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After reviewing the euchdean formulation of the thermodynamics for quantum spin systems,
we develop the corresponding formalism for SU(N ) gauge fields on the lattice The results are then
evaluated for the SU(2) system, using Monte Carlo simulation on lattices of (space X temperature)
size 10°X2,3,4,5 At high temperature, the system exhibits Stefan-Boltzmann behaviour, with
three gluonic colour degrees of freedom At T, =~43A; (215 MeV), the transition to “hadromc”
behaviour occurs, signalled by a sharp peak in the specific heat From the behaviour below the
deconfinement transition (7 << T), we obtain mg = 200A (1000 MeV) for the mass of the lowest
gluonium state (glueball)

1. Introduction

The thermodynamucs of strongly interacting matter has been a subject of much
interest for a long time. Even before the introduction of the quark structure of
hadrons, it had provided indications for some type of critical behaviour [1]; once
hadrons were considered as composite objects, 1t was conjectured almost im-
mediately that at sufficiently high densities or temperatures, strongly interacting
matter should undergo a phase transition from a state of interacting hadrons to a
quark-gluon plasma [2]. The advent of quantum chromodynamics led to the hope
that both the two-phase nature and the transition could be derived from one basic
theory, particularly the strong coupling results in the lattice formulation of QCD
provided further support for this hope [3]. In the past two years, the Monte Carlo
simulation of lattice QCD [4] has turned out to be a very effective way to study this
question, at least for the case of pure Yang-Mills systems: interacting gluon matter
does exhibit a deconfining transition [S—10], which separates a colour-screened gluon
gas at high temperatures [7-9] from a gluonium gas at low temperatures [10].
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The aim of this paper 1s to present a comprehensive and systematic development
of the thermodynamics of matter described by SU(2) Yang-Mills theory. Our
starting point will be the euclidean lattice formulation of QCD [11], and we shall use
the Monte Carlo simulation of the lattice problem to perform the evaluation [4].
What we obtain in this way is on one hand a generalization of black-body
thermodynamics to the case of interacting fields, on the other hand a model for the
thermodynamics of QCD systems. For this 1t is a model only because of the
restriction to a pure Yang-Mills system; the extension to SU(3) is straightforward
and does not seem to induce significant changes in behaviour [8,9]). Work on the
inclusion of Fermi fields in lattice studies is presently being pursued vigorously by
several groups [12], and in the foreseeable future finite temperature thermodynamics
may well be extended 1n this direction.

The paper 1s organized in the following way. In sect. 2, we study simple quantum
spin systems, both 1n conventional and in gauge-invariant form, introducing here the
euclidean lattice form of thermodynamics to be employed later for the Yang-Mills
system. This allows us to illustrate in the case of physically quite transparent
instances the main features of the transition from hamiltonian to euclidean thermo-
dynamucs; moreover, the gauge-invariant quantum Ising model already exhibits a
behaviour very similar to that of the Yang-Mills field. In sect. 3, we then consider
the free Bose field in euclidean lattice formulation. Since for this case the continuum
limat 1s well known, we can use 1t to estimate the effect of finite lattice size 1n our
calculations, and to determine lattice parameters optimizing the approximation. In
sect. 4 we formulate euclidean lattice thermodynamucs for Yang-Mulls fields, and 1n
sect. 5 we present the basic thermodynamic quantities for the SU(2) case, at high
temperature, 1n the deconfinement region and 1n the gluonium regime.

2. Euclidean thermodynamics for quantum spin systems

In the conventional formulation of statistical mechanics, the starting point 1s the
partition function

Z(B)=Tre A7, (2.1)

defined in terms of the hamiltonian H of the system; In Z(8) counts the number of
possible states at a given physical temperature 7= 8. For field-theoretic systems,
H becomes the three-dimensional integral over the hamiltonian density J((x),

HZfd3x3C(x), (2.2)

with JC(x) given in terms of fields A(x). It was shown [13] that the partition
function (2.1), (2.2) can be reformulated as a Feynman functional integral involving



J Engels et al / Gauge field thermodynamics 547

the euclidean action:

Z(B)=N(B) [ldAle s®, (2.3)

S(B) = —_/(‘)Bdfrfd3xﬁ(x,7). (2.4)

Here the lagrangian density £(x, x,) is taken at imaginary time x,=i7, with
periodic boundary conditions A(x,0) = A(x, B) for bosonic fields; N(B) is a normal-
izang factor.

Since the form (2.3), (2.4) will provide the starting point for lattice thermody-
namics, we shall begin by considering simple quantum spin systems with a given
hamiltomian formulation. By treating these in the euclidean approach, we can
familiarize ourselves with the new features this imples.

21 THE ISING MODEL IN A TRANSVERSE FIELD

The hamiltonian of the one-dimensional Ising model with a transverse field y
(“quantum Ising model”) 1s given by [14]

H=— kg o5(k)oy(k + 1)-7/(2 o,(k), (2.5)

with periodic boundary conditions, 6,( N + 1) = 05(1), and with the spin-spin interac-
tion energy taken as unity. The corresponding partition function,

Zy(B,v)=Trye P4, (2.6)
at temperature T= 8! can be evaluated analytically for N — oo, giving

lim 1 Z,(8,v) =5 [ doln(2eosh[AA(4.7)]). (2.7)

A(qb,y)E(l-Fyz—Zycosqb)]/z. (2.8)

It 1s analytic for all 7>0; at 7= 0, we obtain

e (yy= LFY) 4y
oY) - E( (1+y)2) (2.9)

for the energy per spin; here E(x) 1s a complete elliptic integral of the second kind,
which is non-analytic at x = 1, with d E /dx diverging there. This results in a critical
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Fig 1 Phase diagrams for (a) one-dimensional and (b) hugher-dimensional Ising models with a transverse
field of coupling strength y

point at y, = 1; the phase diagram for the system is shown in fig. 1a. The nature of
the two phases is readily seen: at y = 0, we recover the usual one-dimensional Ising
model, which 1s disordered everywhere except at 7= 0, where the system is in one of
the two degenerate ground states of completely aligned spins (“up” or “down”).
Turning on the transverse field tends to disturb the alignment, and for y =1y, the
degeneracy is removed and the order disappears. In higher dimensions, the corre-
sponding problem has not been solved in closed form [15]. The phase structure 1s
nevertheless apparent; 1t 1s shown in fig. 1b.

We now want to express the one-dimensional case in euclidean formulation Using
the generalized Trotter formula [16], the trace (2.6) can be written in the form

ZN('B’Y):A}EHOOZN.M(”B’Y)’ agM = B fixed, (2.10)

where

NM/2
ZN,M(aB,y)Z[%smh@aBy)] Zy mlag,v), (2.11)
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and where
N M
ZIE,M(a,B’ Y) :TrN,MeXP{ 2 2 [a,BOS(]’ k)oy(s+ 1, k)
J=1 k=1
+g(ag, v)os(J, k)os(j, k + 1)]} (2.12)

1s the partition function of the anisotropic, two-dimensional classical Ising model.
The quantum problem (2.5), (2.6), where H contains non-commuting terms, has
thereby been reformulated as a classical problem in one more dimension correspond-
ng to the temperature 8 = Mag. The hamiltonian form (2.5), (2.6) and the euclidean
form (2.11), (2.12) become identical 1n the temperature continuum limit M — oo at
fixed B = Mag. The vanishing of a, 1n this limit must be compensated by a suitable
change in the temperature couphing g(ag, ), such as to leave physics invariant. With
H explicitly given, one finds

g(ag,y) =3Incoth(a,y) (2.13)

from the Trotter formula [16].
The two-dimensional classical Ising model (2.12) has the well-known Onsager
phase transition at

sinh2agsinh2g(ag,vy) =1; (2.14)

in the limit @z — 0 this implies y, = 1, in accord with the result from eq. (2.9).
The free energy per spin,

f(B,v)=;,—$1n Zy(B.v), (2.15)

can with €g. (211) be written
f(B Y) = lm f ((1 Y) - ——-ln[—' sinh(2a Y)] (2 16)
° M= oo M B> 28 2 B El .

FEap V) =35 10 28 (g ). (2.17)

To understand this shift between hamiltonian and euclidean free energy, we note
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that from egs. (2.11), (2.12)

Iim -1—

1
Jm Nln ZN,M(aB’Y)_A}Enw NlnTrN’M

X exp{
J

=

M
2 [”ﬁ%(]a k)oy(s+1,k)
1 k=1

—8(ag, v)(1—03(y. k)oy(y, k+ 1))]} ;

(2.18)

the additional term in eq. (2.16) shifts 630, = — 1 + 0,0, in the temperature direction,
thus normalizing the ground-state contribution of that part to zero.

We summarize. the quantum problem of a one-dimensional Ising model in a
transverse field can be restated as a classical problem with an additional temperature
dimension. The two forms become equivalent in the temperature continuum hmit,
provided the coupling g(ag, v) 1n the temperature direction is suitably changed when
the associated lattice spacing ag is decreased, and provided the free energy is shifted
to assure the correct vacuum structure.

Before going on to the gauge-invariant case, let us briefly note the connection
between phase structure and duality for the model just studied [17].

The hamiltoman (2.5) is invariant under simultaneous inversion of all spins
(global symmetry); as a consequence, one can define a local order parameter, the
magnetization

m={(0;), (2.19)

measuring the average spin value per site. It is finite for y < 1 and vanishes for y > 1,
thus specifying the phase of the system.

Consider now the same model on the dual lattice, whose sites correspond to the
links of the original lattice. The spin operators o, and g; are replaced by the
operators

py(k)=o05(k)oy(k+ 1), (2.20)
pi(k)= Hkol(n)’ (2.21)

which satisfy the same algebra. The hamiltonian (2.5) retains 1ts form under the
duality transformation o — p:

YH(p,y™')=H(o,7); (2.22)
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it 1s self-dual. Since p4(k) flips all spins to the left of k on the original lattice,

= (s (2.23)

vanishes in the ordered phase and is finite in the disordered. Thus y=1 1s the
critical point, since there order and disorder become indistinguishable.

For a self-dual, globally symmetric model such as (2.5), we can thus determine the
phase structure either by order parameter or by duality relation.

22 THE GAUGE-INVARIANT ISING MODEL IN A TRANSVERSE FIELD

The hamiltonian of the gauge-invariant Ising model 1n three space dimensions and
with a transverse field y is given by [17-19]

H=— 2 03(’)“3(])03(k)°3(1) -Y 2 o,(1). (2.24)
(P} {Ly

The spins are now associated to the links between any two adjacent sites. The first
sum runs over all primitive squares (plaquettes) of the lattice, the second over all
hinks. We note that in contrast to the global symmetry of the normal Ising model, the
hamiltonian (2.24) remains invariant even if only the spins on all links connected to
any one given site are flipped (local symmetry). As a consequence, one cannot define
local order parameters such as the magnetization (2.19). from a state of completely
ahigned spins we can by gauge transformation go to one with flipped spins around
one or more sites. For physical states, (o;) must therefore vamish everywhere [20].
The phase structure of systems such as (2.24) thus has to be specified differently.

In the normal Ising model, correlations between any two spins vanish exponen-
tially with the distance of separation, if the system 1s in the disordered phase.
{05(0)oy(k))~exp(—k/&(T)), where §(T') 1s the correlation length. In the ordered
phase, the system is magnetized, so that {0;(0)o5(k)) ~ {0,(0))*. Dufferences in the
behaviour of correlations as a criterion for phase structure can be generahzed to
gauge-invariant models. The function {o;(0)o;(k)), Just as (o;), 1s not gauge
invariant and must therefore vanish identically. However, the plaquette average
{04(1)05()05(k)o5(!)), obtained by averaging over all primitive lattice squares, is
gauge invariant, and so is the average over a product of ¢;’s along a closed path C,
of length P and enclosing an area A. The behaviour of C(A)=1I,.p0;5(1) for 4 - o0
is found to differ for large and small y:

—A, y>1,
—P, vy<1,

1nC(A)~{ (2.25)

for A sufficiently large. Moreover, the hamiltonian (2.24) can be shown to be
self-dual, with y = 1 as critical point for the ground state. Functional differences in
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Fig 2 Phase diagram of the three-dimensional gauge-invariant Ising model with a transverse field of
coupling strength y [19] The notation 1s explained 1n the text

correlation measures such as C(A4) can thus be used to map out the phase structure
of gauge-invariant systems.

To obtain the full phase diagram [19], 1t 1s first noted that the area law region of
eq. (2.25) decreases with increasing temperature. Further, on the dual lattice (con-
structed 1n a similar way as in subsect. 2.1 [17]), one finds an analogous behaviour in
vy~ '. We are thus led to three phases, as shown in fig. 2. In the region marked A, we
have area-law behaviour on the lattice, perimeter-law behaviour on the dual lattice;
in A ,, the situation is just the opposite. In the region P finally, both lattice and dual
lattice show a perimeter law decrease.

To understand the physical nature of these phases, we recall that an area-law
behaviour imphes for a pair of external sources immersed in the system a binding
potential which increases linearly with the distance of separation (confinement). The
perimeter behaviour, on the other hand, 1s connected to a Coulomb-type potential
(non-confinement). Associating the link term of eq. (2.24) with an electric, the
plaquette term with a magnetic force field, we have in phase A confinement of
electric charges, in phase A, confinement of magnetic monopoles, and 1n phase P
complete deconfinement.

Let us now study this system in the euclidean formulation; we shall here
encounter already many of the main features of the SU(2) Yang-Mills system.

As 1n subsect. 2.1, we use Trotter’s formula to rewrite the partition function

Zy(B,v)=Trye #¥, (2.26)

where H 1s given by eq. (2.24) and the trace 1s over all physical states, 1e.,
gauge-invariant states obeymng Gauss’ law. Analogous to eq. (2.11), (2.12) we obtain

IN3M/2

ZN’M(aﬂ,y)=[2'5/3sinh(2aﬁy)] ZE (ag,v), (2.27)
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with

ZIS,M(aﬁ’Y): 2 exp{aB 2 030303°3+g(aﬂ’7) 2 0303"303} (2-28)
{o;==1} {Ps} (P}

as partition function of the four-dimensional anisotropic gauge-invariant Ising
model, with N sites in each space direction and M sites on the “temperature” axis,
B = Mag,. The basic summation is over all links of the lattice; the sum {P,} runs over
all plaquettes with only spacelike links, the sum {F;} over those with two space-like
and two temperature-like links. The coupling constant is as in subsect. 2.1 given by

g(ag,v) =3Incoth(azy), (2.29)

and as before the connection between euclidean and hamiltonian forms becomes
exact for M - oo,

ZN(B:Y):A}T; Zy ulag,v) (2.30)

at fixed = May, 1.¢., in the temperature continuum limat.
The energy density,

_ 1 {dnZy(B,7)
e(B.v)= N3( o8 : (2.31)
1s in the euclidean formulation on a finite lattice approximated by
1 aan}S M(aﬁ7'Y)
€ L Y)= — - ; 2.32

this also becomes exact for M — oc at fixed 8. Using eq. (2.27), (2.28), we obtain

eE(B,v):3[<PS>+;Tg<PT>— 1], (2.33)
B
with
(Pgy=— 1 [ Zp,) (1~ 0;0300;) ]
Zy m(ag,v) (o,==1y 3N3M

Xexp{—-aﬂ 2 (1= 0;0;050,) —g(aﬂ,y) E (1 ‘03030303)} (2.34)
{P,} (B}

as the average value of a space-like plaquette; similarly, ( P1) is the average value of
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a space-temperature plaquette. From eq. (2.29), we have

'
day  smh2agy’ (2.35)

In eq. (2.33), (2.34), we have shifted from o0,0,0,0; to the “normalized” form
(1 — 0;0,0,0;) for all plaquettes. In the temperature part, this shift 1s contained in the
Trotter formula, as we saw in subsect. 2.1; for space-like plaquettes, 1t is achieved by
separating out the energy of a completely ordered configuration. For the specific
heat per unit volume

cy(B,7)= —Bz(g—g), (2.36)
we obtain similarly
38%| o d
CV,E(.B"Y):_%{a—%(<Ps>+<PT>a_(i)}a (237)

as the euclidean lattice approximation.
Evaluating eq. (2.33) by Monte Carlo simulation on a 4* lattice, we obtain at
y = 1.5 the behaviour shown 1 fig. 3. Because of the small lattice, these results will

€e(B,7)-e3=062,7)
25f

20

05

00 1 1 1 1

Fig 3 Energy density versus temperature for the gauge-invanant Ising model with a transverse field,
calculated on a 4% latticeat y =15
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Fig 4 Speafic heat per umt volume versus temperature obtained by aifferentiation from fig 3

presumably still contain finite size deviations; we have therefore in fig. 3 simply
subtracted eg(8 = 0.62, v = 1.5) instead of the true vacuum contribution &g (7 =0,
vy =1.5). From fig. 2 we expect that increasing the temperature at this value of y will
bring us from the (electric) confinement region through the deconfinement transition
to a “free gas” phase. From the behaviour of the specific heat in fig. 4, obtained by
differentiation from fig. 3, this is indeed seen to be the case: the deconfinement
transttion is signalled, as in magnetic systems, by a singularity in the specific heat at
temperature 7. Sufficiently far below T, the energy density will approach the
temperature-independent ground-state value eg(7 = 0, v) with the spins frozen n a
confined phase. At T, & increases rather abruptly, and soon beyond 7 1t behaves
like a free spin system, e ~ 7.

To check our conclusion about deconfinement, we consider the expectation value
of the thermal Wilson loop L, the product of 0;’s along the temperature direction at
a fixed spatial link; because of the periodic boundary conditions imposed, this gives
us a closed loop. Since | (L )| measures the free energy of an 1solated charge,

[(LY|~e #F, (2.38)

1t provides an order parameter for the system [5,6]: below T, 1t should vamsh, as a
consequence of confinement, above T it should attain a finite value corresponding
to the analogue of a Debye-screened charge. In fig. 5 we see this to be the case.

In summary we note that also the gauge-invariant quantum Ising model can be
expressed as a classical problem 1n one more dimension, with exact equivalence 1n
the temperature continuum limit. The phase structure, because of gauge invariance,
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Fig 5 Thermal Wilson loop versus mverse temperature calculated on a 4* (solid line) and a 6* (dashed
line) lattice

can no longer be specified by a local order parameter. Using instead a phase
characterization by lattice loops, we have at low temperature a confined state,
separated by a deconfinement transition, with singular specific heat, from a high
temperature free gas phase. In sect. 5, we shall find a similar behaviour for the SU(2)
Yang-Mills system; there the euclidean formulation of thermodynamics is the only
general form we have. For a continuum field theory we will, however, encounter
questions of spatial in addition to temporal lattice structure.

3. The free Bose field on a finite lattice

In this section, we want to study the effect of the finite lattice size on the
euchidean formulation of a system with a well-known continuum limit: the free Bose
field. As this problem, for both Bose and Ferm: fields, 1s treated in detail elsewhere
[21], we can be quite brief here.

The hamiltonian of a non-interacting scalar Bose field ¢(x) for particles of mass
m 1S given by

H:%fd3x{772(x)+(th(x))2+m2q>2(x)}. (3.1)
The corresponding euclidean action 1s [13]
S(p)=1 [(dr [’ (a—q’)2+(w)2+m2¢2 (3:2)
2 0 31’ ’ :

where 7 1s the imaginary time.
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On a lattice with N? X Np sites and lattice spacings a, and ag in space and
temperature directions, respectively, the action becomes

S(¢)=3‘?’2"—”§{ § (<P(x,,+e2)_¢(xa) )2

p=1

ag

N ( qo(xa+e0ai—q>(xa) ) +m2q>2(xa)}, (3.3)

where x, = (ayag, aa,) denotes a lattice site and e,, p =0, 1,2, 3, are the four lattice
unit vectors. We impose periodic boundary conditions in all directions. The euclidean
partition function Z 1s given in terms of the action (3.3)

Z(N,, Ny, 2, a5) =N [ T dg(x,)exp[ (o). (3.4)

with
NINg/2

N'=[al/2nay) (3.5)

As 1n the previous section, it differs from the hamiltonian partition function
Z = Trexp(— BH) by a ground-state correction factor.
The euclidean partition function can be evaluated to give [21]

3
Ze(N,, Ny, a,, £) =£VN]] {(,,1a<,)2 +4 3 sin*(3q,a,) + 4525in2(%q0a/;)} ,
q p=1
(3.6)
with £Ea,,/a5, and with
(Ngag/27)qy, (Nya,/27)q,, p=1.2,3 (3.7)

running over positive and negative integer values, bounded by iN; and 1IN,
respectively. The free energy density f 1s as in sect. 2 obtained by subtracting from

fe=~InZy/(N}Nyalay) (3.8)
the 7= 0 term,
fo= lim fg. (3.9)
Nyg— o0

From eq. (3.6) we similarly obtain the energy density on the lattice
—1{dlnZg
4 a8

Eq. (3.10) gives us &(N,, Ng, a,, £), normahized to zero for Ny — oo with the other
parameters fixed.

£E=

)V—soz(£2/N03Nﬁa:)(81nZE/ai)au—eo. (3 10)
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In the continuum, the energy density of a massless ideal Bose gas 1s given by the
well-known Stefan-Boltzmann form

esp =72/ (3084). (3.11)

Comparing this with eq. (3.10), we can study the effect of the finite lattice
approximation. In fig. 6, we show &/egy for different N,, Ny and § = 1. It is seen that
the effect of finite lattice structure is by no means small. By letting N, —» oo at
sufficiently large Ng, we can make ¢/egp as close to unity as desired. This 1s not true
for Ny — oo at fixed N,, however: increasing N; beyond a certain optimal value
makes the lattice approximation at fixed N, worse. The reason for this is that an
increase of Ny at fixed a,, £ and N, 1s a decrease in temperature; but on a finite
spatial lattice, we lose the low momentum modes which give the dominant contribu-
tion at low temperature. The best approximation 1s thus always attained for N, as
large as feasible with the condition N, > Nj.

In sect. 5 we shall see that the Monte Carlo evaluation of the SU(2) Yang-Mills
system leads at very hugh temperatures to a behaviour very similar to what we have
here, so that the values of ¢/eqy displayed in fig. 6 seem to constitute a faurly
universal finite lattice size correction factor.

4. Euclidean lattice thermodynamics for Yang-Mills fields

In SU(N) Yang-Mills theory, the Lagrange density is given by

_1 a v
L= TF;wFau , (4.1)
a — a a __ a 4b 4¢
FW = E)MA,, - a,A“ gf,,cA“AV. (4.2)
€/€gp =
2+
Ng=10 Ng=15 Ng= 20
Ng=30
T e
1 | ]
S 10 15

Np

Fig 6 The ratio e/egp for the 1deal Bose gas versus Np for § = 1 and various N,
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The structure constants f,,. specify the commutation relations for the generators A,
of the SU(N) gauge group

(Ao Al =155 (4.3)

the colour indices (a, b, ¢) on the generators A, and the gauge fields A;(x) run from
1 to N2— 1. The density (4.1), nserted 1n eq. (2.3), (2.4), gives us the partition
function.

As in the previous section, the x —7 continuum on which the fields 4;(x) are
defined, 1s replaced by a lattice with N, (Ng) sites separated by spacings a, (ag) 1n
the spatial (temperature) direction. The lattice 1s chosen to be closed on 1tself in all
directions: in 7 to assure the required periodicity, in x to avoid surface effects and
for economy of calculation. To make certain that physical quantities 1n the con-
ttnuum lhmit will not depend on the lattice structure, we must introduce two
coupling strengths, g, and gz, which replace the g in eq (4.2). An independent
variation in @, and ag can then be compensated by suitably adjusting g, and g, such
as to keep physical quantities unchanged [22]. Finally we replace [11] the integration
over the gauge fields in eq. (2.3) by one over the gauge group clements U,
associated to hinks between adjacent sites : and ;. With Wilson’s form of the action,
the partition function then becomes

zy(8)= [ 11 dy,exp[-S(U)], (4.4)
links
S(U)=2NK, X (1 - NReTrUj /kUk,U,,)
(R}
1
+2NK, 3 (1 — yReTry, ijk,U,,). (45)
{Pa)

The sum {P,} runs over all purely space-like plaquettes (yk/), {P,} over those with
two space-like and two temperature-like links. To recover the correct classical
continuum action, we write

U,j:exp{—z(x,—x])”A#( x,;-xj)}’ (4.6)

with 4,(x) = A, 45(x), and define the couplings

a 1
(2] ned
L] a g,B

Sl
Q

) . (4.7)
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If in the limat of (x,—x,) -0
8. =8i=8" (4.8)

then we can rescale 4, — g4, and get back to egs. (2.4) and (4.1), (4.2). Consider now
the functions

Fa,,¢)=g,%(a,.£)/g *(a,), (4.9)
Fy(a,,¢)=gz(a,.£)/g *a,), (4.10)

with § =a,/ag. Since both are unity for §=1 as well as for g% -0, we can expand
about g2 =0 to get

g, (a,. £) =g *(a,) +c,(£)+0(g?). (4.11)
gs2(a,, £) =g *(a,) +cy(£) +0O(g?) (4.12)

as the correct quantum coupling parameters in the continuum limit. Here ¢, (£) and
cp(§) are functions of £ only, vanishing at = 1.

As 1s known, the form (4.5) of the lattice action 1s not unique; at least in the 7=0
case, other forms [23] lead to the same continuum limit. The role of the choice of
action for 7'# 0 1s at present not known.

Expressing the derivatives with respect to the continuum variables 8 and V in
terms of £ and a,, with N, and Nj fixed, we obtain

ep = (£2/N3Nya}) (31 Zg/38),.,, (4.13)
P =(£2/3NNa?)[(3In Z/8¢), +a,¢ (3l Zg/da,),],  (4.14)

where we again use the subscript E to remind ourselves that the vacuum correction
needed in the euclidean form has not yet been performed. With the action (4.5), we
have for SU(N) gauge fields

epal=—6NE2[ (3K, /0¢)P, + (3K, /3¢) Py, (4.15)
Pyat=—2NE[(3K,/0¢)P,+ (3K4/0%) P,
+a,t7 (3K, /da,) P, + (3K,z/0a,)P5) |, (4.16)

where P, and FB denote the average of space-like and space-temperature plaquettes,
respectively:

E,zzg‘fﬂd%e_sw){ D [1 — —]lvReTrUUUU]/ > }

(P} {Fs}

~1 _ 1
= (3NN, Z¢) fHdU,Je S(U){g}[l—WReTrUUUU], (4.17)

and correspondingly for FB'
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Using relations (4.11) and (4.12) with the O(g?) corrections neglected, we obtain
at £=1 from egs. (4.15) and (4.16), with a, = a,

sEa4:6N{g_2(Iz—f_’B)—(cl’,lz%-c/’glyﬂ)}, (4.18)

Peat =28l (R B) (74 B) - ) (BB} (a0

To determine e and P at £ = 1 as functions of the temperature 7= (Nza)~ !, we must
therefore know g(a) and the derivatives ¢, =(dc,/d§),—, and ¢z =(dcg/d§),_ . In
the continuum limit, g(a) is given by the renormalization group relation

(4.20)

2472 51 11Ng?
aALzexp{— T _ - },

—in
11Ng? 1217 48x2

obtained by requiring the invariance of physical observables, measured with A; as
scale, under changes of the lattice spacing a. The dervatives ¢/ and ¢p can similarly
be obtained by enforcing invariance under changes of £; one obtains, again in the
continuum limit, for SU(N) the values [24]

2
= 4N{ N
32

];21 0.58684 + 0.00050} ,

2_
cl’;=4N{— N 10.586844—0.00531 . (4.21)
32N

2

From eqgs. (4.18) and (4.19) we obtain the quantity
(e—3P)pa*=6Na(dg 2/3a)(P,+ P,), (4.22)

which vanishes for an ideal gas and provides us with a measure of the interaction
strength. In fact, if a perturbative treatment 1s valid at high temperature, then we
have [for SU(2)] to leading order [25]

(e—3P)/T*=0.611a%(T) — 3.378a2/%(T). (4.23)

Here a(T) = g*(T)/4w denotes the effective strong interaction coupling constant at
temperature 7,

6

)= iV nar/A)

(4.24)

with A as continuum cut-off parameter.
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As mentioned, the euclidean form (4.4) still contains the vacuum contribution of
T = 0; we saw this explicitly in the cases studied 1n sects. 2 and 3. Hence also now all
expressions, & P, etc., must be adjusted by removing the T7=0 value. On the
asymmetric lattice of the finite temperature problem, this can be approximated by
subtracting from any given quantity the corresponding form calculated on a suffi-
ciently large symmetric lattice. For the physical energy density ¢ we thus get

ea*=6N{g (P, — By) +c;(P—P,) +cj( P— )}, (4.25)

since P, = I—’;;I P on a symmetric lattice. The physical form P of the pressure 1s
obtained correspondingly, and we have

—2

(s—3P)a4=6Na(ag )(E,Jrfﬁ—zﬁ) (4.26)

da

for the interaction measure (4.22).
Finally we want to consider the free energy density of our system,

f= /;—Illn Z. (4.27)

The Monte Carlo evaluation, as we shall see, permits only the calculation of lattice
averages, with the weight exp(— §); hence eq. (4.27) is not in a suitable form for this
method. We can, however, calculate

— (3In Z/3g72) =, = 6NN Ny( P, + Py) =5°S, (4.28)
which 1s just the average action. As before, we normalize at 7= 0 by subtracting the
corresponding value on a large symmetric lattice. Integrating over g~2, we then
obtain

-2 — — —
fa*=6N [* dg [P+ F—2P] +c (4.29)
g0
for the free energy density at the temperature
—1
T=(Nsa(g)) . (4.30)

with a(g) given by relation (4.20); we therefore choose g, small enough to assure the
validity of this relation. The integration constant ¢ is then given by

c=f(T)az, (4.31)

with ay =a(g,), Ty =(Nzay) .
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5. The SU(2) Yang-Mills system at finite temperature

In the last section we have obtained expressions for thermodynamic quantities
formulated on a euclidean N X Ny lattice, with spacings a,, a; and associated
coupling parameters g,, g5. We would like to evaluate these expressions in the
thermodynamic limit (V' = (N,a,)’ - oo) at temperature T = (NBaB)_', in a region
of lattice spacings sufficiently small to render our results independent of the lattice
structure (continuum limit: a,, ag— 0). While 1t is possible to carry out analytic
calculations in perturbation expansions with g2 — co [3] or g° — 0 [26], the only way
to cover the entire temperature range is so far given by Monte Carlo simulation.

In confinement studies, e.g. for the string tension o, the Monte Carlo evaluation
has led to two distinct regions: a strong coupling regime, in which the numerical
results follow the lowest order of the g?— oo expansion, and a weak coupling
regime, g2 — 0, 1n which the renormalization relation (4.20) is satisfied. Only from
this weak coupling region 1t is possible to extract the continuum values of physical
quantities. We note here that also finite temperature thermodynamucs can for all T
be considered as a weak coupling problem: by choosing a sufficiently large N, at
fixed T= (Nﬁaﬂ)_‘, ag and hence the associated coupling can be made as small as
desired. In fact, only in the region of validity of eq. (4.20) does it appear possible to
connect a lattice formulation with given coupling g unambiguously to a specific
physical temperature.

The actual Monte Carlo evaluation 1s now carried out as follows. The computer
stmulates an N X N, lattice; for convenience we choose again { =1 (a, = az=a).
With ¢ and c; as given by eq. (4.21) all expressions are functions of g, and hence 1n
the region of vahdity of eq. (4.20) of the physical temperature 7= (Nza(g)) ™~ ! Fora
given g, starting from some specified configuration of group elements U on the
lattice, each link is assigned a new U’, chosen randomly with weight exp[ —S(U)].
The starting configuration 1s either taken as completely ordered (all U=1, “cold
start”) or as completely disordered (all U random, “hot start”). One passage of this
procedure through the entire lattice 1s called an iteration, and after a thousand or
more iterations results tend to become quite stable even on fairly small lattices. To
obtain some intuitive feeling for this, note that a 103 X 3 lattice has 12000 link
degrees of freedom, thus providing us with a rather large statistical system

The calculations presented here are generally performed on a 10°X2,3,4,5
latuce; for Ny = 3, we have typically 5000 1terations per point, using the 1cosahedral
subgroup of SU(2), which we found to agree with corresponding calculations using
the full group. The errors shown are generally twice the statistical errors.

51 HIGH-TEMPERATURE BEHAVIOUR

At sufficiently high temperatures, we expect Yang-Mills systems to behave like a
photon gas with the appropriate number of degrees of freedom. For a massless
SU(2) vector field, with two spin and three gluonic colour degrees of freedom, the
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resulting Stefan-Boltzmann form is

2 772

853:371’—5?‘: ST (5.1)

Together with eq. (4.20), this predicts on the lattice

2 4 2 2
s_mf T .27 51, lig
fssd =S (AL) exp( 4{ 11g* i 1211“24772 ' 52

for the dimensionless quantity ea* at fixed T as function of g. In fig. 7, we compare
eq. (5.2) with the results obtained from eq. (4.25) by Monte Carlo evaluation, at
T=500A, N, =10, and N;=2,3,4,5.

In comparing eq. (4.25) and (5.2), we note that the functional behaviour in g2 tests
the validity of the renormalization relation, the absolute normalization that of the
Stefan-Boltzmann factor t#? - 1e., it provides direct evidence for the colour degrees

e€a®

10° }

\.

107k

1072

1073t 1 "
30 32 34

4 /gt

Fig 7 Energy density of the SU(2) Yang-Mills system versus 4,/g2, at fixed temperature 7= S00A |,
after about 600 1terations (full points) The solid Iine gives the Stefan-Boltzmann lumit, the crosses are the
finite size corrected results
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E/ESB

2

Fig 8 The uncorrected ratio e/egg at 7= 500A 1 versus N, for the SU(2) Yang-Mulls system (full points)
and for the 1deal Bose gas (circles)

of freedom operative 1n the system. We see in fig. 7 that ea* on the whole follows the
asymptotic form (5.2), but there appear to be stronger deviations at smaller N,. In
fig. 8 we compare these with the deviations observed for an 1deal Bose gas on a
lattice of the same size (see fig. 6). Both coincide, supporting strongly the supposi-
tion that the deviations found for the SU(2) system are also predominantly finite
lattice effects. We have therefore multiplied the results of fig. 7 by the correction
factor C(N,, N3) =egp/¢ from the 1deal Bose gas [21]. These corrected results are
also shown in fig. 7; they are seen to be N, independent, and within errors they agree
with the asymptotic Stefan-Boltzmann form. Unless mentioned, we shall therefore
use from now on only corrected values.

At T=500A,, the energy density effectively becomes the difference of plaquette
averages,

ea*~12g72(P,— By); (5.3)

the other two terms contribute less than fifteen percent*. Such a behaviour 1s
asymptotically expected, since all plaquette averages vanish as g? m the weak
coupling expansion on the lattice [26], and only the first term has a compensating
g*Z. Thas first term, for Ny = 3, in fact 1s found to agree with the Stefan-Boltzmann
form (5.1) down to T~ 90A | .

In fig. 9, we show the high-temperature behaviour of the interaction measure
(4.26), calculated on 10° X 3 and 10° X 2 lattices, using relation (4.20) and for P the
results of ref. [27]. We see that for T=200A, our results are compatible with an
asymptotically free gluon gas. Also shown 1n fig. 9 1s the perturbation form (4.23),

*In earlier work [7], we estimated a still smaller contribution from these two terms, because 1t was
there assumed that g, = g
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(e-3P)/ T4

o8l
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04f
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T/AL

Fig, 9 The difference (¢ —3P)/T* versus temperature for N,= 10, Ny =2 (crosses) and Ny =3 (full
points) The curves show the predictions of the first-order perturbation theory [a? term 1 eq (4 23)]. the
numbers on the curves are the corresponding continuum scale parameter values A

keeping only the a2(7') term with
a(T)=37/(111n(4T/A)). (5.4)

The deviations from ideal gas behaviour thus appear to be compatible in size with
such a correction, if A = (20— 100)A, . Note, however, that the next term (a’/?) mn
the expansion (4.23) would with this value of A give a larger contribution than the
a? term, throwing considerable doubt on the validity of a perturbative treatment
with a finite number of terms in the temperature region treated here.

Finally we consider the negative of the free energy density (4.29), which for an
asymptotically free gas should approach 4e mn the same way as the pressure.
Integrating from 4/g* = 1.7 up to 2.8 on a 10’ X 2 lattice, and from 4 /g2 = 1.8 up
to 2.8 on a 10° X 3 lattice, with P again from ref. [27] we obtain the (corrected)
values

1.85+0.03, Ny=12, (T=300A,),
—3f/T*= (5.5)
1.640.05, Ng=3, (T=200A,),
to be compared with
. 1.93+0.01, Ny =12,
YT =1 772003, N=3, (5.6)
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at the corresponding temperatures; recall that eqy /7% = 72 = 1.97. The values (5.6)
are for given N, obtained at one value of g%, and determined mainly by the
difference of space-like and temperature-like plaquette averages In contrast, the
values (5.5) are obtained by integrating a rapidly varying function (~ (e —3P)/T*)
over a range of g? (or equivalently, of temperature), including the critical region;
moreover, they depend on the sum of space-like and temperature-like plaquette
averages, with the vacuum contribution subtracted. It seems remarkable that the
results of such different evaluation procedures agree so well.

Combining the results for ¢, ¢ — 3P and f, we then conclude that at high
temperatures, 7= (100 —200)A, the SU(2) Yang-Mills system approaches the
asymptotic 1deal gas form. As final illustration for this, we show in fig. 10 the high
temperature behaviour of €/egy, as calculated on 10° X 2 and 10° X 3 lattices, with
finite size corrections.

Before going on to lower temperatures, let us comment on the physical scale for
the region just considered. Bearing 1n mind the reservations necessary when empir:-
cal data is combined with an SU(2) Yang-Mills description, we can use the string
tension value [4,28] A; =5 MeV to conclude that our high temperature region 100
to S00A corresponds to temperatures 7~ 500 — 2500 MeV; we are thus more than
a factor 2 above the canonical “critical hadron temperature” [1] of 150 — 200 MeV.

e/eqp
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Fig 10 High-temperature behaviour of ¢/egy versus temperature, as calculated on 10° X 2 (crosses) and
10* X 3 (full ponts) lattices
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Fig 11 The ratio ¢/egg for a 103X 3 lattice versus temperature The full pomts are icosahedral, the
crosses full SU(2) group Monte Carlo results; the hine 1s a spline fit to the data

52 THE DECONFINEMENT TRANSITION

In fig. 11, we now display the behaviour of ¢/egy over the entire temperature
range accessible to us within reasonable computer time. The most striking feature is
the sharp drop near T = 40A [, where the energy density falls an order of magnitude
in a temperature interval of about 5A; (~ 25 MeV), thus displaying a behaviour very
similar to that of the gauge-invanant Ising model. The behaviour of the specific heat
per unit volume,

¢y =0e/dT, (5.7)

obtained by differentiation of a fit to the data of fig. 11, is shown in fig. 12. It
exhibits a strong singularity like peak at T, = 43A,, which we take as signal of the
deconfinement transition.

We recall that the evaluation of the SU(2) Yang-Mills system on a given lattice is
performed at fixed g2; the connection to the temperature 1s then provided by the
renormalization group relation (4.20). To assure that the deconfinement signal
occurs indeed at fixed 7, we must therefore observe a shift in the peak of ¢y as
function of g2 In fig. 13, we show [3(e/esp)/0(4/g>)] versus 4/g? as calculated on
10% X 2 and 10% X 3 lattices. For N; =2, the peak occurs at 4/g*=1.9, while for
Ny = 3, 1t 1s shifted to 4/ g2 =2.19. Moreover, the peak becomes sharper and higher
with increasing Ny. For N = 4, the deconfinement signal occurs at 4/ g%=~2.3. Using
the renormalization relation (4.20), both the N;=3 and the N;=4 results give
T, =43A,; the N;=2 position is in accordance with ths, if instead of eq. (4.20) we
use the non-asymptotic string-tension results [4] to connect g and a.



L
8k
6F
[. -
2F
T
0 1 1 ' L 1 J—
30 '50 100 150 200 300
T/A,

Fig 12 The specific heat per urut volume divided by T3 versus temperature, obtained from the fit in fig
11 toe/esp
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Fig 13 The denvauve d(e/esp)/d(4/g?) versus 4/g2 for N, = 10, Ny = 2 (dashed line) and Np = 3 (solid
line), obtained from spline fits in 4,/g? to the ratios e/egp
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Fig 14 Thermal Wilson loop (L)? versus temperature for Ng=3, N,=7 (full points) and N,=9
(circles)

To further support the claim that the peak we observe in the specific heat 15 a
signal of deconfinement, we have also here calculated the square of the average*
thermal Wilson loop (L)*. As already mentioned in sect. 2, In|(L)| measures the
free energy F of an isolated colour charge and can be used as an order parameter for
gauge-mvariant systems. In the confinement region, F should be infinite, forcing
|{L)| to vanish. In fig. 14, we find 1n accordance with the results of refs. [5,6] that
there is indeed an abrupt increase of { L)? at about 42A;. We note, moreover, that
with increasing spatial lattice size (N, =7 — N, =9), the values of (L)* below T,
move closer to zero, as expected 1f (L )? =0 for N, - .

Before looking in more detail at the “hadronic” region below T, we note that the
critical energy density, e, =&(T,), is obtained here as e.~ T} (see fig. 11). With
A =5 MeV, we have thus e, ~270 MeV /fnr’. To get some feeling for this value,
recall that the energy density in nuclear matter 1s about 160 MeV /fm?, while inside a
nucleon it is 360 MeV /fnr’.

In fig. 15 we now consider the interaction measure (¢ — 3P)/T* over the entire
temperature range. The mnteraction vamshes at high temperatures, leaving us, as we
saw, with an asymptotically free gluon gas. We note that at low temperatures it also
vanishes, suggesting that we there have an ideal gas of “hadron-like” objects, which
in a pure Yang-Mills theory must be gluonium states.

* Because of the exact Z, symmetry of the problem, (L)* 1s a convemient quantity to consider It 1s
calculated by squaring the average of L over the lattice after each 1teration



J Engels et al / Gauge field thermodynamics 571

(e-3P)/ T*

0 6F

0 t

oz# $ t

1 i
20 30 50 100 750 200 300
T/AL

Fig 15 The difference (e — 3P)/T* versus temperature for a 10° X 3 lattice

53 THE GLUONIUM REGION

Below the deconfinement temperature, strongly interacting matter should consist
of hadrons in interaction. For a pure Yang-Mills system, in the absence of quarks,
this implies a gas whose constituents are bound gluon states, 1.e., gluoma. We
therefore want to compare the results of our lattice evaluation in the region below T
with the continuum behaviour expected for a system of interacting gluonium states.
To have a definite form for the behaviour of such a system, we assume 1t to follow
the pattern of hadronic matter, which 1s generally taken as an 1deal gas of the
ground-state hadrons and all their resonance excitations.

The partition function for an ideal gas of resonances 1s given by

1

ZIn Z(T,V):(zw)‘3f0 dmr(m) [d’pe Vet /T, (5.8)

where 7(m) denotes the excitation spectrum. From dual [29] or bag [30] models as
well as from statistical bootstrap arguments [31], we expect 7(m) to have the form

(m)=dé(m—mgy)+cO(m—2my)m “eb™, (5.9)

with constant a, b, ¢ and 4. While a depends on the details of the model [32}, b is
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fixed by the bag pressure or string tension (Regge slope), and ¢ measures the
strength of resonance excitation relative to the d-fold degenerate ground state.

It is well known that the partition function (5.8) with the spectrum (5.9) leads to
critical behaviour [33], with T,=1/b as critical temperature. The order of the
associated transition 1s determined by a; 1n particular, for 7 <a < £, we have a finite
&(T,), while ¢y diverges as T — T.. Assuming that the critical behaviour of such a
system can be identified with what we find in lattice QCD, we shall therefore fix
b~!'=43A; and mantain a in the mentioned range. We furthermore take d =6, in
accord with bag model [35] and strong coupling arguments [34]. The remaining
constant ¢ 1s fixed by normalizing resonance gas results to our Monte Carlo value of
&(T,). This leaves us as only open parameter of the resonance gas description the
value m,, of the lowest hadronic state — here the mass of the glueball, my=mg;.

From egs. (5.8) and (5.9) we have

o(T) =eg(T) + ;—;fz:cdmm3—“emb[1<l(%) + %Kz(%” (5.10)

where

eG(T):d’Zi{{Kl(m—TG)+§K2(m )J (5.11)

denotes the energy density of an ideal glueball gas (without resonances). The
corresponding specific heat per unit volume is given by

ev(T)= %{E(T) + #[2: ﬂdm mir(m)

S R o R P O

and for the interaction measure (4.26) we obtain

(e—3P)/T*= {dmgK,(m—TG) +ef” dmm3“e’"”K1(%)}. (5.13)

1
27T2T3 2mg
With all parameters chosen as discussed above, we can now compare the gluonium
gas forms (5.10), (5.12) and (5.13), which incorporate our expectations for hadronic
matter, with the lattice results for the SU(2) Yang-Mulls system.

In figs. 16 and 17, we show &/T*, normalized to its value at T, as a function of
x=T,/T—1, comparing eq. (5.10) with the results from the SU(2) Yang-Mills
system on a 10° X 3 lattice. The dependence on the precise value of a within the



J Engels et al / Gauge field thermodynamics 573

(e/T*)Y/ (. 1 TE)

10

08

06

04

02

Fig 16 The energy density divided by 7* and normalized at the critical temperature versus the variable
x=T_./T—1 The curves are the resonance gas predictions fora =4 and mg =4, 4 5 and 5 times T
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Fig 17 The difference (e —3P)/T* versus x Notations and predictions correspond to that of fig 16
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e,/ T?

Fig 18 The specific heat per unit volume divided by T3 versus x The dashed line corresponds to the
low temperature part of fig 12, the solid hines to the resonance gas predictions as 1n figs 16 and 17

range 7 <a < 2 1s rather insignificant. In fig. 16 the results for different values of the
glueball mass m are compared, with a = 4. We see that mg = (4 — 5)T, gives a quite
reasonable fit.

In fig. 17, the corresponding results are shown for the interaction measure
(¢ —3P)/T* and  fig. 18 for cy/T>. Again the gluonium gas forms, with
mg=(4—5)T,, are in reasonable agreement with the results of the Yang-Mills
system. The fairly large discrepancies in ¢y /T* at small x are presumably finite size
effects; the resonance gas ¢y diverges at x =0, which the lattice form could
reproduce only 1n the continuum limit.

From the qualitative agreement and the quantitative comparisons in figs. 16-18
we thus conclude that low-temperature SU(2) Yang-Mills thermodynamics leads to a
glueball mass of mg=(200=50)A,. In terms of the string tension o, with the
relation [4] A; =(0.013 =0.002)/o, we have mg = (2.6 =0.5)yo, in fair agreement
with other glueball mass determinations from SU(2) Yang-Mills studies on the
lattice [28,36]. In terms of physical dimensions, with A ~5 MeV, we obtain
mg = 1000 =200 MeV. These results, though compatible with earlier work on a
smaller lattice [10], seem to lie systematically higher than what was found there; this
in part due to the approximation mentioned in the footnote in subsect 5.1, 1n part 1t
could also be a finite size effect.

If we picture strongly interacting matter below T, as a gas of bound gluon states,
which will have a dimension, 1t appears natural to ask whether the spatial lattice on
our Monte Carlo evaluation 1s in fact large enough to accommodate a large number
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of such extended objects. The lattice spacing at T_ 1s, on a lattice with Ny = 3,
a,~7.75%x1073A¢ ", (5.14)
which with A; =5 MeV becomes about one-third of the nucleonic charge radius:
a,~03fm. (5.15)

The spatial volume of our 10* lattice at 7, is thus about 37 fm’, or 60 times the
volume of a nucleon. With such parameter values, a resonance gas description does
not seem unreasonable. For lower temperatures, the spatial volume 1s increased by a
factor (T,/T)".

6. Conclusions and outlook

We have found that the SU(2) Yang-Mills system, evaluated in the euchdean
lattice formulation, provides a unified thermodynamic description of strongly nter-
acting matter, predicting with increasing temperature a deconfinement transition
from the “hadronic” gluonium phase to the asymptotically free gluon phase.

The gluomum phase shows the behaviour of a resonance gas, with a discrete
ground state (“glueball”) of mass mg~200A,. The deconfinement transition,
signalled by a singularity 1n the specific heat, occurs at T, ~ 43A . At high temper-
ature (T'=200A ), the energy density approaches the Stefan-Boltzmann form for
gluons with three colour degrees of freedom [for SU(2)].

Our calculations were generally performed on lattices with 10% spatial sites and
2 — 4 sites on the temperature axis. Concerning the dependence on lattice size, we
find at high temperatures the same deviations from Stefan-Boltzmann behaviour as
are observed for an 1deal Bose gas on a corresponding lattice. Further lattice size
studies, 1n particular tests of finite size scaling for the deconfinement singularity,
would certainly be of interest and seem computationally feasible, but lengthy.

The approach to asymptotically free behaviour at high temperature is, in our
results, not compatible with conventional perturbation theory up to and including
third order. Since asymptotic freedom could be “non-perturbative”, an expansion in
g* need not converge, and difficulties arising from infrared-divergent terms have in
fact been discussed [37].

A problem of special interest 1s of course the extension of our considerations to a
theory with fermions — to investigate whether the introduction of quarks leads to
any qualitative or quantitative changes. A particularly intriguing question here 1s the
occurrence of more than one transition — as argued by percolation studies [38] or 1n
connection to chiral symmetry restoration [39].

It 1s a pleasure to thank P. Hasenfratz, L. McLerran and B. Petersson for useful
discussions in various stages of this work.
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