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We calculate the latent heat of deconfinement in SU(3) Yang Mills theory from the difference in energy density 
between the deconfined and the confined phases at the critical temperature T c. The calculation is based on a high statistics 
Monte Carlo evaluation using lattices with 83 and 103 spatial sites and 2, 3 and 4 temperature sites• Both T c and the latent 

• . • 4 + - • • heat Ae are shown to satisfy scaling. We find T c = 208 _+ 20 MeV, Ae/T~ = 3.75 _ 0.25 ; the latter is in accord wath bag 
model arguments• 

SU(N) Yang-Mil ls  systems exhibit deconfinement 
at sufficiently high physical temperature,  when the 
global symmetry  under the center Z N of  the gauge 
group is broken [1 ]. Using Z N to specify the universah- 
ty class of  the theory,  one can at tempt  to gain informa- 
tion about the critical behaviour of  gauge systems by 
studying related spin models [2,3]. For the SU(3) 
Yang-Mills  system, these considerations lead to the 
predict ion of  a first order deconfinement transition 
[3], and Monte Carlo studies on the lattice confirm 
this prediction [4]. 

The method we used in ref. [4] consists in com- 
paring the development of  the system when starting 
from completely random (Z N symmetric)  and com- 
pletely ordered (broken ZN) initial states at the same 
coupling value. It allows a determination of  the decon- 
finement temperature,  Tc, which is essentially indepen- 
dent of  the spatial lattice size. For a first order transi- 
t ion, it provides in addit ion the possibility to calculate 
the latent heat Ae, i.e., the discontinuity in the energy 
density e at T c. The main aim of  this note is to carry 
out such a calculation, again using a high statistics 
Monte Carlo analysis. Evaluating e at the critical cou- 
pling for both  ordered and random starts, we obtain, 

P G respectively, the upper (%)  and lower ( % )  values at 
P G Tc ; then Ae = e c - e c . We calculate Ae using lattices 

1 Alexander yon Humboldt fellow, on leave from Haeettepe 
University, Ankara, Turkey. 

of  different temporal sizes; with T c and Ae we then 
have two independent physical observables to use in 
verifying that we are in the scaling regime of  the cou- 
pling. 

The plan of  our paper is as follows. We first consider 
the scaling behaviour of  the deconfinement tempera- 
ture, by comparing results for T c obtained on lattices 
with different numbers N~ of  temporal sites. Next we 
calculate Ae/T 4, again for lattices with different N~, 
and study the scaling behaviour of  the latent heat. 
Finally we obtain on an 83 × 3 lattice the overall ener- 
gy density e as function of  T, including finite coupling 
corrections. 

The euclidean parti t ion function of  the SU(3) Y a n g -  
Mills system is given by [5] 

ZE(No, N(t, ga, gfl, ~) = f(li~s) dU exp [ - S ( U ) ]  ,(1) 

where the action S(U) is in Wilson form 

- -  - -  1 S(U)= 6 1 ~ ( 1 - ~  R e t r U U U U )  
g2 ~ {p~} 

+ - -  ~ (1 - ~ Re tr UUUU). (2) 

4 
Here the summations run over space-like (Pa) and 
space- tempera ture  (Pfl) plaquettes; we consider a com- 
pletely periodic lattice with N 3 (N~) sites in the spatial 
( temperature) directions, with corresponding spacings 
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a o and a~, and with ~ = ao/a ~. The associated space- 
like and temperature-like couplings are denoted by 
go and g~, respectively [6,7]. In the final numerical 
evaluation, we generally take ~ = 1, which makes go 

= g l 3 - g  a n d a  o = a ~ - a .  
To determine Tc, we calculate the order parameter 

L of  the system: the thermal Wilson loop L(x) averag- 
ed over all spatial sites x of  the lattice [1,8]. For 
= 1 and a given coupling g, we start (a) from a comple- 
tely random and (b) from a completely ordered initial 
configuration of  U's and then iterate. For non-critical 
couplings, (a) and (b) rapidly converge, whereas near 
gc there is a clear two-state pattern [4]. In fig. 1, we 
show the behaviour o f L  forN~ = 2, 3, 4 at the critical 
couplings. Note that for systems of  finite spatial extent,  
phase flips such as seen in fig. 1 c are expected to occur. 

The critical coupling gc can be converted into a 
critical temperature T c by use of  the renormalization 
group relation 

aA L = exp[-87r2/1 lg  2 - ~ ln(1 lg2/167r2)],  (3) 

provided gc is small enough to neglect higher powers 
o f g  2 when integrating the Cal lan-Szymanzik  equation 
to obtain eq. (3). In fig. 2, we compare our results 

with 

Tca c = 1/N[~ 

= (T c /AL)  exp [-87r2/1 lg  2 - ~ in l lg2/16rr2], 
(4) 

where a c = a (g2) ;  this scaling test is seen to be reason- 
ably well fulfilled, with T c ~ 80 A L. When we look in 
more detail, however, deviations appear: in table 1, we 
show the values for T c = 1 / (N~c  ) obtained by use of  
eq. (3), and the results for Nt3 = 3 and 4 differ by about 
12%. It is known that such discrepancies can be caused 
by higher order terms in the renormalization group rela- 
t ion,  without  any violation of  general scaling behaviour 
[9]. To test if this is the case here, we use recent high 
precision Monte Carlo data for the string tension [ 10] 
to express T c directly in units of  a physical observable. 
As seen in table 1, no measurable deviation remains; 
we thus obtain 

T c = (0.519 + 0 . 0 5 0 ) v ~  ~ 208 + 20 MeV (5) 

for the critical temperature and conclude that we are 
indeed within the scaling region, at least for Nt~ = 3 and 
4. - We note incidentally that this value of  T c agrees 
well with that obtained for the SU(2) system [5]. 

Np=2, 6/g2= 5.11 (a) 
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Fig. 1. Lattice average L of the order parameter, as function of the number of iterations, in bins of 50, after ordered (crosses) and 
random (dots) starts, calculated on the following lattices: (a): 83 × 2, (b): 103 × 3, (c): 103 X 4 (crosses), 83 × 4 (dots). 
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Fig. 2. Critical tempera ture  Tca c = 1IN O as funct ion  of  the  
critical coupling 6/g2c ; plusses: our data; crosses: f rom 
Montvay and Pietarinen, ref. [18 ] ; open  circles: f rom Kogut 
et al., ref. [18]. The dashed line is the  renormalizat ion group 
form with T/A L = 80. 

The energy density for the SU(3) Yang-Mills sys- 
tem on a lattice with ~ = 1 is given by [5] 

ea 4 = 18 [g-2(/5o _/50) _ C,o(/5 ° _/5)  _ c,#(/5 O _ / 5 ) ] ,  
(6) 

where t50 and/5# denote plaquette averages with space-  
space and space-temperature links, respectively. P 
is the plaquette average on a sufficiently large sym- 
metric lattice; it provides the zero point normalization 
necessary in the euclidean formulation [1 1 ]. The terms 
proportional to 

Table 1 
The deconf inement  temperature .  

N# 6/g2c Tc[AL] Tc [x/r~] 

2 5 .11-+0.01 78-+1 
3 5 .55-+0.01 86-+1 0 .519-+0.015 a) 

n ¢1o+0 .050  4 5.70 -+ 0.01 76 -+ 1 " ' " * "  -o .o3o 

a) We have here used the  value at 6/g 2 = 5.4 f rom ref. [10].  

, (Og~-2/O~)~ = 0.20161 , co = =1 

, 2 c 0 = (0g~ /0~)~=I = - 0 . 1 3 1 8 9 ,  (7) 

are finite g2 corrections to e [7] ; for lattices of  the 
size to be used here, they are expected to be non- 
negligible in the vicinity of  the deconfinement transi- 
tion [5,7]. 

The form (6) of  the energy density is still subject 
to finite lattice size corrections: for fixed N o and fix- 
ed temperature, the low momenta are lost in the lat- 
tice evaluation, to be recovered only when N o -+ oo [ 12] 
To compensate this, we measure the energy density 
relative to that of  an ideal gas on a lattice of  the same 
size. This means that eq. (6) must be multiplied by [12] 

R = (e c ° n t i n u u m  / _ la t t icea  
t ideal t e i d e a  1 ) ,  ( 8 )  

where inR =R (N o, NO) the same lattice size is used as 
in eq. (6). The values of  R range from about 1.45 to 
1.75; for an 83 × 3 lattice, we have R = 1.7441. From 
eqs. (6) and (8) we obtain the latent heat 

, _ ( 9 )  
Ae/T4c = lSRN~I [gc2A(/3o - P o ) - c ' o A P o  - c o A P o ] ,  

where A refers always to the difference between the 
ordered (cold) and random (hot) start iteration results 
of  the respective quantity. Eq. (9) gives us the latent 
heat directly in terms of  another physical observable, 
T c. In fig. 3, we show our results f o r N  0 = 2, 3 and 4; 
again we conclude that scaling is well satisfied and 

,de / Tc 4 

0 I I I 

3 4 NO 

Fig. 3. Latent  heat  2~e/T~c as funct ion  of  temperature  lattice 
size N 0. 
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find ,1 

Ae = (3.75 -+ 0 .25)T 4 = 875 + 80 MeV/fm 3 (10) 

for the latent heat of  deconfinement. 
Let us try to get some feeling for this value. Simple 

bag model considerations define T c as the temperature 
at which the bag pressure B equals the kinetic pressure 
of  the gluons. This gives 

Ae = 4B.  (11) 

Using the value (10) for Ae, we have B 1/4 ~ Tc, which 
agrees quite well with the range of  B values obtained 
in hadron spectroscopy [13]. Our lattice result is thus 
compatible with an interpretation of  deconfinement as 
bag fusion. 

A first estimate of  the latent heat was recently given 
by the group of  Kogut et al. [14] ; they  study the full 
QCD system, with gluons and (quenched) quarks. Con- 
sidering the small g2 limit of  the energy density [corre- 
sponding here to the first term only of  eq. (6)], they 
observe an abrupt variation around Tc, from which 
they then obtain an estimate for the value of  the latent 
heat. Let us see how this estimate compares to our 
result. With the same approximation as in ref. [14], 
we find for N~ = 4 

Ae/T 4 ~ 4 4  X 18Rgc2A(po - /5~) ~-- 2.60 -+ 0 .50.  (12) 

This value, which is in accord with the discontinuity 
for the Yang-Mills sector shown in ref. [15], falls 
about 30% below the value obtained from the complete 
form (9); the finite g2 terms can thus not be neglected 
here. 

Finally, we want to consider the energy density 
itself over the temperature range from confinement to 
asymptotic freedom. For this, we need in eq. (6) the 
plaquette averages on a large symmetric lattice (in Ae, 
they drop out in the subtraction), and this requires 
considerable additional calculations. Combining our 
results on an 84 lattice with those of  other authors 
[10,16], we obtain from eqs. (6) and (8) the behaviour 
shown in fig. 4. The energy density of the SU(3) sys- 
tem, in accord with previous results based on lower 
statistics [ 15 ], approaches the asymptotically free form 
considerably faster than that of  the SU(2) case [5] ; the 
latter is expected to undergo a continuous (second or- 
der) deconfinement transition [3,17]. Both for SU(2) 

,1 Not including the error in T c. 
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Fig. 4. Energy density dT  4 as function of temperature, cal- 
culated on an 83 × 3 lattice, using the renormalization group 
relation. 

and SU(3) does the energy density appear to approach 
the Stefan-Boltzmann limit 

e/T 4=(N 2 -  1)7r2/15, N = 2 , 3 ,  (13) 

from below, in agreement with a perturbation expan- 
sion retaining the exchange term only [18]. 
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