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After reviewing the euclidean formulation of the thermodynamics for quantum spin systems, 
we develop the corresponding formalism for SU(N) gauge fields on the lattice The results are then 
evaluated for the SU(2) system, using Monte Carlo simulation on lattices of (space × temperature) 
size 103N 2,3,4 ,5  At hagh temperature, the system exhibits Stefan-Boltzmann behavlour, with 
three gluomc colour degrees of freedom At T~ ~ 43A~_ (215 MeV), the transiuon to "hadromc"  
behawour occurs, signalled by a sharp peak in the specific heat From the behawour below the 
deconfinement transition ( T <  Tc), we obtain m G ~ 200A L (1000 MeV) for the mass of the lowest 
gluomum state (glueball) 

1. Introduction 

The thermodynarmcs of strongly interacting matter has been a subject of much 
interest for a long txme. Even before the introduction of the quark structure of 
hadrons, it had provided indications for some type of critical behavlour [1]; once 
hadrons were considered as composite objects, it was conjectured almost ~m- 
mediately that at sufficiently high densities or temperatures, strongly interacting 
matter should undergo a phase transition from a state of interacting hadrons to a 
quark-gluon plasma [2]. The advent of quantum chromodynamlcs led to the hope 
that both the two-phase nature and the transition could be derived from one basic 
theory, particularly the strong coupling results in the lattice formulation of QCD 
provided further support for this hope [3]. In the past two years, the Monte Carlo 
simulation of lattice QCD [4] has turned out to be a very effective way to study this 
question, at least for the case of pure Yang-Mills systems: interacting gluon matter 
does exhibit a deconfining transition [5-10], which separates a colour-screened gluon 
gas at high temperatures [7-9] from a gluonium gas at low temperatures [10]. 
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The a~m of this paper is to present a comprehensive and systematic development 
of the thermodynamics of matter described by SU(2) Yang-Mills theory. Our 
starting point will be the euclidean lattice formulation of QCD [11], and we shall use 
the Monte Carlo simulation of the lattice problem to perform the evaluation [4]. 
What we obtain in this way is on one hand a generalization of black-body 
thermodynamics to the case of interacting fields, on the other hand a model for the 
thermodynamics of QCD systems. For this it is a model only because of the 
restriction to a pure Yang-Mllls system; the extension to SU(3) is straightforward 
and does not seem to induce significant changes m behavlour [8, 9]. Work on the 
inclusion of Fermi fields in lattice studies is presently being pursued vigorously by 
several groups [12], and in the foreseeable future finite temperature thermodynamacs 
may well be extended in this direction. 

The paper is orgamzed in the following way. In sect. 2, we study simple quantum 
spin systems, both in conventional and in gauge-lnvariant form, introducing here the 
euchdean lattice form of thermodynamics to be employed later for the Yang-Mllls 
system. This allows us to illustrate m the case of physically quite transparent 
instances the main features of the transition from hamiltonlan to euchdean thermo- 
dynamics; moreover, the gauge-lnvariant quantum Ismg model already exhibits a 
behavlour very similar to that of the Yang-Mdls field. In sect. 3, we then consider 
the free Bose field in euclidean lattice formulation. Since for this case the continuum 
limit is well known, we can use it to estimate the effect of finite lattice size m our 
calculations, and to determine lattice parameters optimizing the approxamatlon. In 
sect. 4 we formulate euclidean lattice thermodynamics for Yang-Mllls fields, and in 
sect. 5 we present the basic thermodynamic quantmes for the SU(2) case, at high 
temperature, an the deconfinement region and in the gluonium regime. 

2. Euclidean thermodynamics for quantum spin systems 

In the conventional formulation of statistical mechanics, the starting point ~s the 
partition function 

Z(/3) = T r e  -~H, (2.1) 

defined in terms of the hamiltonian H of the system; In Z( f l )  counts the number of 
possible states at a given physical temperature T- - f l -1 .  For field-theoretic systems, 
H becomes the three-dimensional integral over the hamiltonian density ~(Y(x), 

H= f d3xgC( x ), (2.2) 

with ~ ( x )  given in terms of fields A(x) .  It was shown [13] that the partition 
function (2. I), (2.2) can be reformulated as a Feynman functional integral involving 
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the euclidean action: 

Z(/3) = N(/3) f [dA]e s(/3), (2.3) 

S(/3)= - f (2.4) 

Here the lagrangian density E(x, x0) is taken at imaginary time x0=  iv, with 
penodlc boundary conditions A(x, 0) = A(x,/3) for bosonic fields; N(/3) is a normal- 
iz~ ng factor. 

Since the form (2.3), (2.4) will provide the starting point for latnce thermody- 
namics, we shall begin by considering simple quantum spin systems with a g~ven 
hamlltonlan formulation. By treating these in the euclidean approach, we can 
famaliarize ourselves with the new features this ~mplles. 

2 1 T H E  I S I N G  M O D E L  IN  A T R A N S V E R S E  F I E L D  

The hamiltonian of the one-dimensional Ising model with a transverse field 7 
("quantum Ising model") is given by [14] 

N N 

H-=- E °3(k)oa(k+1)-7 E o,(k), (2.5) 
k = l  k--1 

with periodic boundary conditions, o3(N + 1) = o3(1), and with the spin-spin interac- 
tion energy taken as unity. The corresponding partition function, 

ZN(fl, 7) = TrN e-zH, (2.6) 

at temperature T---- f l t  can be evaluated analytically for N ~ oo, gwing 

1 2~r llnZN(fl,y)----~fo d~ ln(2 cosh[ flA(@, 7)] ) ,  (2.7) 

A(q~, 7) ----(1 + 72 - 27 cos q,) '/2 . (2.8) 

It is analytic for all T > 0 ;  at T =  0, we obtain 

eo(7)_( l+__7)E(47)  
~r (1 + 7 )e (2.9) 

for the energy per spin; here E(x) ls a complete elliptic integral of the second kind, 
which is non-analytic at x -- 1, with dE/dx diverging there. This results in a critical 
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Fig 1 Phase diagrams for (a) one-&menslonal and (b) hlgher-dlmensmnal Islng models wath a transverse 
field of couphng strength 3' 

point  at Yc = 1; the phase diagram for the system is shown in fig. la. The nature of 
the two phases is readily seen: at y -- 0, we recover the usual one-dimensional  Ising 

model, which is disordered everywhere except at T = 0, where the system is in one of 

the two degenerate ground states of completely aligned spins ( " u p "  or "down") .  
Turning on the transverse field tends to disturb the alignment, and for 3' ~> 3'c, the 
degeneracy is removed and the order disappears. In htgher dimens]ons, the corre- 
sponding problem has not  been solved in closed form [15]. The phase structure is 
nevertheless apparent;  it is shown in fig. lb. 

We now want to express the one-dimensional case in euclidean formulat ion Using 
the generalized Trot ter  formula [16], the trace (2.6) can be written In the form 

ZN(/~,3')= lim Zu, M(a/~,y ), a/~M=/3fixed, (2.10) 
M ~ o o  

where 

ZN, M(a 3 y)~_[½sInh(2aBy)]NM/2,~E t , Z,N. M t a l ~ , 7 ) ,  (2.11) 
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and where 

ZN E, M ( an, Y ) = Tru, M exp E 
Lj=i  k=l 

[ano3(j, k )o3( J + 1, k )  

+g(an,  "l,)o3(j, k)a3( j ,  k + 1)]} (2.12) 

is the partition function of the amsotroplc, two-dimensional classical Ising model. 
The quantum problem (2.5), (2.6), where H contains non-commuting terms, has 
thereby been reformulated as a classical problem in one more dimension correspond- 
mg to the temperature fl = Ma~. The hamiltonian form (2.5), (2.6) and the euchdean 
form (2.11), (2.12) become identical in the temperature continuum limit M-~ ~ at 
fixed fl = Ma n. The vanishing of a n m this limat must be compensated by a statable 
change m the temperature couphng g(a n, "y), such as to leave physics invariant. With 
H explicitly given, one finds 

g(a n, T) = ½1n coth(at~Y) (2.13) 

from the Trotter formula [16]. 
The two-dimensional classical Ismg model (2.12) has the well-known Onsager 

phase transition at 

s inh2af i inh2g(  a~, "y) = 1 ; (2.14) 

in the limit a n ~ 0 this implies )'c = 1, in accord with the result from eq. ( 2 . 9 ) .  

The free energy per spin, 

- 1  
f ( f l ,  7 ) = ~ l n  Zu( f l ,  Y ), (2.15) 

can with eq. (2.11) be written 

f ( f l ,  "y) = Mlimoo {f~(a~, M i .  "Y) -- ~-~ln [7 smh(2an'/)] } , (2.16) 

--1 
fE(a~,  y) - - - ~ l n  ZN E, M(an, T). (2.17) 

To understand this shift between hamdtonian and euclidean free energy, we note 
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that from eqs. (2.11), (2.12) 

= lim l l n T r N ,  M hm In ZN, M ( aB, 3") M~ oo 
M ~ o o  

× exp 2 [ a~o3(J, k)o3(j  + 1, k)  
J l k = l  

-g(u.,3')(l-o3(s, lo3(s,k + 1/)]}; 

(2.18) 
the additional term in eq. (2.16) shifts 03o 3 --, - 1 + 0303 in the temperature direction, 
thus normalizing the ground-state contribution of that part to zero. 

We summarize, the quantum problem of a one-dimensional Ising model in a 
transverse field can be restated as a classical problem with an additional temperature 
dimension. The two forms become equivalent in the temperature continuum limit, 
provided the coupling g(a¢, 3") in the temperature direction is suitably changed when 
the associated lattice spacing a s is decreased, and provided the free energy is shifted 
to assure the correct vacuum structure. 

Before going on to the gauge-lnvanant case, let us briefly note the connection 
between phase structure and duality for the model just studied [17]. 

The hamiltonlan (2.5) is invariant under simultaneous inversion of all spins 
(global symmetry); as a consequence, one can define a local order parameter,  the 
magnetization 

m = (o3) ,  (2.19) 

measunng the average spin value per site. It is finite for 3' < 1 and vanishes for 3' > 1, 
thus specifying the phase of the system. 

Consider now the same model on the dual lattice, whose sites correspond to the 
links of the original lattice. The spin operators o~ and 03 are replaced by the 
operators 

= %(k)o,(k + 1), (2.20) 

/~3(k) = 1-I o,(n) ,  (2.21) 
n<k 

which satisfy the same algebra. The hamiltonian (2.5) retains its form under the 
duality transformation o ~/z: 

7H(~, y - ' )  = H(o,  3'); (2.22) 
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it is self-dual. Since ~3(k) flips all spins to the left of k on the original lattice, 

r h - - ( ~ 3 )  (2.23) 

vamshes in the ordered phase and is finite in the disordered. Thus , / =  1 is the 
critical point, since there order and disorder become indistinguishable. 

For a self-dual, globally symmetric model such as (2.5), we can thus determine the 
phase structure either by order parameter or by duality relation. 

2 2 THE GAUGE-INVARIANT ISING MODEL IN A TRANSVERSE FIELD 

The hamlltonian of the gauge-invarlant Islng model in three space dimensions and 
with a transverse field "¢ is given by [17-19] 

H =  - E 03( l )03(J )o3(k )03( l ) - '~  E 0 1 ( / ) .  
{P} {L} 

(2.24) 

The spins are now associated to the links between any two adjacent sites. The first 
sum runs over all primitive squares (plaquettes) of the lattice, the second over all 
links. We note that in contrast to the global symmetry of the normal Islng model, the 
hamiltonian (2.24) remains invariant even if only the spins on all links connected to 
any one given site are flipped (local symmetry). As a consequence, one cannot define 
local order parameters such as the magnetization (2.19). from a state of completely 
ahgned spins we can by gauge transformation go to one with flipped spins around 
one or more sites. For physical states, (03) must therefore vanish everywhere [20]. 
The phase structure of systems such as (2.24) thus has to be specified differently. 

In the normal Isxng model, correlations between any two spins vanish exponen- 
tially w~th the d~stance of separation, if the system is in the disordered phase. 
(o3(0)03(k))~ exp(-k/((T)), where ~(T) is the correlation length. In the ordered 
phase, the system is magnetized, so that (03(0)03(k))~ (03(0)) 2. Differences in the 
behaviour of correlations as a criterion for phase structure can be generalized to 
gauge-invarlant models. The function (03(O)o3(k)), just as (03), is not gauge 
invariant and must therefore vanish identically. However, the plaquette average 
(030)03(J)o3(k)03(l)),  obtained by averaging over all primitive lattice squares, is 
gauge invariant, and so is the average over a product of 03's along a closed path C, 
of length P and enclosing an area A. The behaviour of C(A) = H,epo3(t) for A ~ 
is found to differ for large and small "y: 

In C ( A ) -  ~,< 1, 

for A sufficiently large. Moreover, the hamiltonian (2.24) can be shown to be 
self-dual, with ~, = 1 as critical point for the ground state. Functional differences in 
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Phase diagram of the three-dimensional gauge-lnvanant Islng model with a transverse field of 
couphng strength ~, [19] The notation is explmned in the text 

correlation measures such as C(A) can thus be used to map out the phase structure 
of gauge-invarlant systems. 

To obtain the full phase diagram [19], it is first noted that the area law region of 
eq. (2.25) decreases with increasing temperature. Further, on the dual lattice (con- 
structed m a similar way as in subsect. 2.1 [17]), one finds an analogous behavlour in 
7 -  ~. We are thus led to three phases, as shown in fig. 2. In the region marked A, we 
have area-law behaviour on the lattice, perimeter-law behaviour on the dual lattice; 

in Ad, the situation is just the opposite. In the region P finally, both lattice and dual 
lattice show a perimeter law decrease. 

To understand the physical nature of these phases, we recall that an area-law 
behaviour implies for a pair of external sources immersed in the system a binding 

potential which increases hnearly with the distance of separauon (confinement). The 
perimeter behaviour, on the other hand, is connected to a Coulomb-type potential 
(non-confinement). Associating the link term of eq. (2.24) with an electric, the 
plaquette term with a magnetic force field, we have in phase A confinement of 
electric charges, in phase A d confinement of magnetic monopoles, and in phase P 
complete deconfmement. 

Let us now study this system in the euclidean formulation; we shall here 
encounter already many of the main features of the SU(2) Yang-Mllls system. 

As m subsect. 2.1, we use Trotter's formula to rewrite the partition function 

ZN(~, Y) = TrNe BH, (2.26) 

where H is given by eq. (2.24) and the trace is over all physical states, 1.e., 
gauge-invariant states obeying Gauss' law. Analogous to eq. (2.11), (2.12) we obtain 

Zu M(al~ 7)=[2-5/3sinh(2a/~7)]3N~M/2Z z , , N, M(at~, y ) ,  (2.27) 
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with 

zE I }  228, u, . (a t~ ,Y)  --- 2 exp a B ~ o3o3o3o3+g(a#,y) "~ 03030303 
{a3 =-+1 } " {Po} {P,~) 

as partition function of the four-dimensional anlsotroplc gauge-invariant Islng 
model, with N sites in each space direction and M sites on the "temperature" axis, 

= Maa. The basic summation is over all links of the lattice; the sum {Po) runs over 
all plaquettes with only spacelike links, the sum (Pa) over those with two space-like 
and two temperature-like links. The coupling constant is as in subsect. 2.1 given by 

g(aa,  7) = ½ In coth(aa'~), (2.29) 

and as before the connection between euclidean and hamiltonian forms becomes 
exact for M ~ oc, 

ZN(B, T) = llm ZN, M(a ~, T) (2.30) 
m ~ o c  

at fixed fl = Ma~, 1.e., in the temperature continuum lirmt. 
The energy density, 

1 ( ~ l n Z N ( / 3 , 7 ) )  
e(fl, 7) ----- N3 ~fl , (2.31) 

is in the euclidean formulation on a finite lattice approximated by 

eE(18,7 ) -- N3 M1 ( Oln ZNE'M(aB' Y) ) " 3 a  B , (2.32) 
M 

this also becomes exact for M ~ oc at fixed ft. Using eq. (2.27), (2.28), we obtain 

with 

eE(fl,'Y)= 3[(Ps)+ ~-~ff (PT)-- I], 

1 2 
Y(po}( 1 -- 03030303 ) 

3N3M 

(2.33) 

×exp{--a/~ ~ (1--o3o3o3o3)-g(a~,y) ~ (1--o3o3o3o3) } (2.34) 
{Po) {PB) 

as the average value of a space-like plaquette; similarly, (PT) is the average value of 



(2.35) 

(2.36) 

In eq. (2.33), (2.34), we have shifted f rom 03030303 to the " n o r m a h z e d "  form 
(1 - o3o303o 3) for all plaquettes.  In  the tempera ture  part ,  this shift is conta ined in the 
Trot te r  formula,  as we saw in subsect. 2.1; for space-like plaquettes,  it is achieved by 
separat ing out the energy of a complete ly  ordered configuration.  For  the specific 

heat  per unit  volume 

Cv(B,v)= 

CE (/3, / ' )  - cEXfl =0 .62 ,7 )  

we obtain  similarly 
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a space- tempera ture  plaquette.  F rom eq. (2.29), we have 

3g _ - -7  
3a~ slnh 2aB'y " 

as the euclidean lattice approximaUon.  
Evaluat ing eq. (2.33) by Monte  Carlo simulation on a 44  lattice, we obtain at 

"y = 1.5 the behaviour  shown m fig. 3. Because of the small lattice, these results will 
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Fig  3 Energy dens i ty  versus tempera ture  for the gauge-mvar lan t  I smg  model  w~th a t ransverse field, 
ca lcula ted  on a 4 4 la t t ice  at  y = 1 5 
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Fig 4 Specific heat per umt volume versus temperature obtained by olfferentlatlon from fig 3 

presumably still contain finite size deviations; we have therefore in fig. 3 simply 
subtracted eE(fl = 0.62, "r = 1.5) instead of the true vacuum contribution eE(T= 0, 
y = 1.5). From fig. 2 we expect that increasing the temperature at this value of y will 
bring us from the (electnc) confinement region through the deconflnement transition 
to a "free gas" phase. From the behaviour of the specific heat in fig. 4, obtained by 
differentiation from fig. 3, this is indeed seen to be the case: the deconfinement 
t ransmon is signalled, as in magnetic systems, by a singularity in the specific heat at 
temperature T c. Sufficiently far below Tc, the energy density will approach the 
temperature-independent ground-state value eE(T= 0, y) with the spins frozen m a 
confined phase. At T c, e increases rather abruptly, and soon beyond T c It  behaves 
like a free spin system, e -  T. 

To check our conclusion about deconfinement, we consider the expectation value 
of the thermal Wilson loop L, the product of o3's along the temperature direction at 
a fixed spatial link; because of the periodic boundary conditions imposed, this gives 
us a closed loop. Since ] (L)]  measures the free energy of an isolated charge, 

I (L) I -  e-aF, (2.38) 

tt provides an order parameter  for the system [5, 6]: below T~ it should vanish, as a 
consequence of confinement, above T c it should attain a finite value corresponding 
to the analogue of a Debye-screened charge. In fig. 5 we see this to be the case. 

In summary we note that also the gauge-mvariant quantum Ising model can be 
expressed as a classical problem in one more dimension, w~th exact equivalence in 
the temperature continuum limit. The phase structure, because of gauge lnvarlance, 
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Fig 5 Thermal Wilson loop versus inverse temperature calculated on a 44 (sohd hne) and a 64 (dashed 
hne) lattme 

can no longer be specified by a local order parameter. Using instead a phase 
characterization by lattice loops, we have at low temperature a confined state, 
separated by a deconfinement transition, w~th singular specific heat, from a high 
temperature free gas phase. In sect. 5, we shall find a sirmlar behaviour for the SU(2) 
Yang-Mdls system; there the euclidean formulation of thermodynamics is the only 
general form we have. For a continuum field theory we will, however, encounter 
questions of spatial in addition to temporal lattice structure. 

3. The free Bose  field on a finite lattice 

In this section, we want to study the effect of the finite lattice size on the 
euchdean formulation of a system w~th a well-known continuum hmit: the free Bose 
field. As this problem, for both Bose and Fermi fields, is treated in detail elsewhere 
[21], we can be qmte brief here. 

The hamiltonmn of a non-interacting scalar Bose field ¢p(x) for particles of mass 
m is given by 

H= fd x{ 2(x) + (VW(x)) 2 + rnZq02(x) } . (3.1) 

The corresponding euclidean action is [13] 

- ~  + (Vcp) 2 + rn2eg2} , (3.2) 

where • is the imaginary time. 
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On a lattice with N~ 3 × Na sites and latnce spacings a o and a~ in space and 
temperature directions, respectively, the action becomes 

_ 

aoa# ~ ~, ep(x~ + e~) -  q~(x,~) 
S ( ~ ) -  2 a o 

+ q0(x, + eo) -- qo(x~) + m2cp2(x~) , (3.3) 
a B 

where x~ = (a0a ~, aao) denotes a lattice site and e,,/x = 0, 1,2, 3, are the four lattice 
umt vectors. We impose periodic boundary conditions in all directions. The euclidean 
partition function Z E is given in terms of the action (3.3) 

ZE( No, Nt~ , ao, a B ) = N' f 1-I dqg(x~)exp [ -  S( q~ ) ] ,  (3.4) 
Ct 

with 

N' =~[a3o/2~ra#] &N~/2 (3.5) 

As m the previous section, it differs from the hamiltonian partition function 
Z = Tr exp(-- f lH)  by a ground-state correction factor. 

The euclidean partition function can be evaluated to give [21] 

ZE( No, N¢, a., ~) =~u~u~]" I (mao)2 + 4 2 sin2(½q.ao) +4~2sin2(½qoaB , 
q ,u=l 

with ~ -- ao/aa, and with 

(N~at~/2~r)qo, (Noao/2~r)q~,, 

running over positive and negative integer values, 

(3.6) 

/~ = 1,2, 3 (3.7) 

bounded by ½N~ and ½N o, 
respecnvely. The free energy density f is as in sect. 2 obtained by subtracting from 

fE ---- --In ZE/(  N3U#a3oa# ) (3.8) 

the T =  0 term, 
(3.9) fo = lim )rE. 

N ~  

From eq. (3.6) we similarly obtain the energy density on the lattice 

- ~ V l ( B l n Z E ]  -- ----(~2/N:NBa4)(OlnZE//O~)~°--eo . (3 10) 
= aB I v ~o 

Eq. (3.10) gives us e(No, N~, a o, ~), normahzed to zero for N B --, oc with the other 
parameters fixed. 
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In the continuum, the energy density of a massless ideal Bose gas is given by the 
well-known Stefan-Boltzmann form 

eSB = ~r2/(30/34). (3.11) 

Comparing this with eq. (3.10), we can study the effect of the finite lattice 
approximation. In fig. 6, we show e/esB for different No, N# and ~ = 1. It is seen that 
the effect of finite lattice structure is by no means small. By letting N o -~ o~ at 
sufficiently large Na, we can make e/esa as close to unity as desired. This is not true 
for N~ ~ ~ at fixed N o, however: increasing N~ beyond a certain optimal value 
makes the lattice approximation at fixed N o worse. The reason for this is that an 
Increase of N~ at fixed a , ,  ~ and N o is a decrease in temperature; but on a finite 
spatial lattice, we lose the low momentum modes which gwe the dominant contribu- 
tion at low temperature. The best approximation is thus always attained for Na as 
large as feasible with the condition N~ >> Na. 

In sect. 5 we shall see that the Monte Carlo evaluation of the SU(2) Yang-Mills 
system leads at very high temperatures to a behaviour very similar to what we have 
here, so that the values of e/esB displayed in fig. 6 seem to constitute a fairly 
universal finite lattice size correction factor. 

4. Euclidean lattice thermodynamics for Yang-Milis fields 

In SU(N)  Yang-Mllls theory, the Lagrange density is given by 

Vv''p, - -  ~Jbc p.'d-lv " 

(4.1) 

(4.2) 

~"/~SB 

N~-= 10 No': 15 N~= 20 

I ! I ~, 
5 10 15 

Np 

F ig  6 The rat io  e/eSB for the 1deal Bose gas versus N/~ for ( = 1 and vanous  N o 
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The structure constants £bc specify the commutation relations for the generators X~ 
of the SU(N)  gauge group 

[X a , Xb] = tf~bX c ; (4.3) 

the colour indices (a, b, c) on the generators )ta and the gauge fields A~(x) run from 
1 to N 2 -  1. The density (4.1), inserted in eq. (2.3), (2.4), gives us the partition 
function. 

a As in the previous section, the x - r  continuum on which the fields Au(x) are 
defined, is replaced by a lattice with N o (NB) sites separated by spacings ao (a~) in 
the spatial (temperature) direction. The lattice is chosen to be closed on itself in all 
directions: in r to assure the required periodicity, in x to avoid surface effects and 
for economy of calculation. To make certain that physical quantities in the con- 
tinuum limit will not depend on the lattice structure, we must introduce two 
coupling strengths, go and g¢, which replace the g in eq (4.2). An independent 
variation in ao and a• can then be compensated by suitably adjusting go and g~ such 
as to keep physical quantities unchanged [22]. Finally we replace [11] the integration 
over the gauge fields in eq. (2.3) by one over the gauge group elements U,j, 
associated to links between adjacent sites t andj .  With Wllson's form of the action, 
the partition function then becomes 

II d U , , e x p [ - S ( U ) ] ,  
hnks 

(4.4) 

( '  ) S(U) = 2NK o ~ 1 -- -~ReTrU, jgkUk,Ut, 
{Po} 

+ 2NKa ~ ( 1 -  1 Re Tr U,,UjkUkzU h ) .  
{P~} 

(4 5) 

The sum {Po} runs over all purely space-like plaquettes Ojkl), {PB} over those with 
two space-like and two temperature-like hnks. To recover the correct classical 
continuum action, we write 

U,j = exp { ~ x, + x (4.6) 

with A~,(x)= )taA~(x), and define the couplings 

,(ao) 
Ko=7 7:, 7 .  
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If in the limit of (x, -- xj) ~ 0 
g2 -- _2 -- -2 (4.8) o - - g B - - g  ' 

then we can rescale A, --, gA, and get back to eqs. (2.4) and (4.1), (4.2). Consider now 
the functions 

Fo(ao, 4) = g~-2(ao, I;)/g-2(ao), (4.9) 

F~(ao, ~) - - g ; 2 ( a o ,  ~)/g-2(ao) , (4.10) 

with f = ao/at~. Since both are unity for f = 1 as well as for g2 ~ 0, we can expand 
about g2 _~ 0 to get 

g;2(a o, ~) =g-2(ao) + co( ~) + O(g2) ,  (4.11) 

g~Z(ao, 4) = g -2(ao)  + c~(~) + O(g  2) (4.12) 

as the correct quantum coupling parameters in the continuum limit. Here c,(~) and 
c/~(f) are functions of f only, vanishing at ~ = 1. 

As ~s known, the form (4.5) of the lattice action is not unique; at least m the T = 0 
case, other forms [23] lead to the same continuum limit. The role of the choice of 
action for T =~ 0 ~s at present not known. 

Expressing the derivatives with respect to the continuum variables /3 and V in 
terms of f and ao, with N o and N~ fixed, we obtain 

e E = ( g i 2 / N 3 N ~ a 4 ) ( O  In Z E / O ~ ) a .  , (4.13) 

PE=(fZ/3N3N~aa)[(OlnZE/O~)~ +a,~ '(31nZE/Oa,)~] , (4.14) 

where we again use the subscript E to remand ourselves that the vacuum correction 
needed in the euclidean form has not yet been performed. With the action (4.5), we 
have for SU(N)  gauge fields 

eEa 4 = --6N~2[(OKo/O~)fro + (OK~/O~)/~], (4.15) 

pE a4 = -- 2N~2[(0Ko/0~)/So + ( OKB/O~ ) fi  ~ 

+ao~-'{(OKo/Oao)/so+(OKl~/Oao)~}], (4.16) 

where / s  o a n d / ~  denote the average of space-hke and space-temperature plaquettes, 
respectively: 

"o=~zztf~dU~.e-Sqe){{~}[l--IReTrUUUU]/{~}} 
1 ReTrUUUU], (4.17) =(3U2U.ZE)-'f [IdU,,e -s'U' ~, [ 1 -  

(I',} 

and correspondingly fo r /~ .  
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Using relations (4.11) and (4.12) with the O(g 2) corrections neglected, we obtain 
at ~=  1 from eqs. (4.15) and (4.16), with ao=--a, 

! - -  t - -  eEa 4 = 6N( g- 2( ffo-- ffB ) -- ( c,~Po + cBPB ) ) , (4.18) 

PEa4=2N{g 2(ffo--~)--(c'affo+c'~ff~)--a(-~-~ )(ff ,+ ffB) }. (4.19) 

To determine e and P at ~ = 1 as functions of the temperature T = (NBa)- ~, we must 
therefore know g(a) and the derivatives c'o = (dco/d~)~= 1 and c~ = (dc~/d~)~= 1. In 
the continuum hmit, g(a) is given by the renormalization group relation 

247r 2 51 In l lNg2~ 
aA e = exp 11Ng 2 121 487r 2 j ,  (4.20) 

obtained by requiring the invariance of physical observables, measured with AI. as 
scale, under changes of the lattice spacing a. The denvatwes c'o and c~ can similarly 
be obtained by enforcing invariance under changes of (; one obtains, again in the 
continuum limit, for SU(N) the values [24] 

c o ' = 4 N { ~ 0 5 8 6 8 4 + 0 0 0 0 5 0 } .  . , 

N 2 _ 1  } 
c~ = 4N - - 0 . 5 8 6 8 4  + 0.00531 (4.21) 

32N 2 

From eqs. (4.18) and (4.19) we obtain the quantity 

(e--3P)Ea4=6Na(~g 2 /0a ) ( /~  + / ~ ) ,  (4.22) 

which vanishes for an ideal gas and provides us with a measure of the interaction 
strength. In fact, if a perturbative treatment is vahd at high temperature, then we 
have [for SU(2)] to leading order [25] 

( e -  3P) /T 4= 0.61 la2(T)  -- 3.378a~/2(T). (4.23) 

Here as(T ) = g2(T)/4~r denotes the effective strong interaction coupling constant at 
temperature T, 

6~r 
as(T) = l lNln(4T/A) ' (4.24) 

with A as continuum cut-off parameter. 
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As mentioned, the euclidean form (4.4) still contains the vacuum contribution of 
T = 0; we saw this explicitly in the cases studied m sects. 2 and 3. Hence also now all 
expressions, e, P, etc., must be adjusted by removing the T = 0  value. On the 
asymmetric lattice of the finite temperature problem, this can be approximated by 
subtracting from any given quantity the corresponding form calculated on a suffi- 
ciently large symmetric latuce. For the physical energy density e we thus get 

e a 4 = 6 N { g 2 ( f f  o - f f  ~ ) + c 'o ( f f  - f f  ,, ) + c '~ ( f f  - f f  ~ ) } , (4.25) 

since /~ = / ~  = f i  on a symmetric lattice. The physical form P of the pressure is 
obtained correspondingly, and we have 

(e - -  3P)a  4 = 6Na(  Og-2 ]" - (4.26) 

for the interacuon measure (4.22). 
Finally we want to consider the free energy density of our system, 

f =  ~ v l l n  Z .  (4.27) 

The Monte Carlo evaluation, as we shall see, permits only the calculation of lattice 
averages, with the weight e x p ( - S ) ;  hence eq. (4.27) is not in a suitable form for this 
method. We can, however, calculate 

_ ( O ln ZE/Og-  Z )~= = 6NN3NB( ffo +/~) = g2g ,  (4.28) 

which is just the average action. As before, we normalize at T = 0 by subtracting the 
corresponding value on a large symmetric lattice. Integrating over g-2, we then 
obtain 

fg~--2 ~ __ f a 4 = 6 N  o2dg  2 [ P o + ~ - 2 f f ] + c  (4.29) 

for the free energy density at the temperature 

T =  (N~a(g))  l, (4.30) 

with a(g) given by relation (4.20); we therefore choose go small enough to assure the 
vall&ty of this relation. The integration constant c is then given by 

c = f (To )a  ~, (4.31) 

with ao=--a(go), To=(Ntja o) 1. 
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5. The SU(2) Yang-Mills system at finite temperature 

In the last section we have obtained expressions for thermodynarmc quantities 
formulated on a euclidean N~ × N~ lattice, with spacings ao, a ,  and associated 
couphng parameters g°, g~. We would hke to evaluate these expressions in the 
thermodynamic limit ( V =  (Noa¢,)3~ oe) at temperature T =  (N~aB)-i ,  in a region 
of lattice spacings sufficiently small to render our results independent of the lattice 
structure (continuum limit: ao, at~--, 0). While it is possible to carry out analytic 
calculations in perturbation expansions with g2 ~ oe [3] or g2 ~ 0 [26], the only way 
to cover the entire temperature range is so far given by Monte Carlo simulation. 

In confinement studies, e.g. for the string tension o, the Monte Carlo evaluation 
has led to two distinct regions: a strong couphng regime, in which the numerical 
results follow the lowest order of the g 2 ~  oc expansion, and a weak coupling 
regime, g 2 ~  0, in which the renormahzatlon relation (4.20) is satisfied. Only from 
this weak coupling region it is possible to extract the continuum values of physical 
quantities. We note here that also finite temperature thermodynamics can for all T 
be considered as a weak coupling problem: by choosing a sufficiently large N~ at 
fixed T =  (N~a~)-~, a~ and hence the associated coupling can be made as small as 
desired. In fact, only in the region of vahdlty of eq. (4.20) does it appear possible to 
connect a lattice formulation with given coupling g unambiguously to a specific 
physical temperature. 

The actual Monte Carlo evaluation is now carried out as follows. The computer 
simulates an N~ × N~ lattice; for convenience we choose again ~ = 1 (ao = a n = a). 
With c', and c~ as given by eq. (4.21) all expressions are functions of g, and hence in 
the region of vahdity of eq. (4.20) of the physical temperature T =  (N~a(g))  ~. For a 
given g, starting from some specified configuration of group elements U on the 
lattice, each link is assigned a new U', chosen randomly with weight exp[ -S(U)] .  
The starting configuration is either taken as completely ordered (all U =  1, "cold 
start") or as completely disordered (all U random, "hot  start"). One passage of this 
procedure through the entire lattice is called an iteration, and after a thousand or 
more iterations results tend to become quite stable even on fairly small lattices. To 
obtain some intuitive feeling for this, note that a 103× 3 lattice has 12000 hnk 
degrees of freedom, thus providing us with a rather large statistical system 

The calculations presented here are generally performed on a 103× 2,3,4,5 
lattice; for Np = 3, we have typically 5000 iterations per point, using the lcosahedral 
subgroup of SU(2), which we found to agree with corresponding calculations using 
the full group. The errors shown are generally twice the statistical errors. 

5 1 HIGH-TEMPERATURE BEHAVIOUR 

At sufficiently high temperatures, we expect Yang-Mllls systems to behave hke a 
photon gas with the appropriate number of degrees of freedom. For a massless 
SU(2) vector field, with two spin and three gluonic colour degrees of freedom, the 
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resulting Stefan-Boltzmann form is 

esB = 3 - ~  T 4 = T 4 . (5.1) 

Together with eq. (4.20), this predacts on the latuce 

~s.a'= y ~ e~p ~ llg ~ + ~ ~ J l '  (5.2) 

for the dimensionless quanti ty ea 4 at fixed T as function of  g2. In fig. 7, we compare  

eq. (5.2) with the results obtained from eq. (4.25) by Monte  Carlo evaluation, at 

T =  500AL, N o =  10, and Nt~ ---- 2 ,3 ,4 ,5 .  
In comparing eq. (4.25) and (5.2), we note that the funcnonal  behavlour in g2 tests 

the validity of  the renormahzat ion relation, the absolute normal izauon that of the 

Stefan-Boltzmann factor ~ r  2 - Le., it provides direct evidence for the colour degrees 

~CI 4 

~0 o 

10 -I 

i0 -z 

10 -3 

x 

.--41 I I I, 
30 32 34 

L~Ig2 

Fag 7 Energy density of the SU(2) Yang-Mllls system versus 4/g 2, at fixed temperature T= 500At, 
after about 600 ~terahons (full points) The sohd hne gives the Stefan-Boltzmann hmm the crosses are the 

finite size corrected results 
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Fig 8 The uncorrected ratio e/esB at T 500AL versus NB for the SU(2) Yang-Malls system (full points) 
and for the 1deal Bose gas (circles) 

of freedom operative m the system. We see in fig. 7 that ea 4 on the whole follows the 
asymptotic form (5.2), but there appear to be stronger deviations at smaller N~. In 
fig. 8 we compare these with the deviations observed for an ideal Bose gas on a 
lattice of the same size (see fig. 6). Both coincide, supporting strongly the supposl- 
txon that the deviations found for the SU(2) system are also predominantly finite 
lattice effects. We have therefore multiplied the results of fig. 7 by the correction 
factor C(N~, NB)= esB/e from the 1deal Bose gas [21]. These corrected results are 
also shown in fig. 7; they are seen to be N¢ independent, and within errors they agree 
with the asymptotic Stefan-Boltzmann form. Unless mentioned, we shall therefore 
use from now on only corrected values. 

At T = 500A L, the energy density effectively becomes the difference of plaquette 
averages, 

ea4~12g 2(/~ _ / ~ )  ; (5.3) 

the other two terms contribute less than fifteen percent*. Such a behavlour is 
asymptotically expected, since all plaquette averages vanish as g2 in the weak 
coupling expansion on the latuce [26], and only the first term has a compensating 
g 2. This first term, for N• = 3, in fact is found to agree with the Stefan-Boltzmann 
form (5.1) down to T~- 90A L. 

In fig. 9, we show the high-temperature behaviour of the interaction measure 
(4.26), calculated on 103 × 3 and 103 × 2 lattices, using relation (4.20) and for f f  the 
results of ref. [27]. We see that for T ~  > 200A L, our results are compatible with an 
asymptotically free gluon gas. Also shown in fig. 9 is the perturbation form (4.23), 

* In earher work [7], we estimated a still smaller contribution from these two terms, because it was 
there assumed that go = gB 
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Fig, 9 The &fference ( e -  3 P } / T  4 versus temperature for N o = 10, N/~ = 2 (crosses) and N/~ = 3 (full 
points) The curves show the predxctIons of the first-order per turbahon theory [a~ term m eq (4 23)], the 

numbers on the curves are the corresponding cont inuum scale parameter values A 

keeping only the aZ(T) term w~th 

.s(7") = 3~/(11 ln(4r/A)). (5.4) 

The deviations from ideal gas behavmur thus appear to be compatible in size with 
such a correction, ff A ~ (20 - 100)A L, Note, however, that the next t e r m  (a~/2) m 
the expansion (4.23) would with th~s value of A give a larger contribution than the 
a~ term, throwing considerable doubt on the validity of a perturbatlve treatment 
with a finite number of terms in the temperature region treated here. 

Finally we consider the negative of the free energy density (4.29), which for an 
asymptotically free gas should approach ½e m the same way as the pressure. 
Integrating from 4 / g  2 = 1.7 up to 2.8 on a 103 × 2 lattice, and from 4/g 2 = 1.8 up 
to 2.8 on a 103× 3 lattice, with 17 again from ref. [27] we obtain the (corrected) 
values 

= I 1.85 --+ 0.03, 
-3fiT 4 [1.64+-0.05, 

U~=2, (r=300A~), 
(5.5) 

N,=3, (T=200&),  

to be compared with 

1"93 --+ 0.01, 
e/T4 = 77 ~ 0.03, 

NB=2, 
U~ = 3, (5.6) 
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at the corresponding temperatures; recall that esB/T #= ~r 2 = 1.97. The values (5.6) 

are for given N B obtained at one value of g2, and determined mainly by the 
difference of space-like and temperature-like plaquette averages In contrast, the 
values (5.5) are obtained by Integrating a rapidly varying function ( - ( e -  3 P ) / T  4) 
over a range of g2 (or equivalently, of temperature), including the critical region; 
moreover, they depend on the sum of space-like and temperature-like plaquette 

averages, with the vacuum contribution subtracted. It seems remarkable that the 

results of such different evaluation procedures agree so well. 

Combining the results for e, e -  3P and f, we then conclude that at high 
temperatures, T~>(100--200)A L, the SU(2) Yang-Mills system approaches the 
asymptotic ideal gas form. As final illustration for this, we show in fig. 10 the high 
temperature behavlour of e/esB, as calculated on 103 × 2 and 103 × 3 lattices, with 

finite size corrections. 
Before going on to lower temperatures, let us comment on the physical scale for 

the region just considered. Bearing in mind the reservations necessary when empiri- 
cal data is combined with an SU(2) Yang-Mills description, we can use the string 
tension value [4, 28] A L - 5  MeV to conclude that our high temperature region 100 
to 500A L corresponds to temperatures T ~  5 0 0 -  2500 MeV; we are thus more than 

a factor 2 above the canonical "critical hadron temperature" [1] of 1 5 0 -  200 MeV. 

~/~SB 
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02 
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Fig 10 High-temperature behavlour of e/esB versus temperature, as calculated on 103 )< 2 (crosses) and 

10 ~ × 3 (full points) lattices 
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Fig 11 The ratio e/eSB for a 103)< 3 lattice versus temperature The full points are lcosahedral, the 
crosses full SU(2) group Monte Carlo results; the line is a sphne fit to the data 

5 2 THE D E C O N F I N E M E N T  TRANSITION 

In fig. 11, we now display the behaviour of e/eSB over the entire temperature 
range accessible to us w~thin reasonable computer time. The most striking feature is 
the sharp drop near T = 40A L, where the energy density falls an order of magnitude 
in a temperature interval of about 5A L (~  25 MeV), thus displaying a behawour very 
similar to that of the gauge-invanant Islng model. The behaviour of the specific heat 
per unit volume, 

c v = O~/OT, (5.7) 

obtamed by differentiation of a fit to the data of fig. 11, is shown xn fig. 12. It 

exhibits a strong singularity like peak at T c = 43A L, which we take as signal of the 

deconfinement transition. 
We recall that the evaluation of the SU(2) Yang-Mills system on a gwen lattice is 

performed at fixed g2; the connection to the temperature ~s then provided by the 
renormahzation group relaUon (4.20). To assure that the deconfinement signal 
occurs indeed at fixed T, we must therefore observe a shift in the peak of c v as 
function of g2. In fig. 13, we show [O(e/eSB)/O(4/g2)]  versus 4 / g  2 as calculated on 
103 × 2 and 103 × 3 lattices. For N¢ = 2, the peak occurs at 4 / g  2 = 1.9, while for 

N B = 3, it xs shifted to 4 / g  2 = 2.19. Moreover, the peak becomes sharper and higher 

with increasing NB. For N¢ = 4, the deconfinement signal occurs at 4 / g  2 ~- 2.3. Using 

the renormallzatlon relation (4.20), both the N¢ = 3 and the N¢ = 4 results gwe 
T c = 43AL; the N¢ = 2 position is in accordance with tins, if instead of eq. (4.20) we 
use the non-asymptotic string-tension results [4] to connect g2 and a. 
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14 Thermal Wilson loop (L) 2 versus temperature for Nt~ 3, No= 7 (full points) and No= 9 
(orcles) 

To fur ther  suppor t  the c la im that  the peak  we observe in the specific heat  is a 

signal of deconf inement ,  we have also here ca lcula ted  the square of  the average* 

thermal  Wi l son  loop (L)2 .  A s  a l ready  ment ioned  in sect. 2, In ] ( L ) I  measures  the 

free energy F of an isola ted colour  charge and can be used as an order  pa rame te r  for 

gauge- lnvar lant  systems. In  the conf inement  region, F should be  infinite, forcing 

] ( L ) I  to vanish.  In  fig. 14, we f ind in accordance  with the results  of refs. [5,6] that  

there  is indeed  an ab rup t  increase of ( L )  2 at abou t  42A L. We note,  moreover,  that  

wi th  increasing spat ia l  lat t ice size ( N  o = 7-~  N o = 9), the values of  ( L )  2 below T~ 

move closer to zero, as expected if ( L )  2 = 0 for N o ~ o0. 

Before looking  in more  detai l  at the " h a d r o n i c "  region be low T c, we note  that  the 

cn t i ca l  energy densi ty,  ec----e(Tc), is ob ta ined  here as e c ~ - T  4 (see fig. 11). Wi th  

A L = 5 MeV, we have thus e c ~-270 M e V / f m  3. To get some feeling for this value, 

recall  that  the energy densi ty  in nuclear  mat te r  is about  160 M e V / f m  3, whale inside a 

nucleon it is 360 M e V / f m  3. 

In  fig. 15 we now consider  the in teract ion measure  (e - 3 P ) / T  4 over the ent ire  

t empera tu re  range. The in terac t ion  vanishes at high temperatures ,  leaving us, as we 

saw, with an asympto t ica l ly  free gluon gas. We  note  that  at low tempera tu res  it  also 

vanishes,  suggesting that  we there have an ideal  gas of  " h a d r o n - l i k e "  objects,  which 

in a pure  Yang-Mi l l s  theory mus t  be g luonlum states. 

* Because of the exact Z 2 symmetry of the problem, ( L )  2 is a convement quantity to consider It is 
calculated by squaring the average of L over the lattice after each iteration 
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Fig  15 The  d i f fe rence  (e - 3 P ) / T  4 versus  t e m p e r a t u r e  for  a 10 3 × 3 l a tuce  
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5 3 T H E  G L U O N I U M  R E G I O N  

Below the deconfinement temperature, strongly interacting matter  should consist 
of hadrons in interaction. For a pure Yang-Mills system, in the absence of quarks, 
this imphes a gas whose constituents are bound gluon states, Le., gluonla. We 
therefore want to compare the results of our lamce evaluation in the region below T c 
with the continuum behavlour expected for a system of interacting gluonium states. 
To have a definite form for the behaviour of such a system, we assume it to follow 
the pattern of hadromc matter, which xs generally taken as an ideal gas of the 
ground-state hadrons and all their resonance exotauons.  

The parti tmn function for an ideal gas of resonances is gwen by 

l l n  Z(T,  V ) =  (27r) -3fo~dm , ( m ) f d 3 p e - P l / T U ~ / r ,  (5.8) 

where ~-(m) denotes the excitauon spectrum. From dual [29] or bag [30] models as 
well as from statistical bootstrap arguments [31], we expect ~-(m) to have the form 

"r(m) = dS(m - mo) + cO(m - 2 m 0 ) m - "  e b", (5.9) 

with constant a, b, c and d. While a depends on the details of the model [32], b is 
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fixed by the bag pressure or string tension (Regge slope), and c measures the 
strength of resonance excitation relative to the d-fold degenerate ground state. 

It is well known that the partition function (5.8) with the spectrum (5.9) leads to 
critical behawour [33], with T~= 1/b as critical temperature. The order of the 
associated transition is deterrmned by a; in partxcular, for 7 < a ~< 9, we have a finite 
e(T~), while c v diverges as T ~  T c. Assuming that the critical behavlour of such a 
system can be identified with what we find m lattice QCD, we shall therefore fix 
b-~ = 43A L and maintain a in the mentioned range. We furthermore take d = 6, in 
accord with bag model [35] and strong coupling arguments [34]. The remaining 
constant c is fixed by normalizing resonance gas results to our Monte Carlo value of 
e(Tc). This leaves us as only open parameter  of the resonance gas descnptlon the 
value m 0 of the lowest hadronic state - here the mass of the glueball, m 0 = rn 6. 

From eqs. (5.8) and (5.9) we have 

m 3T K , e(T)-~eG(T)+ c-~-T f°° d m m 3 - a e m b [ K l ( ~ ) +  ~ 2 ( T )  ] (5.10) 
2,n "2 2m~3 

where 

m3T[ / 3T ] 
e~ ( T ) = d~ff~ 2 [ K, t ~ -  ) + m G K2 ( - ~  ) (5.11) 

denotes the energy density of an ideal glueball gas (without 
corresponding specific heat per unit volume is given by 

c v ( r )  =  (T)+755_2 f dmmn '(m) 
2~ J2~,; 

resonances). The 

× K 2 ( - T ) +  m " T J + 9  ( - ~ )  (5.12) 

and for the interaction measure (4.26) we obtain 

(~_ 3P)/r4_ 1 dm~K, + c dmm 3 ~e'~bK1 ~ 
2~r2T 3 m,; " 

(5.13) 

With all parameters chosen as discussed above, we can now compare the gluomum 
gas forms (5.10), (5.12) and (5.13), which incorporate our expectations for hadromc 
matter, with the lattice results for the SU(2) Yang-Mdls system. 

In figs. 16 and 17, we show e /T  4, normalized to its value at T c, as a function of 
x =  T~/T-1 ,  comparing eq. (5.10) with the results from the SU(2) Yang-Mills 
system on a 103 × 3 lattice. The dependence on the precise value of a within the 
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Fig  17 The  d i f fe rence  (e 3 P ) / T  4 versus  x N o t a t a o n s  a n d  p red i c t i ons  c o r r e s p o n d  to tha t  of  fig 16 
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Fig 18 The speclf:c heat per umt volume dlv]ded by T 3 versus x The dashed hne corresponds to the 
low temperature part of fig 12, the sohd lines to the resonance gas predlct~ons as m figs 16 and 17 

range ~ < a ~< 9 is rather insignificant. In fig. 16 the results for different values of the 

glueball mass m G are compared,  with a = 4. We see that rn G = (4 - 5)T c gives a quite 

reasonable fit. 
In fig. 17, the corresponding results are shown for the interaction measure 

( ~ - 3 P ) / T  4, and m fig. 18 for c v / T  3. Again the gluonium gas forms, with 

rn G = ( 4 -  5)Tc, are in reasonable agreement with the results of  the Yang-Mdls  
system. The fairly large discrepancies in c v / T  3 at small x are presumably  finite size 
effects; the resonance gas c v diverges at x = 0 ,  which the lattice form could 
reproduce only in the cont inuum limit. 

F rom the qualitative agreement and the quantitative comparisons m figs. 16-18 
we thus conclude that low-temperature SU(2) Yang-Mills thermodynamics  leads to a 
glueball mass of  rn G = (200 ± 50)A L. In terms of the string tension o, with the 
relation [4] A L = (0.013 ± 0.002)(6-, we have mG = (2.6 ± 0.5)~-, in fair agreement  
with other glueball mass determinations f rom SU(2) Yang-Mills studies on the 
lattice [28,36]. In terms of  physical dimensions, with A L ~ 5  MeV, we obtain 

m G = 1000 ± 200 MeV. These results, though compatible with earlier work on a 
smaller lattice [10], seem to he systematically higher than what  was found there; this 
m part  due to the approximat ion menUoned m the footnote in subsect 5.1, in part  ~t 
could also be a finite s]ze effect. 

If  we picture strongly interacting matter below T~ as a gas of bound  gluon states, 
which will have a dimension, ~t appears natural to ask whether the spatial lattice on 
our Monte Carlo evaluation is in fact large enough to accommodate  a large number  
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of such extended objects. The lattice spacing at T c is, on a lattice with N# = 3, 

a~ -~ 7.75 × 10-3A~ 1 , (5.14) 

which with A e = 5 MeV becomes about one-third of the nucleonic charge radius: 

a ~ - 0  3 fm.  (5.15) 

The spatial volume of our 103 lattice at T c is thus about 37 fm 3, or 60 times the 
volume of a nucleon. With such parameter  values, a resonance gas description does 
not seem unreasonable. For lower temperatures, the spatial volume is increased by a 
factor (Tc/T) 3. 

6. Conclusions and outlook 

We have found that the SU(2) Yang-Mills system, evaluated in the euchdean 
lattice formulation, provides a unified thermodynamic description of strongly inter- 
acting matter, predicting with increasing temperature a deconfinement transition 
from the "hadronic"  gluonium phase to the asymptotically free gluon phase. 

The gluonlum phase shows the behavlour of a resonance gas, with a discrete 
ground state ("glueball") of mass r n 6 - 2 0 0 A  L. The deconfinement transition, 
signalled by a singularity in the specific heat, occurs at T~ - 43A L. At high temper- 
ature (T~>200AL), the energy density approaches the Stefan-Boltzmann form for 
gluons with three colour degrees of freedom [for SU(2)]. 

Our calculations were generally performed on lattices with 103 spatial sites and 
2 -  4 sites on the temperature axis. Concerning the dependence on lattice size, we 
find at high temperatures the same deviations from Stefan-Boltzmann behaviour as 
are observed for an ideal Bose gas on a corresponding lattice. Further lattice size 
studies, In particular tests of finite size scaling for the deconflnement singularity, 
would certainly be of interest and seem computanonally feasible, but lengthy. 

The approach to asymptotically free behavlour at high temperature is, in our 
results, not compatible with conventional perturbation theory up to and including 
third order. Since asymptotic freedom could be "non-perturbative",  an expansion in 
g2 need not converge, and difficulties arising from Infrared-divergent terms have in 
fact been discussed [37]. 

A problem of special interest is of course the extension of our considerations to a 
theory with f e r m i o n s -  to invesngate whether the introduction of quarks leads to 
any quahtative or quantitative changes. A particularly intriguing question here is the 
occurrence of more than one transition - as argued by percolation studies [38] or in 
connection to chiral symmetry restoration [39]. 

It is a pleasure to thank P. Hasenfratz, L. McLerran and B. Petersson for useful 
discussions in various stages of ttus work. 
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