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The thermodynamics of QCD with dynamical Wilson fermions is studied in a low-order
hopping parameter expansion, using Monte Carlo simulation on 8> x3 to 10* x § lattices. We observe
a clear deconfinement transition at T,/ Ar™? = 150; chiral symmetry restoration occurs at the same
point. Within our approximation, both transitions are continuous. In the confinement regime, we
find the global centre Z, symmetry only very weakly broken, in accord with a picture relating string
breaking in QCD with ionization in insulating solids.

1. Introduction

The thermodynamics of pure SU(N) gauge fields predicts the occurrence of a
deconfining phase transition [1]. At some temperature T, colour screening dissolves
the confining bond and turns gluonium matter into a chromoplasma [2]. One of the
most interesting problems in current statistical QCD is what effect the introduction
of dynamical quarks has on this deconfinement.

On a phenomenological level, colour screening considerations appear to remain
valid; the presence of many other colour charges should dissolve bound quark states
just as well as gluonium states. On the other hand, the global symmetry under the
centre Z, of the SU(N) gauge group is broken by the fermion term in the lagrangian,
and hence deconfinement can no longer be strictly characterized in terms of spon-
taneous Z, symmetry breaking. The expectation value L of the thermal Wilson
loop does not any more constitute an order parameter for the deconfinement
transition, since it now does not vanish in the confinement region. However, it is
unclear how much L differs from zero there, i.e. how strongly the Z5 symmetry is
actually broken. We must therefore ask by what mechanism L is determined in the
confinement zone.

The deconfinement transition is the chromodynamic analog of the metal-insulator
transition [3] in systems with electromagnetic forces. In insulating solids, the electric
conductivity o is not strictly zero, but only exponentially small [3]:

o~exp{-E/T}, (1)

where E; denotes the ionization energy. Above the transition point to a metal, ¢ is
non-zero because Debye screening has globally dissolved the Coulomb binding
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between ions and electrons; but even below this point, ionization can locally provide
some free electrons, and thus make o > 0. The corresponding phenomenon in QCD
with dynamical quarks is the production of q§ pairs. In pure gauge theory below
the deconfinement temperature, an infinite energy is needed to break up a static
quark-antiquark pair; this corresponds to an infinite ionization energy in eq. (1).
With dynamic quarks, such a break-up becomes possible when the separation yields
a binding energy equal to that needed to produce a qJ pair, i.e. a hadron. The
newly-formed quarks neutralize the static quarks and thus allow their separation.
We therefore expect that L will now no longer vanish in the confinement zone, but
that

L~exp{~my/2T}, (2)

where my is the mass of the dominant qd bound state. Letting my, - oC in eq. (2),
we recover the pure gauge result.

Both the conventional Mott transition in solids and the deconfinement transition
in hadronic matter thus lead from a regime, in which the binding can locally be
broken (by ionization or qd formation, respectively) to one, where it is globally
removed by a collective screening of the binding force. Although this provides us
with an intuitive picture of how an L # 0 arises in the confinement region, it does
not allow us to estimate it quantitatively. Thus also the question of the sharpness
of the transition, or of its order, if it still is a genuine phase transition, remains open.

For colour SU(3), the deconfinement transition of the pure gauge theory is of
first order [4]. Hence very heavy quarks will not totally remove the discontinuities
in thermodynamic observables. Massive constituents are thermodynamically sup-
pressed, and only if the quark mass becomes small enough can the deconfinement
pattern of the gluon system be changed.

However, quark mass considerations around the deconfinement point remain
rather arbitrary as long as the relation between chiral symmetry restoration and
deconfinement is not clarified. In a state of broken chiral symmetry, the effective
quark mass is not zero, and if it is large enough, we may still have a first-order
deconfinement transition [5].

On the other hand, the role of the quark term in the QCD lagrangian is similar
to that of an external magnetic field applied to a spin system [6-9]. This immediately
shows why L should cease to vanish in the confinement zone, although it does not
directly relate its value there with any physical quantity. The discontinuity in L
decreases with decreasing quark mass (increasing external field), and based on
strong coupling arguments it has been suggested that the deconfinement transition
may be completely washed out in the light-quark limit[6-9]. However, all quantitative
studies performed so far [10-13] continue to show a very abrupt deconfinement
transition even for the lightest quark masses considered.

To study this problem in more detail, we have performed numerical calculations
with Wilson fermions [14] of two flavours in a low-order hopping parameter
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expansion, on lattices ranging from 8° x3 to 10’ X 5. We have chosen this fermion
formulation because it allows in reasonable time calculations with rather good
statistics on fairly large lattices. Moreover, the Wilson fermion scheme even in the
lowest-order hopping parameter expansion contains all the essential features used
to argue for the disappearance of the deconfinement transition. Therefore, if we
understand here why it persists to such an extent, then this will be applicable to
other fermion formulations as well; and as we have already noted, so far the different
fermion schemes do lead to very similar results on deconfinement and chiral
symmetry restoration.

In the next section, we shall sketch the formalism of statistical QCD on the lattice,
using the Wilson fermion scheme. In sect. 3 we then present our numerical results
for the relevant thermodynamic observables.

2. Statistical QCD with Wilson fermions

Our starting point is the euclidean lattice form of the QCD partition function:

Zn(B)=j [1 dU{det (1-xM)}™ exp[-Sa(U)], (3)

links

as it appears after integration of the quark spinor fields. Here

SG(U)={%<0") Yy (-1 Retr(UUUU))+%(ﬁ
83 \ag/ py o

) Y (1-; Retr(UUUU))}
' (4)

is the Wilson action for SU(3) gauge fields at finite temperature [15], obtained by
summing over space-time (Pg) and space-space plaquettes (P,); a, and a; are the
spatial and temporal lattice spacings, g, and gg the corresponding couplings. The
form (3) holds for N; flavours of quarks with equal mass. The matrix M

a

My.,nm=(1_‘Yy)Unm(sn_m-,i+(]+'y“)Ur+nn6n,m+ﬁ. (5)
describes the interaction for each flavour, corresponding to the Wilson form of the
fermion action

Se(U)=F ¢y(1 — kM) ; (6)
7

in eq. (5), 4 is a unit vector along a lattice link. In the finite temperature case, the
hopping parameter x(g”) depends on the link direction

3
kM=xksMoytk, T M, ; (D

p=1

2
however, for a, =ag = a, kg =k, = «(g").
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We now expand the logarithm of det (1 - M) in powers of the hopping parameter

(16]

o LI
Indet (1~ kM) =—Tr ¥ "TM’. (8)
=1

Only closed loops contribute to eq. (8). The inclusion of the fermion determinant
thus corresponds to having in eq. (3) an effective action

S.a(U)=Ss(U)—4N;(2x)™s ¥ Re L—16N;«* ¥ ReTr(UUUU)+O0(x").

sites Pg,P,
(9)

Since the third term on the r.h.s of eq. (9) simply shifts the coupling by
6.8 +48N,k* (10)
2,2 K,
gZ gZ f

the main effect of the presence of fermions is contained in the thermal Wilson loop
term of S.q, with

NB
L(x)ETr{ H Ux;7,1'+l} . (11)

The hopping parameter «(g”) is for massless quarks given at small g? by [17]
k(g =§1+0.11g2+0(g")]. (12)

At the g* value we have considered, we expect 10-20% deviations from the weak
coupling behaviour (12); in fig. 1, we show Monte Carlo results obtained by requiring
m, =0, together with eq. (12) up to order g>. Since the form (12) falls below the
critical Monte Carlo curve, it corresponds to quarks of non-vanishing mass. This
keeps us within the radius of convergence of the hopping parameter expansion. For
similar reasons, other fermion schemes also use finite quark masses in the actual
calculation. We have thus used the form (12), as we also use the renormalization
group relation

A = ex {_ 472 (£)+459—57N,10[ 87’ (g)]} (13)
L=EPT332N,\g?) T 332N, OB 332N, \gi/ )

obtained from the weak coupling expansion of the B-function,

(33-2N,) ,[1 L _(306-38N))
3(4m)° (4m)*(33-2N;)

-B(g*)= g2+0(g“)]- (14)
It appears reasonable to expect both eq. (12) and eq. (14) to apply well for g’=< 1
(see for example [18] for a survey of recent results of scaling tests).

From the partition function (3) we now get the energy density ¢ as a function of
the temperature. With ¢ = g+ €, we have for a, = a,

ec/ T'=18N3{g %(P, —Pg) +cL{P-P,) + cs(P—Pp)} (15)
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Fig. 1. Hopping parameter x as function of 6/g?, for the quenched case (the dashed curve, obtained

by interpolation of numerical data), for the case N, =2 (the solid curve, obtained from the previous

curve by use of the renormalization group relation), and the weak coupling form (dash-dotted curve,
obtained from relation (12)).

for the gluon sector and
e/ T*= NiNA{3(2k)Ne Re L+144x*(P, ~P;) +O(x*)} (16)

for the fermion sector. The separation of ¢ into two such terms corresponds to the
two components of S.q; in the interaction regime, an actual separation into gluon
and quark systems is of course impossible. In eq. (15), P, and P, denote the
space-space and space-temperature plaquette averages on the N2 x N, lattice; P
is the average on a large (N?%) symmetric lattice. The constants ¢/, and ¢ come
from differentiating the couplings g, and g, with respect to agz; for colour SU(3)
and Wilson fermions of two flavours, one has [19] ¢;, = 0.19366 and cj; = —0.132463.
In eq. (16), L denotes the lattice average of the thermal Wilson loop.

The energy density thus determined will certainly display finite-size effects - both
because of the lattice regularization [20] and because of the truncation of the hopping
parameter expansion. To compare our results with those of a non-interacting quark-
gluon system, we therefore calculate the ideal gas forms ¢ and ;" on lattices of
the same size and in the same order of hopping parameter expansion. For &, the
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resulting values are given in ref. [20]; for ££* we have from eq. (16) by setting all U = 1
e/ T*=9NEN(4) N5, (17)

where we have taken «>® =} and neglected fifth and higher order contributions.

If the quark-gluon system undergoes a sudden transition from the hadronic to
the plasma phase, we expect this to reflect strongly in the behaviour of &. To study
the restoration of chiral symmetry, we consider the order parameter [16]

o

()@ Loer ravour =2 L. k' Tt M'=2k{12-4(2k)"" Re L

1=0
—1152c*(1 —3(P, +P,)) +O(«x*)} . (18)

Since in the Wilson formulation {J4) never vanishes on a finite lattice, the relevant
quantity to consider as chiral symmetry order parameter is

A((/;(P)E(Jl//)_(ll;(ﬂ)wc, (19)

where in (¢/)wc the weak coupling limits* for Re L and the plaquette averages of
ref. [21] are used. Chiral symmetry restoration is a non-perturbative effect, and by
subtracting the perturbative form with our « (i.e. for finite mass), we can obtain an
idea of where the restoration occurs.

The aim of our study will now be the numerical determination of the energy
density (15)/(16), the average of the thermal Wilson loop (11), and the chiral
symmetry measure {19).

3. Numerical results

The major part of our results is obtained on an 8’3 lattice, with about 2000
lattice sweeps (iterations) per value of the coupling; of these, the first 500 are
generally discarded.

In fig. 2 we show the behaviour of the gluon sector energy density (15) as a
function of 6/ g, together with the Stefan-Boltzmann result on an 8* x 3 lattice [20].
Also shown is the corresponding result for the pure gauge theory [22]. We note that
the transition now occurs at a lower value of 6/g”; this is to be expected because
of the modified renormalization group relation (13), if T, is not significantly changed.
In contrast to the pure gauge case, the transition now also has become continuous.
Finally we note a rather sizeable overshoot in the transition region. This is, as we
shall see more clearly in a moment, due to the Re L part of the effective action (9);
it causes a more complete alignment of the U than would be the case in the pure
gauge theory.

The energy density of the quark sector with N, =2, shown in fig. 3, still falls short
of the limit (17); the reason for this is that Re L attains its asymptotic limit only

* The results of ref. [21] correspond to the quenched case:; we do not expect significant changes in eq.
(19) when the determinant is included.
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Fig. 2. The energy density e for the gluon sector, calculated on an 8°x 3 lattice in the fourth-order

hopping parameter expansion (O). Also shown are the pure gauge theory result ( X} and the ideal gas
limit (dashed line) on the same size lattice.

rather slowly, as is seen in fig. 4. We might note at this point that within our error
bars Im L is essentially zero, even below the deconfinement point, where it is about
5 or less of Re L.

Combining € and €g, we obtain the behaviour of the overall energy density. It
is shown in fig. 5 as function of the temperature T/A,, obtained with the help of
the renormalization group relation (13). The Stefan-Boltzmann limit in fig. 5 is the
sum of the corresponding gluon and quark sector forms. It thus includes the effect
both of finite lattice size and of fourth-order hopping parameter truncation. The
latter only results in a 5% reduction of the complete series.

To obtain some feeling for the size of € in the confinement region, we also include
in fig. 5 the energy density of an ideal gas of =, p and w mesons, using for illustration
purposes A [’ "?>=1.5MeV for the lattice scale in physical units. We see that such
an ideal meson gas indeed leads to an £ of the same order of magnitude as we
obtain from our QCD evaluation.

We have already shown in fig. 4 the average thermal Wilson loop Re L; at the
end of the deconfinement regime, it falls rather rapidly to a very small value. The
behaviour of the corresponding fluctuation is given by the susceptibility

x={L*~ 3N ; (20)

and is shown in fig. 6. The apparent strong increase at the critical point, together
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Fig. 3. The energy density e for the fermion sector, calculated on an 8> x3 lattice in the fourth-order

hopping parameter expansion (O), together with the ideal gas limit on a lattice of the same size (dashed
line).

with the rapid but smooth variation of both L and & suggests a second-order
transition. Comparing the results of hot and cold starts around the deconfinement
point, we have in fact not observed any two-state signal.

Finally we present in fig. 7 the behaviour of the chiral symmetry measure (19),
together with that of L. Deconfinement and chiral symmetry restoration are thus
seen to occur at the same point.

Before we study the effect of higher orders and larger lattices, let us note here
that the behaviour we have observed for Wilson fermions in fourth-order hopping
parameter expansion agrees in all points with that observed for Kogut-Susskind
fermions both in the microcanonical [13] and in the canonical [11, 12] formulation.

The truncation of the hopping parameter expansion (8) at / =4 is clearly a rather
drastic measure. To obtain at least some idea of the effect of higher-order terms,
we have repeated our calculations including the next («x°) order, again on an 8’ x3

lattice. In fig. 8 we show the resulting change both in € and in L; it does not seem
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Fig. 4. The average of the thermal Wilson loop on an 8 x3 lattice as a function of 6/g>2.
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Fig. 5. The total energy density ¢, normalized to the ideal gas limit g, as a function of the temperature,

calculated on an 8’ x3 lattice in the fourth-order hopping parameter expansion. Also shown are the

ideal gas limits for the quark-gluon plasma (dashed line) and for a system of =, p and @ mesons (solid
line).
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Fig. 6. The susceptibility y in the fifth-order hopping parameter expansion, calculated on an 8" x 3 lattice.

to effect our conclusions. We expect the role of higher-order terms to be most crucial
in the determination of the actual value of the critical coupling; since the inclusion
of higher orders results in a shift to smaller 6/ g2, our fourth-order results provide
an upper bound for the critical temperature. We shall see shortly that this bound
is not much above the corresponding T, values in other fermion schemes [11-13].
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Fig. 7. Chiral symmetry measure (O) and the average thermal Wilson loop (@), caiculated on an 8> x3
lattice in the fourth-order hopping parameter expansion.
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Fig. 8. Comparison of results in the fourth (O) and fifth (@) order hopping parameter expansion on an
8% x 3 lattice, for the overall energy density £/ &4 (a) and for the average thermal Wilson loop (b).
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In fig. 9, we then show the behaviour of &g, as calculated on lattices of size 8>x3,
8°x4 and 10’ x5, and normalized in each case to the corresponding Stefan-
Boltzmann form. In fig. 10, the results for L on the same set of lattices are presented.
The shift in the critical coupling with increasing Nj is clear; the values of 6/g2,
together with the resulting critical temperatures, are listed in table 1. Within our
error margins, we thus do not find any notable deviation from scaling.

The rise of e above the Stefan-Boltzmann limit, which we had already noted
before, is now seen to decrease with growing Nj. The technical reason for the
overshoot thus becomes evident: the presence of Re L in the effective action causes
a more complete ordering on temporal than on spatial links. As a result, Py is
reduced in comparison to the quenched case, P, not so much. With increasing 6/ g7,
all links acquire ordered U, and &g returns to its Stefan-Boltzmann limit. When Ny
is increased, the effect of Re L in the effective action is doubly reduced: the factor

(e/egp)

1.5} Q %% { )S{ \?

O‘ST—

. ] 1 1 ]
0.5 50 55 6.0 6.5

6/g?

Fig. 9. Comparison of the gluon sector energy density values calculated on an 8° x3 (O), an 8* x4 ( x)
and a 10> x5 (A) lattice, normalized in each case to the ideal gas result on a lattice of the same size.
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Fig. 10. Comparison of the average therma! Wilson loop values on 8 x3 (Q), 8* x4 (x) and 10° x5
(A) lattices.

x Vo becomes smaller, and - as seen from fig. 10 - the value of L in the deconfinement
zone decreases. This decrease of L with N, is known from pure gauge theory [23];
it is due to the fact that asymptotically divergent point-source contributions for the
colour charge still have to be removed to obtain a physically meaningful observable.
In pure gauge theory, this is possible in the weak coupling limit [21]. Here, with a
finite number of terms in the hopping parameter expansion, it is not clear how this
could be carried out in the action. Hence, in the transition region the energy densities
calculated at different Ny will in general not coincide as functions of T. It would
be interesting to see if other fermion schemes can avoid this problem, or if it is a
general normalization difficulty for the quark-quark interaction on the lattice.
Having seen that the critical temperature is rather insensitive to the temporal
lattice size, let us return to its dependence on the order of the hopping parameter
expansion. We had already observed that higher order implied smaller 6/gl. In

TABLE 1

Critical couplings and temperatures

N, 6/gl T./AN=?
3 5.300  0.050 15210
4 5.575+0.025 1625

5 5.725+0.025 1575
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TABLE 2

Critical parameters in different fermion schemes

Scheme Ny N, 6/g§ T./AY Ref.
Wilson «* 3 2 5.30+0.05 1318 .
Wilson x* 3 2 5.25+0.05 123:8} this paper
KS, canonical 4 3 5.3 100 11
KS, canonical 2 2 4.6 89 12
KS, micro-canonical 4 4 5.1 106 13

table 2 we list our results on the 8° x 3 lattice for fourth and fifth order of the hopping
parameter expansion, together with the results from other fermion schemes. To
allow a comparison, we convert all critical couplings to temperature values T./AY,
where A{ is the lattice scale for N, =0; its relation to the A7 with N, # 0 is known
perturbatively [23], and we have used this in the conversion. It is seen that our
values tend to lie about 20% above the average value obtained in other schemes.
This gives us some indication of the effect of the truncation in «'. It must be kept
in mind, however, that the perturbative relations between A Y and A{ are at present
coupling values very likely not reliable; hence we do not believe that the T./AS
values in table 2 can be used to obtain T, in physical units by using pure gauge
theory values for A9.

Finally, we want to return to the size of the deconfinement measure L in the
region below T.. As we have seen in figs. 4 and 10, L is indeed very small there, so
that the Z, symmetry appears to be only weakly broken. To test this in more detail,
we have studied the distribution of L(x) values over the lattice in different equili-
brium configurations; the results on an 8° x4 lattice are shown in fig. 11. We see in
fig. 11a that in the deconfined state, the symmetry is clearly broken, while in the
confinement regime, as shown in fig. 11b, the symmetry is only slightly perturbed.
Note that the lattice average of |L(x)| is practically the same in the two cases: it is
really the near-restoration of Z, symmetry which leads to the small L value below T..

4. Conclusions

We thus find that in the presence of dynamical quarks deconfinement persists as
a transition phenomenon between two distinct regimes - and this is as clearly evident
here as it is in pure gauge theory. The transition brings the system from a temperature
region in which the global Z; symmetry is almost unbroken to one where it is
completely absent. At the same point, chiral symmetry is essentially restored. In the
Wilson scheme, the functional connection between deconfinement and chiral sym-
metry restoration is particularly transparent; as can be seen in eq. (18), it is the
rapid change of L which drives the chiral symmetry restoration in addition to
signalling the onset of deconfinement.
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Fig. 11. The distribution of thermal Wilson loop values in the complex L plane for one equilibrium
configuration on an 8% x4 lattice. Part (a) is above T, at 6£g2 =6.0, where |L| =1.08: part (b) is below
T., at 6/g>=5.4, with |L| = 0.89.

The change in energy density we observe at deconfinement agrees well with that
expected when going from an ideal meson gas to an ideal chromoplasma. The
change occurs over an interval of 30 A" =% or less, i.e. for something like a 45 MeV
increase in temperature®. All our results indicate a continuous transition - but in
view of the truncated hopping parameter expansion we cannot really exclude a
first-order transition.

Neither L nor A{y) represent genuine order parameters in our formulation; L
because of the Z, symmetry breaking by dynamical quarks, 4(J) because we are
not calculating at zero quark mass. These quantities should therefore provide us
with some information about the physics underlying the respective symmetry break-
ing. In the chirally symmetric state, A{yJy) should give some indication of the
effective quark mass at the coupling in question. It is not clear to us how this can
be extracted from our data or from that obtained in other fermion schemes. To

* Here, as in figs. 5 and 12, we have to relate A}'~2 to physical units. For illustration purposes, we
have taken A}'=2=1.5 MeV.
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Fig. 12. Values of the effective hadron mass m,; obtained from the average thermal Wilson loop, compared
to the average hadron mass in an ideal resonance gas with 7, p and o (solid line).

obtain some idea of the quark mass values corresponding to our values of x(g?),
we therefore consider the approximation [25]

%(%—:1;)=exp(mqa)—l, (21)
where «. is the (numerical) x-value obtained at the point where the pion mass
vanishes. Using the results of refs. [25, 26] as shown in fig. 1, we obtain m,a =0.31
and thus m,/ T.=0.94.

As indicated above, L in the confined regime should tell us something about the
mass of the dominant hadron state formed when we try to break a string. In fig. 12,
we show the mass values my obtained from our L data using eq. (2), together with
the average mass in a meson gas of the o, p and w. According to dual models [27]
or statistical bootstrap arguments [28], /1, should increase as we approach T.. Fig.
12 is seen to be at least qualitatively in accord with our interpretation of L in the
confinement region.

It is a pleasure to thank R.V. Gavai, P. Hasenfratz, F. Karsch, J. Poldnyi and A.
Ukawa for stimulating discussions, and the Bochum Computer Center for providing
us with the facility (CYBER 205) and computer time.
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