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Deconfinement for SU(2) Gauge Theory in 2 + 1 Dimensions
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By calculating Polyakov-loop averages on a 60%x 2 lattice, we determine the critical exponent of
deconfinement for SU(2) gauge theory in 2+ 1 dimensions. Universality arguments predict it to be
the same as the critical exponent 8= % for the spontaneous magnetization in the two-dimensional
Ising model. Our results are in good accord with this prediction.

PACS numbers: 11.15.Ha, 12.35.Cn

SU(N) lattice gauge theory leads to a deconfine-
ment transition at a temperature 7,,! at which the sys-
tem passes from a state of invariance under global Zy
transformations to one where this symmetry is broken.
The symmetry of the state at any given temperature is
measured by the lattice average of the Polyakov loop
L (x), which thus serves as a deconfinement order
parameter.? For the SU(2) case in the strong-coupling
limit, it is possible to integrate out all degrees of free-
dom except the L (x) at spatial sites x; the result is an
effective spin theory of the same spatial dimensions as
the original gauge theory.? This has led to the conjec-
ture* that, in general, SU(N) gauge systems and Zy
spin systems of the same spatial dimensions should ex-
hibit the same finite-temperature behavior, provided
that the transition is in both cases continuous. In par-
ticular, both transitions should then yield the same
critical exponents.

For SU(2) lattice gauge theory in three space dimen-
sions it was recently shown> ° that the critical exponent
of deconfinement, B8, with

L~(T-T,)8 T>T,, )

is in accord with the value 8=0.33 found numerically
for the spontaneous magnetization in the three-
dimensional Ising model. In the present note we want
to study this question for the case of two space dimen-
sions, where the Ising model has Onsager’s celebrated
analytic solution, yielding 8= % for the corresponding
critical exponent. Similar studies for the Z, gauge sys-
tem’ in two space dimensions have led to critical ex-
ponents somewhat larger than this prediction®; they
have at the same time elucidated some of the difficul-
ties inherent in such checks.
We consider the Polyakov loop
1 N,—1
L(X)‘_‘? I1 Uxiies 0))
i=0

at a spatial site X on a (2+1)-dimensional lattice of
size¢ N2xN,, where N, and N, denote the total
number of sites in space and temperature directions.
The SU(2) matrix Uy, + is associated with the link
connecting the temperature sites / and / + 1 along the

lattice axis at the space point x. With the Wilson ac-
tion in 2 + 1 dimensions,

S(N)=K 2, (1-+ReTrUvUU), 3)

plaquettes

we calculate the average of L (x) over all N2 spatial
sites of the lattice for a given configuration i of the
U’s and a given coupling K =4/g%a; here g denotes
the bare coupling and a the lattice spacing. The abso-
lute value of the result is then averaged over »; succes-
sive configurations (iterations) produced by the
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FIG. 1. The behavior of L;, Eq. (4), at K = 3.5, 3.45, and

3.39 as a function of the number of iterations, for three cold
start runs with different random numbers.
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TABLE I. Average Polyakov loops on a 60?x 2 lattice at
different couplings K = 4/g%a.

K L
3.39 0.25383 £0.013 57
3.40 0.32550 £0.009 95
3.418 0.354 30 £0.008 29
3.45 0.38801 £0.004 75
3.4625 0.408 45 +0.004 39
3.475 0.40916 £0.004 16
3.4875 0.42321 £0.004 44
3.50 0.43000 +0.003 31
3.525 0.441 50 £0.002 80
3.55 0.448 28 +0.004 50
3.60 0.47240 £0.002 60
3.65 0.48721 £0.002 56
3.70 0.50560 +0.003 68
3.75 0.51952 +£0.00126
3.80 0.52940 £0.002 00
4.00 0.566 40 +0.002 60
5.00 0.676 40 +£0.001 60

Metropolis algorithm,
L=n"'3,L, L,=IN;23 LK. @

We take L; in this final average in order to avoid can-
cellations which would occur if the system flips from
one ordered state to another.

The actual evaluation was performed on a 60?x 2 lat-
tice, starting from an ordered initial configuration

11
1 0.15 0.20

A

FIG. 2. The quantity x> with and without fixed K., Eq.
(6), as a function of the critical exponent 3, for the fit Eq.
(5) in the interval 3.39 << K =< 3.75; the dashed lines indi-
cate the 95%-confidence-level errors.
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(cold start). For each value of the coupling K, we ran
in general 4000 iterations. In Fig. 1, we show the
behavior of L; as a function of the number of itera-
tions, for several runs per coupling. We start with a K
value well in_the ordered (deconfinement) region. It
is seen that L; then first converges quite rapidly to a
stable equilibrium value, but as we lower K towards
the critical point, the fluctuations become larger and
larger, as expected for a continuous transition. _

In Table I we list the results obtained for L at the
couplings studied. They are in general based on 3500
iterations; we discard the first 500 iterations in each
case to reduce transient effects. The errors in Table I
were obtained in the following way. First the average
over the results of n consecutive iterations was taken.
Then the linear correlation coefficient of each two suc-
cessive n blocks was measured. Whereas for n =10
there was a clear linear correlation, the correlation of
neighboring blocks of size n =100 for K = 3.436 and
n =350 for K < 3.436 showed no significant devia-
tion from zero on the 95% confidence level. From
these large bins the usual estimate of the standard de-
viation was calculated.

We now fitted the data by the form

L=A4(K—-K)PI1+8(K-K,)], Q)

with open 4, B, K., and 8. The second term inside
the square brackets describes corrections to scaling;
since it is presumably small near K., we begin with
b=1.6 as obtained for the two-dimensional Ising
model.’ Since not much is known about renormaliza-
tion and scaling behavior in two space dimensions,!®
we study L as a function of the coupling rather than
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FIG. 3. The calculated values of the average Polyakov
loop L as function of the coupling K = 4/g%a, together with
the fit (solid line) of Eq. (5) using the parameter values of
Eq. (7).
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FIG. 4. The quantity x?, Eq. (6), as function of the criti-
cal exponent 8, for the fit Eq. (5) with B =0 in the interval
3.39< K =< 3.475, the dashed lines indicate the 95%-
confidence-level errors.

the temperature. For the interval 3.39 <= K =< 3.75, we
obtain the X2 behavior shown in Fig. 2; here

_ L(K)—f(K)

’2[ AL (K) /d £ ©
with f(K) denoting the form (5) and with the sum
over all data points K. The minimum of Xx? is reached
for

B=0.132,

K, =3.388,
@)
A=0567, B=0242.

To obtain an estimate of the systematical error for the
value of the critical exponent, we have varied the
upper limit of the fitted K range between 3.65 and
3.80; we find that AB=0.008. The statistical error can
be read from Fig. 2, where the dashed lines indicate
the B range at 95% confidence level, resulting in

B=0.13224 ®
If it were possible, as, e.g., in 3 + 1 dimensions, by the
measurement of the energy density on the same lattice
(here we would need an additional plaquette measure-
ment on a symmetric lattice) to obtain an independent
K, determination, then we would have a smaller error,
as can be seen in Fig. 2, where X? for the correspond-
ing fit at fixed K, is also plotted. The fit to the data
using Egs. (5) and (7) is shown in Fig. 3.

So far, we had fixed the power b of K — K, in the
correction to scaling. To test the importance of this
for the critical exponent, we now restrict our fit to a
smaller range of K, where the correction term should
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FIG. 5. The quantity x?, Eq. (6), as a function of the criti-
cal exponent B, for the fit Eq. (5) with open exponent b.

become negligible. In Fig. 4, we show the X2 results
for 3.39=< K = 3.475 with B=0. The fit is now best
for

B=0.128, K, =3.388, 4 =0.561, (C))

in very good agreement with the result (7). Finally,
we have attempted a fit with all parameters, including
b, left open. The resulting X?> behavior for 3.39
= K = 3.75 is shown in Fig. 5; it is minimal for

B=0.133, K.=3.388, A =0.568,
(10)

B=0.245 b=1.64

in accord with our previous results. The comparatively
slow variation of X2 with 8 shows that it is difficult to
fit both B and b in the given rather small K interval.

We can thus conclude that our results support well
the proposed universality relation®* between SU(2)
gauge theory and the Ising model for the case of two
space dimensions.
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