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Abstract. The distribution function of the Polyakov 
loop is investigated on a 16 3 x 3 lattice in the neigh- 
bourhood of the deconfinement transition of SU(2) 
gauge theory. We find, that well above the transition 
the distribution is a Gaussian; when the coupling 
approaches the critical point it is modified due to phase 
flip attempts of the system. Corresponding distri- 
butions for the plaquettes remain, however, Gaussian. 
For one coupling close to the transition we study the 
distributions on 8 3, 12 3 and 18 3 x 4 lattices and show 
that strong finite size effects are present. Using the 
maximum values of the Gaussian parts of the distri- 
butions we construct a more physical (and therefore 
scaling) order parameter whose critical exponent is in 
excellent agreement with the universality hypothesis. 

I Introduction 

The investigation of the deconfinement transition of 
SU(2) gauge theory at finite temperature is seriously 
hampered by the fact that all numerical evaluations 
of the theory have to be carried out on finite lattices. 
The expectation value ( L )  of the Polyakov loop 
(thermal Wilson line) is the order parameter for the 
deconfinement transition on an infinite lattice. It is 
zero in the confinement region, i.e. below a critical 
coupling or critical temperature Tc, whereas in the 
deconfinement regime two (for S U (2)) equivalent states 
exist, for which ( L )  is finite and which differ in the 
sign of (L) .  Since on a finite lattice there is always a 
finite probability for tunneling between the two states, 
the measured value for ( L )  has to approach zero 
everywhere with increasing statistics. The way out of 
this dilemma is usually to take the expectation value 
of the modulus of the lattice average, (L ) ,  as order 
parameter. Due to the non-zero fluctuation of L-values 
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on finite lattices, however, the quantity ( L )  never 
becomes zero and therefore cannot act as a true order 
parameter. The interesting parameters characterizing 
the second order deconfinement transition in SU(2), i.e. 
the critical temperature and the critical exponents can 
then only approximately be determined on a finite 
lattice and the results depend not only on the size of 
the lattice but also on the prescriptions to obtain them. 

Before we review the presently known facts let us 
introduce our notation. The Polyakov loop for SU(2) 
gauge theory on an N~ x N~ lattice is defined as 

N, 

L(x) = �89 1-[ Ur, x;0, (1) 
r = l  

where Ux; 0 are the SU(2) link matrices at four-position 
x in time direction. We use the standard Wilson action 
[1] 

S ( U ) = ~ T r U p ;  (2) 

here Ue is the product of link operators around a 
plaquette. Let us denote the lattice average of L(x) by 
L without index, then 

1 
L=ILI= ~ L ( x )  . (3) 

As is well-known [2] the order parameter measures 
the free energy Fq of a single static (infinite mass) quark 
at temperature T 

,4, 

where T is connected to the lattice spacing a by 

1 
T -  N~a " (5) 

Usually the temperature for a given coupling constant 
g2 is obtained from (5) by assuming the asymptotic 
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scaling relation for a(g 2) 

a(92)AL=exp + l~i-ln ~ l~g2 ) . (6) 

However, the last equation only approximately 
describes the dependence of the lattice spacing on the 
coupling constant [3] though dimensionless ratios of 
physical quantities, such as Tc/x/a (a = string tension), 
are already scaling at the g2-values under consider- 
ation. 

To assess the influence of finite size effects and the 
numerical and physical problems involved, we show 
in Fig. 1 previous results for ( L )  obtained on 183 x 3, 
4 and 5 lattices [4], i.e. for fixed N~ and varying N~, 
plotted as a function of T, where T was obtained via 
(5, 6). We observe, that for increasing N, the curves 
become flatter and only in the very neighbourhood 
of the transition point we have nearly overlapping 
functions. This Ncdependent behaviour is already 
known from the weak coupling expansion of ( L )  [5] 
and has two consequences: ( L )  is not directly a 
physical quantity as suggested by (4), because then 
also for different N~ we should have one scaling 
function (L)(T) ,  and secondly it makes the determi- 
nation of Tc more difficult for larger N~ due to the 
smaller slope of ( I_, )  near To. The corresponding 
plot for fixed N~ and varying N~ is schematically 
drawn in Fig. 2 (see also Fig. 1 of [4]). Here the curves 
become flatter with decreasing N~, they indicate 
smaller critical temperatures for smaller N~; as 
expected the determination of the critical point 
becomes easier with increasing N~. 

An important point not visible in Figs. 1 and 2 is 
that even with high statistics in the neighbourhood of 
the transition the measured points have so large errors, 
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Fig.  2. Schema t i c  p lo t  o f  ( L )  vs. T/A  L for  N~ = 4 a n d  N~ = 8, 12 
a n d  18 

that it is unclear, whether one is above or below the 
transition and how many iterations are necessary to 
decide that question. This uncertainty is, of course, 
related to the increase of the correlation length, when 
the second order transition point is approached. 

In this paper we want to tackle the mentioned 
problems by studying the distribution functions P(L) 
for various 4/g z. The change of the distributions when 
the critical point is approached is investigated in 
Sect. 2 on a 163 x 3 lattice. In the following section 
we compare the distributions at one 4/92-value close 
to the transition on 83, 123 and 183x 4 lattices to 
see explicitly the finite size effects. Section 4 is devoted 
to the problem of finding a more scaling quantity as 
order parameter, from which then the critical exponent 
/~ may be determined by a direct fit. For this purpose 
we take our new results and combine them with 
re-evaluated results from [4]. Our findings are 
summarized in the last section. 

2 The Polyakov loop distribution function 

The idea to study the Polyakov loop distribution 
function was first applied to the Ising model by Binder 
[6] and later extended to SU(2) by Mitrjushkin and 
Zadorozhny [7]. The latter authors calculated the 
distributions for several couplings with a statistics of 
7,000 to 8,000 iterations on an 83 x 4 lattice. We found 
that this is by far not enough to get reliable results, 
even on such a small lattice. In general we therefore 
performed 100,000 sweeps on a 163 x 3 lattice with a 
full group heatbath vector programme, which took 
5.6 #sec per link update. For thermalization no data 
were measured during the first 1,000 iterations. 

The distribution function, which is formally defined 



as 

P(L)=Z-I~]-IdUe-S8 L -  L ( x )  , (7)  

is the probability density to find the Polyakov loop 
value in the interval [L ,L+dL] .  In practice we 
approximately determined it by measuring the fre- 
quency distribution of the lattice average L. The bin 
size AL was chosen such as to have 200 bins between 
the minimal and maximal L or L for a fixed 4/g 2. 
Once P(L) is known, expectation values of all powers 
of L may be calculated from 

<U> = ;dL'L'=P(L'). (8) 

For comparison we show in Fig. 3 three character- 
istic distributions P(L) on a 163 x 3 lattice: below the 
critical temperature at 4/g 2 = 2.165, close to, but above 
T c at 4/g 2= 2.18, and well above Tc at 4/92= 2.20. 
Obviously, the curve at t h e  highest temperature is 
close to a Gaussian, which only on the small L, side 
is slightly changed due to some attempts of the system 

�9 to flip into the other state. Looking at the sweep history 
of this special Monte Carlo run one identifies one 
successful phase flip, one nearly successful and several 
smaller phase flip attempts. At first sight the occurrence 
of flips cannot be read off the sweep history of other 
observables such as the space-time plaquette P~. 
Also the frequency distribution of P~ and P~, the space- 
space plaquette, remain Gaussian even very close to 
the deconfinement transition. A closer look, such as in 
Fig. 4, where we show the part of the sweep history 
of L and P~ in the neighbourhood of the phase flip at 
4/92 =2.20, reveals, however, that if E decreases 
P~ becomes slightly larger. This is confirmed by the 
small negative correlation ( ( P ~ -  ( P ~ > ) ( L -  <L))>  
( = - 0.002 at 4/g 2 = 2.20). Approaching the transition 
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Fig. 3. The distribution P(L) on a 163 x 3 lattice for 4/g 2 = 2.][65 
(below To), 2.18 (1.02To) and 2.20 (1.07To) 
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Fig. 4. Sweep history of the Polyakov loop L and 10.(P~ - (P~)), 
where P~ is the space-time plaquette, near a phase flip at 4/g 2 = 2.20 
on a 163 • 3 lattice. To show the gross structure of the data only 
averages over 100 iterations are plotted 

now from the high temperature side, the number of 
tunneling attempts will increase and gradually fill the 
gap between the two states of the system, one at 
negative, one at positive L. This is seen in Fig. 3 from 
the curve at 4/92-- 2.18. Very close to the transition 
it will then be impossible to distinguish the thermal 
Gaussian from the tunneling effects, since the latter 
will increase and the width of the Gaussian, being 
proportional to the susceptibility Z, will reach a 
maximum. Well below the transition the distribution 
is expected to become again a Gaussian centered at 
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Fig. 5. The frequency distribution N(L) at 4/92=2.19 and a 
Gaussian fit to its right wing 
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L =  0, because only one state exists and there is no 
tunneling. From the 4/92 = 2.165 distribution in Fig. 3 
we see that though the maximum is at L = 0 ,  the 
function is still different from a Gaussian. 

One may now take advantage of this behaviour of 
the Potyakov loop distribution function to try to 
separate the tunneling fluctuations from the Gaussian 
part [-7]. For this purpose we fit the large L wing of 
P(L), which supposedly is undisturbed by tunneling 
effects by 

P(L) ,-~ exp [ - ( L -  Lmax)2/2a2], (9) 

where Lm,x is the peak position of the distribution 
and a L the Gaussian width 

a ~ = < L  2> -2 (10) --  Lma x. 

In Fig. 5 we show an example of such a fit at 
4/g2= 2.19. The two parameters of the Gaussian fit 
may then be used for an alternative definition of both 
the order parameter and the susceptibility, i.e. one may 
replace <L)  by l--"max and Z by 

Za N~(< L2> -2 _ a 2 = -- Lmax) -- Noa L. (11) 

Both quantities will coincide with their counterparts 
in the thermodynamic limit. A comparison of the old 
and new variables is contained in Figs. 6 and 7 and in 
Table 1. We see, that for 4/g 2 further away from the 
critical coupling the two definitions for the order 
parameter lead to coinciding results, at shorter dis- 
tances the Lmax-values are larger than <L>, so that 
the derivative of the new order parameter close to the 
transition becomes much larger. The steeper form of 
the curve has the consequence that the transition point 
itself can be easier located and that a corresponding 
critical exponent fit is more reasonable. For the 
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Table 1. Numerical results from the 16 3 x 3 lattice 

Order parameter 

4/0 z (L> Lmax z~ Emax 

2.165 0.0677(18) 
2.170 0.0761(22) 
2.175 0.1006(23) 0.1276 + 0.0019 

-- 0.0095 
2.180 0.1244(29) 0.1591 + 0.0051 

-- 0.0041 
2.185 0.1485(38) 0.1877 + 0.0031 

-- 0.0040 
2.190 0.1806(25) 0.2039 + 0.0000 

- 0.0048 
2.200 0.2221 (27) 0.2380 + 0.0021 

- 0.0007 
2,250 0.3226(04) 0.3246 + 0.0023 

- 0.0003 

Susceptibility 

4/92 X ZG AZG 

2.165 8.24 
2.170 10.46 
2.175 11.88 7.81 + 2.42 

- 0.42 
2.180 13.42 5.74 + 1.01 

-0.83 
2.185 15.13 4.69 +0.75 

--0.51 

2.190 10.45 3.83 +0.98 
- 0.00 

2.200 7.68 2.66 +0,12 
- 0.26 

2.250 1.28 1.21 -0.25 
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susceptibility it leads to more accurate data points and 
to a shift of the maximum to lower 4/92-values, in 
accord with the results from Lm,x. It is unclear, 
however, whether the transition point determined by 
this method is closer to the transition point on the 
infinite volume lattice. 

An often proposed way [8] to reduce the variance 
of loop expectation values is the one by Parisi et al. 
[9]. For  thermal Wilson loops in SU(2) one would 
replace all SU(2) link matrices U in (1) by new 
operators U [8], where 

~ - 1  = XI2(2)/211(2), (12) 

and 

u x  = Z u, (13) 
P(U) 

is the sum of six plaquettes containing a factor U; the 
11 and I 2 are modified Bessel functions and 

4 5/2 
2 = ~-  (det X) . (14) 

We have calculated the distribution function P(L) 
using the modified links. In Fig. 8 we compare the 
resulting P(L) with the one obtained in the usual way 
for 4/92= 2.297 on a 123 x 4 lattice after the same 
number of sweeps. Of  course, the same limiting (i.e. 
for infinitely many iterations) distribution is expected 
in both cases. The variance reduction technique does, 
however, not lead to any visible improvement in the 
convergence to this distribution. The same is true for 
correlations of the Polyakov loop. 
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Fig. 8. Comparison of P(L) obtained with normal (lines) and 
modified [9] (dots) links on a 123 x 4 lattice at 4/92 = 2.297 after 
50000 iterations each 
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Fig. 9. The Polyakov loop distributions on 83x 4, 123x 4 and 
183 x 4 lattices at 4/92 = 2.297 (corresponds to T= 1.02T~ on the 
N, = 18 lattice) 

3 F i n i t e  v o l u m e  e f f e c t s  

To see the influence of finite volume effects on the 
Polyakov loop distributions we compare in Fig. 9 P(L) 
as obtained on 83 x 4, 123 x 4 and 183 x 4 lattices 
after 200,000 sweeps at 4/g2= 2.297. This coupling 
corresponds to about  1.02To on the N~ = 18 lattice. 
We observe strong finite size effects. As expected, the 
width aL and the tunneling effects increase with 
decreasing N~, but also Lmax changes by a factor of 
two between the N~ = 8 and 18 lattices. A smaller 
critical temperature is therefore to be expected for 
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Fig. lB. The space-time plaquette distributions on the same lattices 
and at the same 4/92 as in Fig. 9 
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smaller lattices. If one looks at the corresponding 
space-space and space-time plaquette distributions-- 
the latter are shown in Fig. 10--one finds that they 
are all Gaussians; despite the close neighbourhood to 
the transition point no tunneling influence is seen. Of 
course, the widths of these Gaussians are increasing 
with decreasing N~ and, in accord with the weak 
coupling expansions [5] of the plaquette expectation 
values, the average values are slightly different. To 
obtain equally-well-determined distributions for L 
and/or P~,~ on these three lattices about the same large 
numbers of iterations were needed, i.e. essentially no 
critical slowing down was observed. 

4 A physical order parameter 

As we have seen in section one, the order parameter 
( L )  is not directly a physical quantity, but strongly 
N~-dependent. To take away the main N~-dependence 
we therefore propose to use as an order parameter the 
quantity 

Lphys = Lroax/Ewe, (15) 

where Lwc is given by the weak coupling expansion 

Lwr -- 1 - c l  g 2 - c 2 g  4 "-}- O(g6) ,  (16) 

and cl and c2 are known coefficients [5]; ct is propor- 
tional to N~ and positive. It is clear then, that the use 
of the truncated expansion at finite g2 and large N~ 
will lead to negative values of Lwo. This approximation 
may therefore not be used for large N~, but for N~ = 3, 4 
and 5 it seems reasonable. For larger N~ an alternative 
to Lwr is an exponentiated form, inspired by (4), 

Lwr = exp { -  N~(f19 2 -t-/2g 4 -F O(g6))}, (17) 

where f l  and f z  are determined such, that Lwo and 
Lwo coincide up to order O(g4). The major advantages 
of L~,~ are that it is always positive and that the main 
N~-dependence is explicitly given, since f l  is indepen- 
dent of N~ and f2 only weakly dependent on it. Yet, 
the corresponding L'phy~ calculated from our N, = 3, 4 
and 5 data still show a qualitative behaviour like ( L ) ;  
therefore we use the direct weak coupling expansion 
in the following. 

We have re-evaluated the 183 x 3, 4 and 5 data from 
[__4] to obtain Lm,x. It was not possible to determine 
Lma x at all 4/92-values, because (especially in the very 
near neighbourhood of Tc) some distributions had in 
spite of 20-60,000 sweeps too low statistics to allow 
for a reasonable Gaussian fit. We completed therefore 
the N~ = 3 data by including our new t 63 x 3 points, 
the N~ = 4 data by new results on 183 x 4 lattices [10]. 
The resulting gphy s is plotted as a function of the 
asymptotic T/Ar, i.e. using (5, 6) in Fig. 11. Obviously 
there is still not one scaling function Lphys(T). Most 
probably this is due to the non-asymptotic a(92). As a 
consequence one cannot determine the critical expo- 
nent with high precision by a direct fit to these curves 
and they cannot be expected to fall on top of each 
other. However, we can make a virtue of necessity and 
find the functional behaviour of a(g 2) by demanding 
that Lphys must have the same temperature regardless 
of N,. Comparing two curves with different N~ one 
has for two equal Lphy s the temperature 

1 1 
Ta)  - N~I a(g 2) = Nr a(g~) " (18) 

Suppose a(g 2) is known at one of the points, say a(g~), 
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then 

g~l  2 a(g 2) = ~ a(gl). (19) 

If the g2-regions of the two Nr overlap, it is 
possible to proceed, since one m a y  make  a new 
compar i son  at 

1 1 
T (2) = -  -- (20) 

Nr Nr 

and so forth. Finally, one has a set of g2-values, where 
a(g 2) is known in terms of a(g~), which sets the scale. 
Of  course, two curves m a y  always be super imposed 
in this way, but  it is non-tr ivial  when a third curve 
coincides with the first two. In Fig. 12 we show the 
new function a(g 2) obta ined  with the described me thod  
and the asympto t ic  form from (6) both  in units of 
Tc(N, = 3), i.e. at  4/g 2 =  2.171 the plots were norm-  
alized to 1/3. The functions differ only slightly ( __< 1%) 
below 4 / g 2 =  2.35, up to 4 / g 2 =  2.5 the difference is 
increasing to abou t  15%. The somewhat  steeper slope 
of the new a(g 2) is in full accord with the A4/gZ-values 
(at 4/g 2 = 2.5 we have A4/g 2 ~ 0.225) found via M C R G  
methods  [3]. With  the new scale for the tempera ture  
induced by the change in a(g 2) the new order  pa ramete r  
Lphys(T' ) is then one scaling function for N~ = 3, 4 and 
5 as can be seen in Fig. 13. Including all the points  in 
a critical exponent  fit of the form 

Lphy  s : A(T '  - T'c)P(1 + B(T '  -- T'c)~ (21) 

we find fi = 0.324. With  the 95% confidence level 
me thod  the error  is 0.025. The  universali ty hypothesis  
[11] expects the critical exponents  of the (3 + 1)- 

519 

dimensional  SU(2) gauge theory to coincide with the 
corresponding exponents  of the 3-dimensional  Ising 
model,  where fl is es t imated to be 0.3265 _ 0.0025 [12]. 
Our  result is therefore in excellent agreement  with the 
universality hypothesis.  

5 S u m m a r y  

We have demons t ra ted  the use of  Po lyakov  loop 
distributions. In the close ne ighbourhood  of the decon- 
finement transit ion reliable est imates of the average 
of the order pa ramete r  and the susceptibility will only 
be obta ined if the distr ibutions are well determined,  
which may  require 100,000 to 200,000 sweeps. 

The distributions contain a thermal  Gauss ian  par t  
plus addit ional  contr ibut ions which are due to tunnel- 
ing a t tempts  of the system. Even rather  close to the 
transit ion these parts  m a y  be separated by corres- 
ponding fits; the location of the m a x i m u m  and the 
width of the Gauss ian  m a y  serve as new order  para-  
meter  and susceptibility [7] and allow for bet ter  critical 
exponent  fits. 

Po lyakov  loop values which are obta ined with the 
Parisi, Pent ronzio  and Rapuano  method  [9] do not  
lead to improved  distributions. 

There are strong finite volume effects in the 
Po lyakov  loop and plaquet te  distributions. Critical 
slowing down was, however,  not  observed for the 
calculation of the distributions, to obta in  smooth  dis- 
tr ibutions abou t  the same large number  of i terations 
were necessary on all used lattices. 

The quant i ty  Lphy s m a y  serve as new physical  order  
parameter .  It  is possible to rescale a(g 2) such that  for 
N~ -- 3, 4 and 5 all curves have the same tempera ture  
dependence. The non-asympto t ic  a(g 2) is well in accord 
with M C R G  studies [3]; the critical exponent  fit to the 
s c a l i n g  g p h y  s leads to a value f l = 0 . 3 2 4  strongly 
support ing the universality hypothesis  [11]. 

Acknowledgements. It is a pleasure to thank H. Satz and F. Karsch 
for many helpful discussions, in particular on questions related to 
the scaling of the order parameter. We are indebted to the Bochum 
University computer centre for providing the necessary Cyber 205 
time. 

R e f e r e n c e s  

1. K. Wilson: Phys. Rev. D10 (1974) 2445 
2. L. McLerran, B. Svetitsky: Phys. Lett. 98B (1981) 195; Phys. 

Rev. D24 (1981) 450; J. Kuti, J. Pol6nyi, K. Szalch/myi: Phys. 
Lett. 98B (1981) 199 

3. U. Heller, F. Karsch: Phys. Rev. Lett. 54 (1985) 1765 
4. J. Engels, et al.: Nucl. Phys. B280 [FSI8] (1987) 577 
5. U. Heller, F. Karsch: Nucl. Phys. B251 [-FS13] (1985) 254 
6. K. Binder: Z. Phys. B-Condensed Matter 43 (1981) 119 
7. V.K. Mitrjushkin, A.M. Zadorozhny: Phys. Lett. 185B (1987) 377 
8. F. Karsch, C.B. Lang: Phys. Lett. 185B (1984) 176 
9. G. Parisi, R. Petronzio, F. Rapuano: Phys. Lett. 128B (1983) 418 

10. J. Engels, J. Fingberg, M. Weber: Bielefeld Preprint (1988), in 
preparation 

11. B. Svetitsky, L.G. Yaffe: Nucl. Phys. B210 [FS6] (1982) 423 
12. J.C. Le Guillou, J. Zinn-Justin: J. Phys. Lett. 46 (1985) L137 


