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The fermmn contrlbutmn to the energy density of SU(2) lattice QCD is calculated m the quenched approximation for 
Wilson fermlons as a functmn of temperature. The techmque employed is a high order hopping parameter expansion. We 
find that the deconfinement temperature ~s - essentmlly independent of the quark mass - the same as that earher deter- 
mined for the pure gauge fmld part of SU(2) lattice QCD The critical hopping parameter Is estimated from the convergence 
radms of (~ff). At least for SU(2), the quantity ( ~ )  shows no drastic change in behavlour indicating the exact position 
of a chiral phase transitmn. 

During the last two years MC simulations for pure 
Yang-Mil ls  systems on the lattice have given strong 
support to  the long standing idea o f  a phase transi- 
t ion in strongly interacting matter  *~ . It has been 
shown that these systems undergo a deconfming phase 
transit ion [2,3] from a state of  confmed gluons ("glue- 
ball mat te r" )  to a state of  a gluon plasma with asymp- 
tot ical ly free constituents [3] .  The introduct ion of  
fermions into the theory leads to  a corresponding 
state o f  free quarks and gluons in the high tempera- 
ture limit.  This was shown to first non-vanishing or- 
der in the hopping parameter  expansion [4] .  The in- 
fluence o f  contributions o f  higher orders in this ex- 
pansion and the behaviour at lower temperatures,  
especially in the deconfmement  transition region of  
the gluonic part ,  are to be investigated in the follow- 
ing. To achieve this we calculate the fermionic part 
o f  the energy density e F and the quant i ty  (~ff),  
which is assumed to be an order parameter  for chiral 
symmetry  breaking. 

We consider the SU(2) lattice version o f  QCD with 

*1 For a recent revmw, see Satz [1]. 

Wilson fermions. As we shall use the quenched ap- 
proximat ion to the theory in the actual Monte Carlo 
simulations, i t  is sufficient to take into account only 
one flavour for the quarks. The euclidean action of  
the system is given b y  

S E = S  G + S  F, (1) 

with 

sG=4(K~, (~} (1-½trUq~ kUklUh) 

+K G ~ (1--~trUi, UikUklUli)) (2) 
£Po) 

for the pure gauge field part of  the action and 

S v = ~ "~nQnm~m , 
]7, m 

where 
3 

O . m  = 1 - K Mo,nm - K  o m ,  

M 
g , r t m  

(3) 

(4) 

=(1 --'y~)Unm6n, m_~ + (l +'yg)U~mn~n,m+~, (5) 
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for the quark-gluon sector. Additional colour and 
spinor indices have been suppressed in eqs. (4) and 
(5). The summation over Pa (P¢~) m eq. (2) refers to 
a sum over all ptaquettes with links in space-space 
(space temperature) direction. Notice that the pure 
gauge field part S G depends on two couplings K~,  
K G which are functions of the usual cuupling con- 
stant g2 and the parameter ~ = ae/a# [3]. Here a o (a~) 
denote the lattice spacings in space (temperature) di- 
rection. Similarly the fermionic part, S F, of the ac- 
tion depends on the couplings K~, Ko which are given 
by [4,5] 

Kt3 = ½ [~1(3 + ~)] kt3(~,g2), 

K a = ½ [1](3 + ~)] ka(~,g2 ). (6) 

In the limit g2 ~ 0 the functions k~(o)(~,g2 ) approach 
unity and for ~ = 1 

K~(1 ,g2) = Ko(1 ,g2) = K(g2) (7) 

is just the usual hopping parameter [6]. 
The euclidean partition function of the quark- 

gluon system on a t'mite N 3 X N~ lattice is then given 
by 

ZE= fhgks dU s,tesl-I d~ dff exp(--SE) , (8) 

where in thermal direction the bosonic integration 
variables U obey periodic boundary conditions and 
the anticommuting spinor fields ~, ff antipefiodic 
boundary conditions. The temperature T = ~3 -1 and 
volume V of the system are specified by 

13=N~a~, V = ( N a o )  3 . (9) 

From eq. (8) one obtains the euclidean energy densi- 
ty e E 

e E = - V  -1 (a lnZE/af3)v 

= (~21N2N#a4) (D lnZE/O~)%, (10) 

which after subtraction of the vacuum contribution 
leads to the physical energy density e. Performing 
first the derivative in eq. (1 O) and then integrating 
over the fermionic degrees of freedom ~, ~b yields the 
energy density e E as a sum of two terms 

eE =eG +eFE, (11) 

with 

e G = -[4~2/(N2N~a4)] 

[-{ 0K~ ] / tr UUUU'\ U)) × - -  detQ ~ ( 1 - ½  

[~KG~ / _ltrUUUU))u] 
+ t-ff~-Jao\detQ {Po} ~ (1 

X ((det Q)u )-1 (12) 

for the gluon part, and 

e~ = 2 3 4 N ao)] 

X Lk-~- /a  ° (detQtrMoQ-1) U 

3 
(~Ko I ( d e t Q ~  t r M Q  -1 )  ] ( (de tQ)u) - I  

+ .=1  u 
(13) 

for the fermionic part. 
In eqs. (12) and (13) ( '")u denotes expectation 

values with respect to the gluon field distributions 

(X)u= JlI~s dUXe-SG(u) / f  lqs dUe-SG(u), (14) 

correspondingly the expectation value of ~ ~ can be 
written as 

(~ ~) = (det Q tr Q - 1)u/(det Q)u" (15) 

The quenched approximation [7] consists now in 
setting 

det Q = 1 (16) 

in all the formulae. Then as can be seen from eq. (12) 
the quantity e G becomes the energy density of the 
pure Yang-Mills system, which has been treated in 
detail elsewhere [3]. 

To obtain the derivatives ~Kao)/~ ~ in e v we ne- 
glect, as in ref. [4], the ~ dependence of the functions 

ko(~)(~,g2 ) ~ ko0)(l ,g2) = 8K(g2). (17) 

As a consequence the derivatives become 

3Ko/3~ ~ -[1/2(3 + ~)2] ko(1 ,g2), 

OK~[O~ ~ [3•2(3 + ~)2] k#(1 ,g2). (18) 
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The actual Monte Carlo calculation was carried out 
on an isotropic lattice (~ = 1 ; a o = a~ = a), so one has 
only one hopping parameter K(g2). We thus get from 
eq. (18) 

aKo/~l~=~ ~--~K(g2), 

OKJO~[/~=I "~ ~ K(g2). (19) 

Moreover, in this approximation the vacuum contri- 
bution to e F becomes zero. 

The main problem in the evaluation of both e F and 
( ~ )  is then the inversion of the matrix Q. The ex- 
pectation values ( trM u Q-1)  U and (tr Q-1)  U can be 
computed in an iteration process by making use of  
the hopping parameter expansion [8,9] of  Q-1  

Q-1  = (1 - KM) -1 = ~ KIM l, (20) 
1=0 

where 

3 

M = ~ M  . 
/~=0 # 

(21) 

The procedure works in principle in the following way: 
for a given gauge field configuration one starts with the 
matrix M u and successively multiplies with M to ob- 
tain MuMI after I steps. In each step one takes the 
trace tr (M, MI). After reaching the highest order de- 
sired, several updates of  the gauge fields are made fol- 
lowed by a new determination of the traces, etc. As 
a result one obtains a hopping parameter expansion 
for both e F and ( ~ ) .  The same method has been 
used by Hasenfratz and Montvay to get a high order 
hopping parameter expansion for the hadron spec- 
trum [10]. 

In the actual Monte Carlo calculations eight rows 
of the matricesMuMl [those belonging to a random- 
ly chosen lattice point, but all colours (2) and spins 
(4)] were evaluated for l = 1 ..... 45 at a given link 
configuration. The sum of the diagonal elements of  
these rows times the number of  lattice points was 
then taken as an estimate for the traces. 

Our data were measured on an 83 X 3 lattice by 
averaging over 50 different gauge field configurations 
at each value o fg  2. Between each estimate of traces 
30 new updates of  the links were made in order to 
obtain statistically independent gauge field configu- 
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Fig 1 Hopping parameter  expansion for the  quant i ty  8 - 
(~qJ) at 4/g 2 = 2 19 t runcated after 15, 30 and 45 orders ver- 
sus hopping parameter  K Also shown is the  [20, 20] -Pad~ 
approximant  to the  series (dashed hne) and the  location o f  

K c . 

rations. Before each trace calculation, we checked 
that the thermal Wilson loop was positive. I f  this was 
not the case, a corresponding transformation of the 
link matrices was carried out, so that the system was 
always in the phase, which is connected to the phys- 
ical continuum limit, where U + 1 [4]. In fig. 1 we 
show (~O) at 4/g 2 = 2.19 as a function of the hop- 
ping parameter K for up to 15, 30 and 45 orders. 
Though the coefficients of the K expansion still sta- 
tistically fluctuate with the number of estimates of  
the traces, the resulting sum is stable below some crit- 
ical K value already after 30 trials. Since 

o o  

(22) 

one may determine also the unquenched expectation 
values with the same method, however many more es- 
timates of  t rM l at each gauge field configuration are 
then needed because the product of  traces ( trM l) 
× (trMl) is required. 

The energy density e F and (~k)  still depend on g2 
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and K(g2). As we are working in the quenched ap- 
proximation g2 is related to the lattice spacing a by 
the pure gauge field renormalization group equatxon 

aA L = (1 lg2/24~2) -51/121 exp (-127r2/1 lg2), (23) 

which fixes the temperature T = [N¢a(g2)] -1, The 
hopping parameter K xs connected to the quark mass 
mq [9] via 

rnq = ln[1 + ½ ( 1 / K -  1/Kc)], (24) 

and K c = 1/8 for a free theory (42 = 0) on an infinite 
lattice. At finite 42, however, both K and K c have to 
be renormalized. For SU(3) Kc(g2 ) was determined 
such that the pion mass vanishes [9].  An alternative 
approach was suggested by Kawamoto [11],  who 
pointed out that Kc(g 2) might be the convergence 
radius for the hopping parameter expansion of  (~ ~>. 
Based on weak coupling as well as large N considera- 
tions, he conjectures that ( ~ )  develops for all finite 
values o f N g  2 a branch cut at that value of  K where 
the pion mass vanishes 

< ~ >  ~ c I + c2(K c - K) in (K c - K). (25) 

When this conjecture is true tt g~ves an easy way to 
determine K c. Indeed Pad6 approxunants to the hop- 
ping parameter expansion of  < ff ~> show no isolated 
poles but always pole-zero pairs in the neighbourhood 
of  the real axas, which simulate the cut. As a conse- 
quence of  eq. (25) we have a pole in the second deriv- 
ative of  ( ~ >  with respect to K. With the help of  Pad6 
approximants to the expansion of  02(~t~}/OK 2 we 
were able to determine the corresponding Kc(g2). It 
is shown in fig. 2. Where they are comparable, these 
values for Kc@2 ) agree with those determined by 
Weingarten from the vamshing of  the pion mass [12].  
In the actual calculation the singularity closest to 
K = 0 was not a single pole on the positive real axis, 
but a pair of  complex poles near to the real axis. Since 
we have a f'mtte lattice in temperature direction, such 
a behaviour is quite natural. To see th~s, consider the 
quark propagator of  the free theory. It has a pole for 

3 ) 2  3 

1 -2K ~ cos(pua) +4/£ 2 ~ sin2(p a)=0. 
g=0 /~=0 

(26) 
On an infinite lattice eq. (26) leads to a critical value 
K c = 1/8 for pu = 0. However, on a lattice which is 
Finite and antiperiodic at the boundaries in the tern- 
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Fig 2. The  c n n c a l  value K c for  the  hopp ing  p a r a m e t e r  as a 
f u n c t i o n  of  4/g 2 The curve is a fit  b y  eye  to the  da ta  poin ts .  

perature darection the lowest momentum state allow- 
ed is given by 

p 0  a = p = o .  ( 2 7 )  

The propagator has then two complex poles at 

KN¢~ 3 + cos (nINe) -+ i sin Or/N~) 
c = 4 [5 + 3 cos (rr/Nt~)] ' (28) 

and the convergence radms is, e.g., for N~ = 3 

Nil=3 
{K c [= 0.13868, (29) 

wtuch is somewhat larger than the critical value 1/8 
for an infinite lattice. 

In fig. 3 the fermion energy density eF/T 4 for one 
quark flavour and massless quarks, i.e., at the critical 
values K c (taken from the fit in fig. 2) is shown as a 
function of  the temperature. The straight line in fig. 3 
gives the value of  eC/T 4 for the free theory at K c 
= KNt ~ on a finite lattice of  the same size (83 × 3). 
Notice that due to finite size effects [5] this value is 
about a factor 4.3 larger than the continuum value 
for a free gas of  massless fermions 

esB/T 4 = 77r2/30, SU(2). (30) 

The energy density e l' approaches the value of  the 
free theory with increasing temperature. At about T 
= 100 A L the limiting curve is already reached after 
a sudden jump at around T c ~-- 40 A L. Thus the fer- 
mion energy density shows - m the quenched ap- 
proximation - the same behaviour as the energy den- 
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Fig 3. The fermmnlc contribution e F to the energy density 
of SU(2) lattice QCD divided by the fourth power of  the 
temperature T versus T/A k for massless quarks, I e ,  K = K c 
(crosses) and massive quarks, l e ,  K = 1/8 (full points) Al- 
so shown is the high temperature Stefan-Boltzmann hmlt 
(dashed line) on a lattice of  the same size (8 3 × 3). 

sity e G of the pure Yang-Mills system [3], in par- 
ticular the deconfinement temperature T e does not 
change. The uncertainty in the determination o fK  e 
does not influence the main features of eF(T), be- 
cause a change in K corresponds to a change in the 
quark mass, which is irrelevant in the high tempera- 
ture region. Also, the deconfinement temperature 
does not shift when the quark mass is enhanced. This 
can be seen from an estimate of the energy density 
of heavy quarks. From the SU(3) calculations for ha- 
dron masses [9] one knows that the hopping param- 
eter for heavy quarks is weakly dependent on g2 and 
that it approaches the value 1/8 from below. Thus, 
e E for K = 1/8 can be considered a reasonable ap- 
proximation to the energy density of heavy quarks. 
As can be seen from fig. 3, there is still a sudden in- 
crease at T c ~ 40 AL, but of course the high temper- 
ature limit is approached much slower than for mass- 
less quarks. 

Finally, let us comment on the problem of ctural 
symmetry restoration. This question is in the case of 
Wilson fermions particularly complex since chiral sym- 
metry is by construction broken on the lattice. Even a 
system of non-interacting massless fermions leads to 

0 

~ o 

0 

+t 

10 50 100 

T / A  L 

Fig 4 The quantity (~g~) (~P)SB versus temperature for 
K = K c with K c taken from the fit to the data of fig. 2 

I 
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a (~ff)SB which is not zero at T ; 0. To study chiral 
symmetry restoration, one would therefore first have 
to show that (~ff), after subtraction of the vacuum 
term, exhibits scaling behaviour and then check at 
what T it leads to a vanishing expectation value indi- 
caring chiral symmetry restoration. This would re- 
quire a study of (ff if) on larger lattices with varying 
extent in temperature direction which will be con- 
sidered in detail elsewhere. Here we note that if we 
simply consider 

<~>  - < ~ > S B '  (31)  

as a measure of chiral symmetry for Wilson fermions 
[4,8], then we see from fig. 4 that for T~> 100 AL, 
chiral symmetry appears restored. At T c ~ 40 AL, 
however, expression (31) is still Finite, suggesting T c 
< TCH. These conclusions agree with the result of 
Kogut et al. for Susskind fermions [13]. They are al- 
so in accord with phenomenologlcal considerations 
[14], which propose Tel t to be greater than or equal 
to the deconfinement transition temperature T c. But 
the introduction of virtual quark loops, i.e., the in- 
clusion of det Q in the calculation may change the 
behavlour of ( ~ )  considerably. 

We thank P. Hasenfratz, I. Montvay and H. Satz 
for discussions. 

Note added When this paper was completed and 
typed we received a prepnnt by Kogut et al. [15], in 
which they discuss the deconfinement and chiral 
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phase transit ions for SU(2) and SU(3) latt ice gauge 

theories wi th  fermions.  
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