. Again 
we notice that the volume dependence is stronger at higher temperature. In addition 
also the r-dependence is stronger, indicating that the effective power for the 
"Coulomb term" at short distances is larger at higher temperature. This is in 
agreement with our results from the three-parameter fits. In general we find that the 
effective screening masses extracted from a three-parameter fit with a potential of 
the form given by eq. (19) are in good agreement with masses extracted from 
potential ratios at large distances. 

4. Conclusions 

We have studied the static heavy quark potential in a finite volume. We find that 
self-energy terms can be eliminated, if an appropriate normalization of the potential 
with Polyakov loop expectation values is used. This leads to a scaling potential 
V(r, T), which depends on the volume only through the dimensionless quantity 
V 1 / 3 T  = No/N,.  

At distances rT <~ 1.0, the infinite volume limit of the potential is well approxi- 
mated by lattices with No/N, = 3. This potential can be described by the phe- 
nomenological form V(r, T ) / T =  [a(T) / (rT)d]exp[- /~(T)r] .  For temperatures 
close to T c we have d = 1.0, while for higher temperatures d increases, at T / T  c -- 6, 
d =  1.6. It thus does not reach the perturbation theory prediction d =  2 in the 
parameter range considered here ( T / T  c ~ 6, rT <~ 1.5). 

We find that finite volume corrections to the potential mainly lead to a modifica- 
tion of the screening mass, describing the exponential decrease of the potential at 
intermediate distances. For the temperature range studied by us, i.e. T/Tc >1 1.5, 
finite volume effects lead to an increase of the screening mass with increasing lattice 
size. However, these finite volume effects seem to be larger at high temperature than 
close to T~. One would in fact expect that close to a second-order phase transition 
finite volume effects work the opposite way, since then the correlation length is 
truncated on finite lattices but tends to diverge in the infinite volume limit at T~. A 
further analysis of the volume dependence of the screening mass even closer to T~ 
would therefore be of interest and could lead to a different volume dependence, 
once the correlation length becomes larger than the dimension of the system. 

The Monte Carlo simulations were performed on the new Crays X-MP/48 at the 
H L R Z  in Jiilich and at CERN. One of us (F.K.) would like to thank K. Kajantie for 
helpful discussions. 
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