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The thermodynamics of QCD with dynamical Wilson fermions is studied in a low-order 
hopping parameter expansion, using Monte Carlo simulation on 8 ~ x 3 to 103 × 5 lattices. We observe 
a clear deconfinement transition at Tc/A~ ~12 ~ 150; chiral symmetry restoration occurs at the same 
point. Within our approximation, both transitions are continuous. In the confinement regime, we 
find the global centre Z 3 symmetry only very weakly broken, in accord with a picture relating string 
breaking in QCD with ionization in insulating solids. 

1. Introduction 

The t h e r m o d y n a m i c s  o f  pure  S U ( N )  gauge  fields predic ts  the occur rence  o f  a 

deconf in ing  phase  t rans i t ion  [ 1 ]. At some t e m p e r a t u r e  To, co lour  screening  dissolves  

the conf in ing b o n d  and  turns  g luon ium mat te r  into a c h r o m o p l a s m a  [2]. One o f  the 

most  in teres t ing  p r o b l e m s  in current  s ta t is t ical  Q C D  is what  effect the in t roduc t ion  

o f  d y n a m i c a l  quarks  has on this deconf inement .  

On a p h e n o m e n o l o g i c a l  level, co lour  screening  cons ide ra t ions  a p p e a r  to remain  

va l id ;  the  p resence  o f  many  o ther  co lour  charges  shou ld  dissolve  b o u n d  quark  states 

jus t  as well  as g luon ium states.  On the o the r  hand ,  the g lobal  symmet ry  under  the 

centre  ZN o f t h e  S U ( N )  gauge  g roup  is b roken  by the fe rmion  term in the lagrangian ,  

and  hence  deconf inemen t  can no longer  be str ict ly charac te r i zed  in terms of  spon-  

t aneous  ZN symmet ry  breaking .  The expec ta t ion  value /[ o f  the thermal  Wi lson  

loop  does  not  any  more  const i tu te  an o rde r  p a r a m e t e r  for the deconf inemen t  

t rans i t ion ,  s ince it now does  not  vanish in the conf inement  region.  However ,  it is 

unc lea r  how much /7, differs from zero there,  i.e. how s t rongly  the  ZN symmet ry  is 

ac tua l ly  broken .  We must  therefore  ask by what  mechan i sm /7, is de t e rmine d  in the 

conf inement  zone.  

The decon f inemen t  t rans i t ion  is the c h r o m o d y n a m i c  ana log  o f  the me ta l - insu la to r  

t rans i t ion  [3] in systems with e lec t romagne t i c  forces.  In insula t ing  sol ids ,  the electr ic  

conduc t iv i ty  tr is not  str ict ly zero,  but  only  exponen t i a l l y  small  [3]: 

~r ~ exp { -  E i / T } ,  ( 1 ) 

where  E, deno tes  the ion iza t ion  energy.  Above  the t rans i t ion  po in t  to a metal ,  cr is 

non-zero  because  Debye  screening has g loba l ly  d i s so lved  the C o u l o m b  b ind ing  
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between ions and electrons; but even below this point, ionization can locally provide 
some free electrons, and thus make ~ > 0. The corresponding phenomenon in QCD 
with dynamical quarks is the production of  qcI pairs. In pure gauge theory below 
the deconfinement temperature,  an infinite energy is needed to break up a static 
quark-ant iquark pair; this corresponds to an infinite ionization energy in eq. (1). 

With dynamic quarks, such a break-up becomes possible when the separation yields 
a binding energy equal to that needed to produce a qcl pair, i.e. a hadron. The 
newly-formed quarks neutralize the static quarks and thus allow their separation. 
We therefore expect that /T will now no longer vanish in the confinement zone, but 
that 

L--exp{--mH/2T}, (2) 

where mH is the mass of  the dominant qcl bound state. Letting mH ~ oc in eq. (2), 
we recover the pure gauge result. 

Both the conventional Mott transition in solids and the deconfinement transition 
in hadronic matter thus lead from a regime, in which the binding can locally be 
broken (by ionization or qcl formation, respectively) to one, where it is globally 

removed by a collective screening of the binding force. Although this provides us 
with an intuitive picture of  how an /7,~ 0 arises in the confinement region, it does 

not allow us to estimate it quantitatively. Thus also the question of the sharpness 
of  the transition, or of  its order, if it still is a genuine phase transition, remains open. 

For colour SU(3), the deconfinement transition of the pure gauge theory is of  
first order [4]. Hence very heavy quarks will not totally remove the discontinuities 
in thermodynamic observables. Massive constituents are thermodynamically sup- 
pressed, and only if the quark mass becomes small enough can the deconfinement 
pattern of  the gluon system be changed. 

However, quark mass considerations around the deconfinement point remain 
rather arbitrary as long as the relation between chiral symmetry restoration and 
deconfinement is not clarified. In a state of  broken chiral symmetry, the effective 
quark mass is not zero, and if it is large enough, we may still have a first-order 
deconfinement transition [5]. 

On the other hand, the role of  the quark term in the QCD lagrangian is similar 
to that of  an external magnetic field applied to a spin system [6-9]. This immediately 

shows why /S should cease to vanish in the confinement zone, although it does not 
directly relate its value there with any physical quantity. The discontinuity in /S 
decreases with decreasing quark mass (increasing external field), and based on 

strong coupling arguments it has been suggested that the deconfinement transition 
may be completely washed out in the light-quark limit [6-9]. However, all quantitative 
studies performed so far [10-13] continue to show a very abrupt deconfinement 
transition even for the lightest quark masses considered. 

To study this problem in more detail, we have performed numerical calculations 
with Wilson fermions [14] of two flavours in a low-order hopping parameter  
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expansion, on lattices ranging from 83X3 tO 103 ×5. We have chosen this fermion 
formulation because it allows in reasonable time calculations with rather good 
statistics on fairly large lattices. Moreover, the Wilson fermion scheme even in the 
lowest-order hopping parameter  expansion contains all the essential features used 
to argue for the disappearance of the deconfinement transition. Therefore, if we 

understand here why it persists to such an extent, then this will be applicable to 
other fermion formulations as well; and as we have already noted, so far the different 
fermion schemes do lead to very similar results on deconfinement and chiral 
symmetry restoration. 

In the next section, we shall sketch the formalism of statistical QCD on the lattice, 
using the Wilson fermion scheme. In sect. 3 we then present our numerical results 
for the relevant thermodynamic observables. 

2. Statistical QCD with Wilson fermions 

Our starting point is the euclidean lattice form of the QCD partition function: 

ZE(/3)= f 1-I d U { d e t ( 1 - K M ) }  Nr e x p [ - S G ( U ) ] ,  (3) 
J l i n k s  

as it appears after integration of the quark spinor fields. Here 

\ % /  p~ ~ P,,~(l R e t r ( U U U U ) )  

(4) 

is the Wilson action for SU(3) gauge fields at finite temperature [15], obtained by 
summing over space- t ime (P~) and space-space  plaquettes (Pu); a~, and a s are the 
spatial and temporal lattice spacings, g,, and g~ the corresponding couplings. The 
form (3) holds for N/ f lavours  of  quarks with equal mass. The matrix M 

M~,..,. = (l - %.) U.m,~ . . . .  ,~+(l + 3,~) U~ .8  . . . .  ~ (5) 

describes the interaction for each flavour, corresponding to the Wilson form of  the 

fermion action 

SF(U)  = Z  ~s( l - KM)¢y ; (6) 
f 

in eq. (5), /2 is a unit vector along a lattice link. In the finite temperature case, the 

hopping parameter  K(g 2) depends on the link direction 

3 

KM-=-K~Mo+K~. ~ M.  ; (7) 
~ = l  

however, for a .  = a s = a, Ko = K,. = K(g2). 
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We now expand the logarithm of det (1 - KM) in powers of the hopping parameter 
[16] 

I 

In det (1 - KM) = - T r  -~ (8) 

Only closed loops contribute to eq. (8). The inclusion of the fermion determinant 
thus corresponds to having in eq. (3) an effective action 

Se.(U) = S ~ ( U ) - 4 N I ( 2 K )  N~ Y. Re L-16NsK 4 ~ R e T r ( U U U U ) + O ( K ' ) .  
sites Pt3,P,, 

(9) 
Since the third term on the r.h.s of eq. (9) simply shifts the coupling by 

6 6 
g--i ~ g-'~ + 48 NfK 4 , ( 1 O) 

the main effect of the presence of fermions is contained in the thermal Wilson loop 
term of Sen, with 

L(x)---Tr [I Ux: . . . .  , . (11) 
T= I  

The hopping parameter K(g 2) is for massless quarks given at small g2 by [17] 

K(g 2) = ~[1 + 0.1 lg 2 + O(g ' ) ] .  (12) 

At the g2 value we have considered, we expect 10-20% deviations from the weak 
coupling behaviour (12) ; in fig. 1, we show Monte Carlo results obtained by requiring 
m,, =0,  together with eq. (12) up to order g2. Since the form (12) falls below the 
critical Monte Carlo curve, it corresponds to quarks of non-vanishing mass. This 
keeps us within the radius of convergence of the hopping parameter expansion. For 
similar reasons, other fermion schemes also use finite quark masses in the actual 
calculation. We have thus used the form (12), as we also use the renormalization 
group relation 

a A L = e x p {  41r 2 ( 6 ~  459-57Nf  [ 8~_22 (g6__i)]} (13) 
- 3 3 _  2Ny k-g~] +(33_  2Nf)21°g L 33_ 2Ns 

obtained from the weak coupling expansion of the/3-function, 

(33-2N/ )  g3[ 1 _t. (306- 38 Nf) O(g4) ] (14) 
_fl (g2) 3-('4 ~-~ (4 ~)--~-~----2-Ny)g2+ . 

It appears reasonable to expect both eq. (12) and eq. (14) to apply well for g2<~ 1 
(see for example [18] for a survey of recent results of scaling tests). 

From the partition function (3) we now get the energy density e as a function of 
the temperature. With e -= eG + eF, we have for a,, = a~ 

eG/T 4 = 18 N~{g-2(P,, - PB) + c ' ( P -  P,,) + c~(P-  Pa)} (15) 
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Fig. 1. Hopping parameter K as function of  6/g 2, for the quenched case (the dashed curve, obtained 
by interpolation of  numerical data), for the case N r = 2 (the solid curve, obtained from the previous 
curve by use of  the renormalization group relation), and the weak coupling form (dash-dotted curve, 

obtained from relation (12)). 

for the gluon sector and 

E F / T  4 = N ~  N f { 3 ( 2 K )  NB Re/S+ 144K4(P~  -- Pt3) + O ( K s ) }  (16)  

for the fermion sector. The separation of e into two such terms corresponds to the 
two components of S,n; in the interaction regime, an actual separation into gluon 
and quark systems is of course impossible. In eq. (15), F'~, and Pv denote the 

space-space and space-temperature plaquette averages on the N~ × Nv lattice; 
! .t  is the average on a large (N~) symmetric lattice. The constants c,, and c~ come 

from differentiating the couplings g,  and gv with respect to a~; for colour SU(3) 

and Wilson fermions of two flavours, one has [ 19] c~, = 0.19366 and cv - '  - -0.132463. 
In eq. (16), /S denotes the lattice average of the thermal Wilson loop. 

The energy density thus determined will certainly display finite-size effects - both 
because of  the lattice regularization [20] and because of the truncation of the hopping 
parameter expansion. To compare our results with those of a non-interacting quark- 
gluon system, we therefore calculate the ideal gas forms e sB and e s" on lattices of 
the same size and in the same order of hopping parameter expansion. For e~;, the 



T. (?elic et al. / Finite-temperature lattice QCD 675 

resulting values are given in ref. [20]; for e sB we have from eq. (16) by setting all U = 1 

e sa /7  ̀ 4 = 9N~ Nr(4)-  N~, (17) 

where we have taken K sB =4 and neglected fifth and higher order contributions. 
If  the quark-gluon system undergoes a sudden transition from the hadronic to 

the plasma phase, we expect this to reflect strongly in the behaviour of  e. To study 
the restoration of  chiral symmetry, we consider the order parameter  [16] 

( ~ b ) a 3 ] p e ,  fl . . . . .  =2K ~ KITr MI=2K{12--4(2K)  N" Re/S 
1=o 

- 1  ! 52K4(1 - ½(P,, + Pt~)) + O(KS)} • (18) 

Since in the Wilson formulation (4~q') never vanishes on a finite lattice, the relevant 
quantity to consider as chiral symmetry order parameter  is 

A (t~qj) -= (~0) - (~9)wc ,  (19) 

where in (~0)wc the weak coupling limits* for Re £ and the plaquette averages of  
ref. [21] are used. Chiral symmetry restoration is a non-perturbative effect, and by 
subtracting the perturbative form with our K (i.e. for finite mass), we can obtain an 
idea of where the restoration occurs. 

The aim of  our study will now be the numerical determination of the energy 
density (15)/(16), the average of the thermal Wilson loop (11), and the chiral 
symmetry measure (19). 

3. Numerical results 

The major  part of our results is obtained on an 83x3 lattice, with about 2000 
lattice sweeps (iterations) per value of the coupling; of  these, the first 500 are 
generally discarded. 

In fig. 2 we show the behaviour of  the gluon sector energy density (15) as a 
function of  6/g 2, together with the Stefan-Boltzmann result on an 83 x 3 lattice [20]. 
Also shown is the corresponding result for the pure gauge theory [22]. We note that 
the transition now occurs at a lower value of 6/g2; this is to be expected because 
of the modified renormalization group relation (13), if Tc is not significantly changed. 
In contrast to the pure gauge case, the transition now also has become continuous. 
Finally we note a rather sizeable overshoot in the transition region. This is, as we 
shall see more clearly in a moment,  due to the Re/S part of  the effective action (9) ; 
it causes a more complete alignment of  the U than would be the case in the pure 
gauge theory. 

The energy density of  the quark sector with Nj = 2, shown in fig. 3, still falls short 
of  the limit (17); the reason for this is that Re/S attains its asymptotic limit only 

* The results of ref. [21] correspond to the quenched case; we do not expect significant changes in eq. 
(19) when the determinant is included. 
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Fig. 2. The energy  dens i ty  e G for the g luon  sector,  ca l cu la t ed  on an 8 3 x 3  lat t ice in the four th-order  
h o p p i n g  p a r a m e t e r  e x p a n s i o n  ( 9 ) .  Also shown are the pure  gauge  theory  resul t  ( x ) and  the ideal  gas  

l imit  (dashed  l ine)  on the same size latt ice.  

rather slowly, as is seen in fig. 4. We might note at this point  that within our  error 
bars Im/~  is essentially zero, even below the deconf inement  point,  where it is about  
1 r6 or less o f  Re/7.. 

Combin ing  eG and eF, we obtain the behaviour  o f  the overall energy density. It 

is shown in fig. 5 as funct ion o f  the temperature  T/AL,  obtained with the help o f  
the renormal izat ion g roup  relation (13). The S te fan-Bol tzmann  limit in fig. 5 is the 
sum o f  the cor responding  gluon and quark sector forms. It thus includes the effect 

both o f  finite lattice size and of  four th-order  hopp ing  parameter  truncation.  The 
latter only results in a 5% reduct ion o f  the complete  series. 

To obtain some feeling for the size o f  e in the confinement  region, we also include 

in fig. 5 the energy density o f  an ideal gas o f  at, p and to mesons,  using for illustration 
purposes  A IN..' ~2 = 1.5 MeV for the lattice scale in physical units. We see that such 
an ideal meson gas indeed leads to an e o f  the same order  o f  magni tude  as we 
obtain f rom our  Q C D  evaluation. 

We have already shown in fig. 4 the average thermal Wilson loop Re/7.; at the 
end of  the deconf inement  regime, it falls rather rapidly to a very small value. The 
behaviour  o f  the cor responding  fluctuation is given by the susceptibility 

X -= { L 2 -  ~ 3 (20) L}N,,; 

and is shown in fig. 6. The apparent  strong increase at the critical point,  together  
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Fig. 3. The energy density e G for the fermion sector, calculated on an 8 3 x3 lattice in the fourth-order 
hopping parameter expansion (O), together with the ideal gas limit on a lattice of the same size (dashed 

line). 

with the r ap id  but  smoo th  var ia t ion  o f  both  /_7, and  e suggests a s e c ond -o rde r  

t ransi t ion.  C o m p a r i n g  the results  of  hot  and  cold  starts a r o u n d  the deconf inement  

point ,  we have in fact not  observed  any two-s ta te  signal.  

F ina l ly  we preoent  in fig. 7 the behav iou r  o f  the chiral  symmet ry  measure  (19), 

toge ther  with that  o f  /S. Deconf inement  and  chiral  symmet ry  res tora t ion  are thus 

seen to occur  at the same point .  

Before we s tudy  the effect o f  h igher  orders  and  larger  lat t ices,  let us note here 

that  the b e h a v i o u r  we have observed  for Wilson  fe rmions  in fou r th -o rde r  hopp ing  

p a r a m e t e r  expans ion  agrees  in all points  with that  obse rved  for K o g u t - S u s s k i n d  

fe rmions  bo th  in the mic rocanon ica l  [ 13] and  in the canon ica l  [ 11, 12] fo rmula t ion .  

The t runca t ion  o f  the h o p p i n g  pa rame te r  expans ion  (8) at ! = 4 is c lear ly  a ra ther  

dras t ic  measure .  To ob ta in  at least  some idea  of  the effect o f  h ighe r -o rde r  terms,  

we have r e p e a t e d  our  ca lcu la t ions  inc luding  the next  (K 5) order ,  aga in  on an 8 3 x 3  

lattice.  In fig. 8 we show the resul t ing change  both  in e and  in i ;  it does  not  seem 
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Fig. 4. The average  of  the the rmal  Wilson loop  on an 8 ~ x 3  lat t ice as a func t ion  of  6 / g  2. 
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Fig. 5. The to ta l  energy  dens i ty  e, no rmal i zed  to the ideal  gas  l imit  esa, as a funct ion  of  the tempera ture ,  
ca lcu la ted  on an 83 x 3  la t t ice  in the four th-order  h o p p i n g  pa rame te r  expans ion .  Also shown are the 
ideal  gas  l imits  for the q u a r k - g l u o n  p la sma  (dashed  l ine)  and  for a sys tem of  ~r, p and  to mesons  (sol id  

l ine).  
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Fig. 6. The susceptibility X in the fifth-order hopping parameter expansion, calculated on an 8 ~ x 3 lattice. 

to effect our  conclus ions .  We expect  the role o f  h igher -o rder  terms to be most  crucial  

in the de t e rmina t i on  o f  the ac tual  value o f  the cri t ical  coup l ing ;  s ince the inclusion 

o f  h igher  orders  results in a shift  to smal le r  6/g2o our  four th -o rde r  results  p rovide  

an u p p e r  b o u n d  for the cri t ical  t empera ture .  We shall  see short ly  that  this b o u n d  

is not  much above  the co r r e spond ing  Tc values  in o ther  fe rmion  schemes  [11-13]. 
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Fig. 7. Chiral symmetry measure (O) and the average thermal Wilson loop (O), calculated on an 83 ×3 
lattice in the fourlh-order hopping parameter expansion. 
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Fig. 8. Compar i son  of  results in the fourth ( 0 )  and fifth ( 0 )  order hopping parameter  expansion on an 
8 3 x 3 lattice, for the overall energy density e/esB (a) and for the average thermal Wilson loop (b). 
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In fig. 9, we then show the behav iou r  o f  eG, as ca lcu la t ed  on latt ices o f  size 83 x 3, 

8 3 x 4  and  103×5, and  normal i zed  in each case to the c o r r e spond ing  S te fan-  

Bol tzmann  form. In fig. 10, the results for/7, on the same set o f  lat t ices are  presented .  

The shift  in the cri t ical  coup l ing  with increas ing  N o is c lear ;  the values  o f  6/g:c, 
toge ther  with the resul t ing cri t ical  t empera tures ,  are l isted in table  1. Within  our  

error  margins ,  we thus do  not  find any no tab le  dev ia t ion  from scaling. 

The rise o f  Ecs above  the S t e f a n - B o l t z m a n n  limit,  which we had  a l r eady  noted  

before ,  is now seen to decrease  with growing  N o . The technica l  reason for the 

ove r shoo t  thus becomes  evident :  the presence  o f  Re/~  in the effective ac t ion causes  

a more  c o m p l e t e  o rde r ing  on tempora l  than  on spat ia l  links. As a result ,  g'0 is 

r educed  in compa r i son  to the quenched  case, Po not  so much.  With  increas ing  6 / g  2, 

all l inks acqui re  o rde red  U, and  eG returns to its S t e f a n - B o l t z m a n n  limit.  When  N o 

is increased ,  the effect o f  Re [ in the effective ac t ion  is doub ly  reduced:  the factor  

(~/ESB)G 
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Fig. 9. Comparison of the gluon sector energy density values calculated on an 83 ×3 (O), an 83 x4 ( × ) 
and a 103 x5 (A) lattice, normalized in each case to the ideal gas result on a lattice of the same size. 
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Fig. 10. C o m p a r i s o n  of  the average thermal Wilson loop values on 83 x 3  (O),  83 x 4  ( x )  and  103 x 5  

(&) lattices. 

K N~ becomes  smaller, and - as seen from fig. 10 - the value of  £ in the deconfinement 
zone decreases. This decrease o f /S  with N~ is known from pure gauge theory [23]; 
it is due to the fact that asymptotically divergent point-source contributions for the 
colour charge still have to be removed to obtain a physically meaningful observable. 
In pure gauge theory, this is possible in the weak coupling limit [21]. Here, with a 
finite number of  terms in the hopping parameter expansion, it is not clear how this 
could be carried out ir~the action. Hence, in the transition region the energy densities 
calculated at ditterent N~ will in general not coincide as functions of  T. It would 
be interesting to see if other fermion schemes can avoid this problem, or if it is a 
general normalization difficulty for the quark-quark interaction on the lattice. 

Having seen that the critical temperature is rather insensitive to the temporal 
lattice size, let us return to its dependence on the order of  the hopping parameter 
expansion. We had already observed that higher order implied smaller 6/g2c. In 

TABt.E 1 

Critical couplings and temperatures 

3 5.300+ 0.050 152 ± 10 
4 5.575 ± 0.025 162 ± 5 
5 5.725 ± 0.025 157 ± 5 
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TABI,E 2 

Critical parameters in different fermion schemes 

683 

Scheme N o N r 6/g~ Tc/,t  ° Ref. 

Wilson K 4 3 2 5.30+0.05 131+8] 
Wilson K s 3 2 5.25 ±0.05 123 ± 8~ this paper 

KS, canonical 4 3 5.3 100 11 
KS, canonical 2 2 4.6 89 12 
KS, micro-canonical 4 4 5.1 106 13 

table 2 we list our results on the 83 ×3 lattice for fourth and fifth order of  the hopping 
parameter  expansion, together with the results from other fermion schemes. To 
allow a comparison,  we convert all critical couplings to temperature values Tc/A °, 
where A ° is the lattice scale for N/-= 0; its relation to the A ~, with Nj ~ 0 is known 
perturbatively [23], and we have used this in the conversion. It is seen that our 
values tend to lie about 20% above the average value obtained in other schemes. 
This gives us some indication of the effect of  the truncation in K t. It must be kept 
in mind, however, that the perturbative relations between A ~, and A ° are at present 
coupling values very likely not reliable; hence we do not believe that the TffA ° 
values in table 2 can be used to obtain Tc in physical units by using pure gauge 

theory values for A °. 
Finally, we want to return to the size of  the deconfinement measure /.T. in the 

region below To. As we have seen in figs. 4 and 10, /T is indeed very small there, so 
that the Z3 symmetry appears  to be only weakly broken. To test this in more detail, 
we have studied the distribution of L(x) values over the lattice in different equili- 
brium configurations; the results on an 83 ×4 lattice are shown in fig. 11. We see in 
fig. 1 la that in the deconfined state, the symmetry is clearly broken, while in the 
confinement regime, as shown in fig. 1 lb, the symmetry is only slightly perturbed. 
Note that the lattice average of I t (x)l  is practically the same in the two cases: it is 

really the near-restoration of Zs symmetry which leads to the small Lvalue  below To. 

4. Conclusions 

We thus find that in the presence of dynamical quarks deconfinement persists as 
a transition phenomenon between two distinct regimes - and this is as clearly evident 
here as it is in pure gauge theory. The transition brings the system from a temperature 
region in which the global Z3 symmetry is almost unbroken to one where it is 
completely absent. At the same point, chiral symmetry is essentially restored. In the 
Wilson scheme, the functional connection between deconfinement and chiral sym- 

metry restoration is particularly transparent;  as can be seen in eq. (18), it is the 
rapid change of E which drives the chiral symmetry restoration in addition to 

signalling the onset of  deconfinement. 
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Fig. 11. The distribution of thermal Wilson Loop values in the complex L plane for one equilibrium 
configuration on an 83 x4 lattice. Part (a) is above To, at 6 / g  2 =6.0, where I[I= 1.08: part (b) is below 

To, at 6 /g  2 = 5.4, with ILl = 0.89. 

The change  in energy densi ty we observe at deconf inement  agrees well with that 

expected when  going from an ideal meson  gas to an ideal chromoplasma.  The 

change occurs over an interval  of 30 A ~J ~2 or less, i.e. for something  like a 45 MeV 

increase in temperature*.  All our  results indicate  a con t inuous  t r a n s i t i o n - b u t  in 

view of the t runca ted  hopp ing  parameter  expans ion  we canno t  really exclude a 

first-order t ransi t ion.  

Nei ther  /S nor  A(~/ , )  represent  genuine  order  parameters  in our  fo rmula t ion ;  /S 

because of  the Z3 symmetry  breaking by dynamica l  quarks,  A(~0)  because we are 

not calculat ing at zero quark  mass. These quant i t ies  should therefore provide us 

with some in fo rmat ion  about  the physics under ly ing  the respective symmetry break- 

ing. In the chirally symmetr ic  state, A(~0)  should  give some indica t ion  of the 

effective quark  mass at the coupl ing  in quest ion.  It is not  clear to us how this can 

be extracted from our  data  or from that ob ta ined  in other fermion schemes. To 

* Here, as in figs. 5 and 12, we have to relate A~, -2 to physical units. For illustration purposes, we 
have taken A~ ",'2= 1.5 MeV. 
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Fig. 12. Values ofthe effective hadron mass m R obtained from the average thermal Wilson loop, compared 
to the average hadron mass in an ideal resonance gas with 7r, p and to (solid line). 

ob ta in  some idea  o f  the quark  mass values  co r r e s pond ing  to our  values  o f  K(g2), 

we therefore  cons ide r  the a p p r o x i m a t i o n  [25] 

- = e x p  ( m q a ) -  1 , (21) 

where  Kc is the (numer ica l )  K-value ob ta ined  at the po in t  where  the  p ion  mass  

vanishes.  Using  the results  o f  refs. [25, 26] as shown in fig. l ,  we ob ta in  mqa---0.31 
and thus mq/Tc = 0.94. 

As ind i ca t ed  above ,  /S in the confined regime shou ld  tell us someth ing  abou t  the 

mass  o f  the  d o m i n a n t  h a d r o n  state fo rmed  when we try to b reak  a string. In fig. 12, 

we show the mass  values  mR ob ta ined  f rom our  /S da ta  using eq. (2), toge ther  with 

the average  mass  in a meson  gas o f  the zr, p and  to. Accord ing  to dual  mode l s  [27] 

or  s ta t is t ical  boo t s t r ap  a rguments  [28], ff~H should  increase  as we a p p r o a c h  T~. Fig. 

12 is seen to be at least  qual i ta t ive ly  in accord  with our  in te rp re ta t ion  o f / S  in the 

conf inement  region.  
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us with the  faci l i ty  ( C Y B E R  205) and c o m p u t e r  t ime. 

References 

[1] A.M. Polyakov,  Phys.  Left. 72B (1978) 477; 
L. Sussk ind ,  Phys.  Rev. D20 (1979) 2610; 
C. Borgs and  E. Seller, Nucl .  Phys. B215 (1983) 125 



686 T. (~'elic et al. / Finite-temperature lattice QCD 

[2] H. Satz, Nuch Phys. A418 (1984) 447c 
[3] N.F. Mott, Rev. Mod. Phys. 40 (1968) 677 and references given there 
[4] T. ~'elik, J. Engels and H. Satz, Phys. Lett. 125B (1983) 411; 

J. Kogut, M. Stone, H.W. Wyld, W.R. Gibbs, J. Shigemitsu, S.H. Shenker and D.K. Sinclair, Phys. 
Rev. Left. 50 (1983) 353 

[5] V. Alessandrini, Orsay preprint LPTHE 84/14 (1984) 
[6] T. Banks and A. Ukawa, Nucl. Phys. B225 [FS9] (1983) 145 
[7] C. De Tar and T. De Grand, Nucl. Phys. B225 [FSg] (1983) 590 
[8] P. Hasenfratz, F. Karsch and 1.O. Stamatescu, Phys. Left. 133B (1983) 221 
[9] F. Green and F. Karsch, Nucl. Phys. B238 (1984) 297 

[10] T. (~elik, J. Engels and H. Satz, Phys. Lett. 133B (1984) 427 
[1 I] F. Fucito and S. Solomon, Cal. Tech. preprint CALT-68-1084 (1984); 

F. Fucito, C. Rebbi and S. Solomon, Cal. Tech. preprint CALT-68-1124; Nucl. Phys. B248 (1984) 615 
[12] R.V. Gavai, M. Lev and B. Petersson, Bielefeld preprint B1-TP 84/10 (1984) 
[13] J. Pol6nyi, H.W. Wyld, J. B. Kogut, J. Shigemitsu and D.K. Sinclair, Phys. Rev. Lett. 53 (1984) 644 
[14] K. Wilson, Phys. Rev. DI0 (1974) 245; in New phenomena in subnuclear physics, ed. A. Zichichi 

(Plenum, New York, 1977) Erice, 1975 
[15] J. Engels, F. Karsch, I. Montvay and H. Satz, Nuch Phys. B205 [FS5] (1982) 545 
[16] C.B. Lang and H. Nicolai, Nucl. Phys. B200 [FS4] (1982) 135" 

A. Hasenfratz and P. Hasenfratz, Phys. Left. 104B (Sept. 1981) 489 
[17] N. Kawamoto, Nucl. Phys. BI90 [FS3] (1981)617 
[18] H. Satz, in Quark Matter "84, ed. K. Kajantie (Springer, Berlin, 1985) 
[19] R.C. Trinchero, Nuc|. Phys. B227 (1983) 61 
[20] J. Engels, F. Karsch and H. Satz, Nucl. Phys. B205 [FS5] (1982) 239 
[21] U. Heller and F. Karsch, Nucl. Phys. B251 [FSI3] (1985) 254 
[22] T. (~elik, J. Engels and H. Satz, Phys. Lett. 129B (1983) 323 
[23] W. Celmaster and D.J. Maloof, Phys. Rev. D24 (1981) 2730; 

H. Kawai, R. Nakayama and K. Seo, Nucl. Phys. B189 (1981) 40 
[24] R.V. Gavai, F. Karsch and H. Satz, Nucl. Phys. B220 [FS8] (1983) 223 
[25] A. Hasenfratz, Z. Kunszt, P. Hasenfratz and C.B. Lang, Phys. Lett. IIOB (1982) 289 
[26] H. Lipps, G. Martinelli, R. Petronzio and F. Rapuano, Phys. Lett. 126B (1983) 250; 

P. Hasenfratz and I. Montvay, DESY preprint 87-072 (1983) 
[27] M. Jacob (ed.), Dual theory (North-Holland, Amsterdam, 1974) 
[28] R. Hagedorn, CERN Report 71-12 (Yellow Series, 1971) 


