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In the Monte Carlo simulation of QCD, the euclidean form of the partition function is 
evaluated on a finite lattice. We use this method to calculate the partition function for non- 
interacting Bose and Fermi fields. Here the expressions on the lattice can be evaluated in closed 
form and the continuum limit is well-known; this provides us with a measure for finite lattice size 
effects in such approaches. 

1. Introduction 

Dur ing  the past  year,  the Mon te  Carlo simulat ion of Yang-Mil ls  fields on a finite 

lattice has p roven  itself an ext remely  useful tool  in the s tudy of finite t empera tu re  

the rmodynamics  for  Q C D  systems. It  is so far the only approach  which allows a 

unified t r ea tment  over  the entire t empera tu re  range,  f rom the ideal gas at high 

t empera tu re  [1] th rough  the deconf inement  transit ion [1-3]  into the non-pe r tu rba -  
tive phase [4]. It  was noted  in these studies, as well as in cor responding  ones for  

the conf inement  problem,  where  the Monte  Carlo approach  to Q C D  was first 

in t roduced  [5], that  a l ready for  ra ther  small lattices the results become  roughly  

independen t  of lattice size. A t  T = 0, it was m o r e o v e r  found  that  the lattice size 
dependence  of  the plaquet te  average  is in accord with finite size scaling [6]. A t  

finite tempera tures ,  however ,  little is known of the effect that  the finite lattice has 

on the results. I t  m a y  be expected that  the extension of the Monte  Carlo methods  
to systems including fermions  will for  feasibility reasons require  general ly even 
smaller lattices [7], so any such effects will be even s t ronger  here.  

It therefore  seems to us useful to investigate the effect of  finite lattice s tructure 
by treat ing a system of non- in terac t ing  Bose and Fermi  fields in the same eucl idean 
lattice approach  as used in Q C D .  We shall see that  in these cases the part i t ion 
funct ion can be calculated in closed fo rm on a finite lattice of any size. By compar ing  
the results thus ob ta ined  with the wel l -known con t inuum forms for  ideal Bose and 

Fermi  gases, we can obta in  a measure  of finite lattice effects as well as some idea 
of what  lattice s tructure provides  the best approximat ion .  
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The partition function for a system characterized by a lagrangian density ~ ( ¢ ) ,  
given in terms of Bose or Fermi fields ¢(x, t) and their derivatives, can be written 
as a functional integral [8] 

Z(fl) = N(fl) I [d~] exp {-S(~p)} ; (1.1) 

the physical temperature T = fl-* enters as boundary in the euclidean action, 

S ( ¢ ) = - f f d r  I d3x~(~o) , (1.2) 

with periodicity (antiperiodicity) for Bose (Fermi) fields 

~B/v(x, O) = +q~B/V(X, fi). (1.3) 

The normalization factor N(/~) is needed to assure the correct vacuum structure, 
since the functional integral alone still includes the contributions of the zero point 
(T  = 0) terms. 

In sect. 2 we evaluate Z(/3) on a finite x - r  lattice for non-interacting Bose 
fields, in sect. 3 for Fermi fields. In sect. 4, we then summarize the most important 
finite lattice features and their implications for general lattice calculations of 
thermodynamic systems. 

2. The ideal Bose gas on the euclidean lattice 

Free scalar Bose fields provide the simplest possible case of a finite temperature 
field theory, which can be solved exactly even in the continuum [8]. Here  we want 
to put this theory on a euclidean lattice, in order to study the influence of a lattice 
cut-off on the thermodynamic quantities and to have a reference system for more 
complicated theories of interacting Bosons, like the pure gauge field part of QCD. 
There at present the lattice regularization seems to be the only way to get non- 
perturbative results for physical quantities. 

Our aim is to calculate the partition function 

Z(/3) = Tr e - °n  , (2.1) 

where the hamiltonian is given by 

= f d3x ~(~r(x), q~(x)) (2.2) H 

and N(~r, q~) is the hamiltonian density of a free Bose field ~ and its conjugate 
momentum ~-: 

fft'('rr, ~p) = 21-('rt '2 + (~o)  2 + m2,p2), (2.3) 

m is the mass of the boson. 
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After integrating out the rr-fields in the path-integral for Z we get the euclidean 
version [eq. (1.1)] of eq. (2.1) with the euclidean action [8] 

o (Oq~2+(~o)2+m2o2}  " S(q~)=~Io d~'f  d3x{\~-~r ] (2.4) 

On a finite lattice with N o × N  3 sites and lattice spacings a o and a~ in the 
temperature and space directions x has the values x~ = (aoat3, aa~), with integer 
ao and ,v. The partition function becomes 

with 

ZE(N~,Nt~,a~,ao)=N' I H dq~ (x~)e -s(~) , (2.5) 

N ' = [  a3 ] Iv2N~,2 
1.2--~aoJ ' (2.6) 

3 2 
S(~)=½a3at3 ~ {~----1 (tP(xa+eg)--~P(Xa)12k(~(xa+e°)-~(x'~)) + m ; t p 2 ( x ' * ) }  " 

a~ / at3 / 
(2.7) 

Here e , , /z  = 0, 1, 2, 3 are the lattice unit vectors and q,(x,,) E R are continuous site 
variables. We use periodic boundary conditions (pbc) in the space directions and 
in this section, for Bose field variables, we also require pbc in the B-direction. We 
have denoted the partition function as ZE, since it still has to be corrected for the 
T = 0 contribution to agree with Z = Tr exp ( - f i l l ) .  An additional problem arises 
for massless bosons. In this case the integral (2.5) as it stands is infinite, because 
the integrand is constant along the line of constant field configurations, ~ (x) = ¢ (x') 
for all sites, so that the integration along this line diverges. For the moment we 
therefore consider only m ¢ 0; we shall show later how the results have to be 
corrected in the case m = 0, which, of course, is of particular interest to us. 

With the transformation 

~ ( x ~ ) -  a~k-1/2~o(x~) , (2.8a) 

k-1 = 3st-1 + ~ + (rna~)2/2st , (2.8b) 

=- a~/ aa , (2.8c) 

we introduce dimensionless variables. We then obtain from eq. (2.5) 

Zz(N~, Nt~, a, ,  s t) = 2~" [ I-I dff (x~)e -s`~' , (2.9) 
./  a 

where 

iV'= [kst/2zr] N~°~#2 ; (2.10) 
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the quant i ty  

S = -  - f f 2 ( x ~ ) + K , ,  2 ~(x~+e,)~(x~)+Ko$(x~+eo)$(x~) (2.11) 
p , = l  

is the act ion of the anisotropic  four -d imens iona l  gaussian mode l  [9]. T h e  couplings 

K,,. = ¢ - 1 k ,  K o = ~:k (2.12) 

b e c o m e  equal  on the isotropic lattice with s e =  1, yielding in eq. (2.11) the m o r e  
famil iar  f o rm of a four -d imens iona l  " sp in" - sys t em,  with a gaussian distr ibution for  
the length I~(x~)l of the spin a t tached  to the site x~. For  ~: = 1 the critical case m = 0 
cor responds  to the critical coupl ing ¼ in the gaussian model .  

To  evalua te  the par t i t ion function,  eq. (2.9), fur ther ,  we go over  to the reciprocal  
lattice of m o m e n t u m  coordina tes  and in t roduce  Fou r i e r - t r ans fo rmed  field var iables  

1 

1 ~- ~q iqx 
~(x,~) 4 ~ N ~  e ~¢q, 

(2.13) 

where  the m o m e n t a  q have  the following values in the first Bril louin zone  of the 
reciprocal  lattice: 

2"/7" 
/z = 0 : q 0  = N----~lo, 

2 7 r  
/z = 1, 2, 3: q, N~a,, ]"' 

]o = 0, + 1 . . . .  + (½No - 1), ½No ; 

],, = 0, +1  . . . .  +(½N,~ - 1), ½N,,. 

(2.14) 

H e r e  we have  for  simplicity assumed N o and N~ to be  even.  With  the above  
t r ans fo rma t ion  and the comple teness  relat ion 

iqx ~,T 3 ~T e = ~, o~,ooq, o, (2.15) 
o~ 

one  gets for  the act ion 

:g --1 S=lk.~ lY¢q~oqG (a~,~,q), (2.16) 
q 

where  we have  used the fact that  the new var iables  ~pq fulfill the condit ion 

~_q = ~q , (2.17) 

since the original site var iables  q; (x,)  are real. The  dimensionless  lattice p r o p a g a t o r  
G(a~, ~, q) is given by 

3 
G-l(a~, ~,q)=(ma~) 2+4 Z 

t z= l  
sin 2 (~q.a,.)+4~ 2 sin 2 (~qoao). (2.18) 
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Due to eq. (2.17) the complex variables ~pq are not all independent and it suffices 
to sum only over half of the reciprocal lattice. The integration measure then becomes 
[10] 

I7[ d~ (x~) = 2 ~N~/2 [I d~pq. (2.19) 
q~0 

Thus we have reduced the partition function for a free Bose field theory on a 
euclidean lattice to a product of gaussian integrals, and we therefore finally obtain 

ZE(N~ N~, a~, £) = £ ~  l-I G'/Z(a~, £, q) . (2.20) 
q 

From this expression we find for the unnormalized free energy density 

/3rE = 31 3 In ZE = -- ~ In £ + 
1 

" 3---------~ ~ In G-l(a~, £, q). ( 2 . 2 1 )  
N o a  ~ a ~ 2 N ~ a  

The physical free energy density f is obtained from this expression by subtracting 
the vacuum contribution 

fv = lim f z ,  (2.22) NB ---}oo 

i.e. we normalize the ground-state energy of our hamiltonian to zero. Explicitly 
we get in the limit N~ ~ 

4 2_~3 ~] f 1/2 f v a ~  = £ In (2/£) + J-,/2 dx In (b2(]) + £2 sin= (Trx)) (2.23) 

with 

3 
b 2 ( j )  = ( lma~):+ • sin 2 ( z r j , / N ~ ) .  (2.24) 

~=1 

The integral in eq. (2.23) is known and we finally have 

f~a 4 = - £  In £ + ,-~-£3 Y. In (b + ~ / ~ ) .  (2.25) 
N~ j 

Combining eqs. (2.21) and (2.25) yields the physical free energy density 

f a  4 = (/cE-/v)a~. (2.26) 

For  the m = 0 case, we have to suppress the q = 0 term in the summation (2.21), 
since on a finite lattice with periodic boundary conditions it would lead to a 
logarithmic divergence. In the limit N=--> o% when the sum in (2.21) becomes an 
integral, this divergence disappears. On a finite lattice, dropping q = 0 is equivalent 
to the suppression of the integration over a constant field configuration in the 
partition function (2.5). 
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Using eq. (2.26) we can now calculate all other physical quantities on the lattice. 

In the continuum the energy density e and the pressure p are given by 

19 
e = - ~  (Of)v ,  (2.27a) 

0 
p = ~ ( -  Vf) o . (2.27b) 

On the lattice we rewrite the derivatives with respect to volume V and inverse 

temperature /3  in terms of the lattice parameters  a~ and ~: at fixed N~, N 0: 

19 = ~ 2  19 , 

v Noa~ 19~ ,~ (2.28) 

~VI  =~.--77T-T1 19 - o -  1 (Oa-a~] + '  19 ) 3  2 - -  . (2.28b) 
o 3Noa,~ Oa,, 3N,~a,, e a,, 0-~ a~ 

From eq. (2.26) and eq. (2.27a) one obtains then the energy density on a finite 

euclidean lattice 

4 (3  V sinZ(rrfo/No) + ~3 Y'-(bx/~2--~--~+~:2+b2)-' • 
~ ' b  2 2 • 2 • ca , ,=  N 3 N o  j +~ sm (trio~No) N ~  j 

(2.29) 

Here  ~ '  indicates that for m = 0 the j = 0 term does not contribute to the sum. 
For a massless Bose gas the well-known relation between energy density and 

pressure, 

1 p = ~e, (2.30) 

holds even on a finite lattice. 
We now want to study a little more  in detail the behaviour of the energy density 

on finite euclidean lattices, to see how well the continuum Stefan-Bol tzmann law 

1 2/3 - 4  esB = ~67r (2.31) 

is approximated.  
First of all, we note that the euclidean formulation contains two different approxi- 

mations to the continuum result. One consists in replacing the space continuum by 
a finite lattice (N~ < oo), the second in approximating the hamiltonian partition 
function on a finite three-dimensional  lattice by making, in addition, the tempera ture  

direction discrete (N o < oo). 
Let  us check first how well the hamiltonian energy density on a finite lattice, 

4 2rr w exp {-2rr/3w/N,~a,~} 
eaisca,, = ~ ~ 1 - exp {-2rr/3w/Noa,~}' (2.32) 
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E/Edisc  

245 

2.0 

1£ 

~=1 

| I - 

5 10 

Npl~ 

Fig. 1. The  ratio between the discrete euclidean (e) and discrete hamil tonian ( ea i J  version of the 
energy density of a free massless Bose gas versus inverse temperature  1/(a,,T) = Na/~, for N~ = 10 and 

various ~¢. 

with 

- 3 , 1 / 2  

/z 

is approximated by the euclidean version eq. (2.29). In fig. 1 we show the ratio 

e/edisc in the case of massless bosons for N~ = 10 and various ~: as function of 
1/(Ta~) = N~/~. The limit ~ ~ at fixed N~/~ yields the hamiltonian form at fixed 
finite temperature ,  that for Na -~ oo at fixed ~: the hamiltonian form at T = 0. 

~$B/Cdisc 

2 ~ 

- -  - - N a = 3 0  

N . - -  10 

I I m. 
5 10 

N p l ~  

Fig. 2. The ratio between the continuum (esB) and discrete hami]tonian (edisc) version of the energy 
density of a free massless Bose gas versus inverse temperature  1/(a~,T) = N~/~, for various N~,. 
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£ / ~ ' S B  (1-1 

NG= 10 No= lS Na: 20 

~ NG=30 

I I I 
5 10 15 

Np 
Fig. 3. The ratio e/esB versus N o for ~: = 1 and various N~. 

The discrete hamiltonian version is itself only an approximation to the continuum 
form esB. In fig. 2 we note that e s a / e d i s c  approaches unity for N ~ , o o  at fixed 
1/ (a~T)  = No/~;  for N o -~ oo at fixed ~:, a~ and N~, i.e., in the low tempera ture  limit, 
the approximation becomes arbitrarily bad. The reason for this is that on a finite 
spatial lattice, we lose the low momenta  (~<l/(Noa~)), and at low temperatures,  
these give the dominant  contributions to esa. 

If we compare  the ~: = 1, N~ = 10 curves in figs. 1 and 2, we see that an increase 
of N o improves the approximation of e/edisc, while it makes  that of eSB/edisc worse. 
Combining these opposing effects, we obtain for e /esa  the behaviour shown in fig. 
3. Corresponding results for other N~ are also included, while those for different 
s c are shown in fig. 4. 

(: IESB 

2 

=30 

1 I I -- 
5 10 15 

Nf~/~ 
Fig. 4. The ratio e/esB v e r s u s  No/~ for N~, = 30 and various ~. 
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From the behaviour of the energy density we conclude that the influence of 

lattice size for finite temperature calculations on small lattices is by no means small. 

Qualitatively we note: 
too large or too small a value of Nt3 at fixed s e and N~ make the lattice approxima- 

tion worse; 
increasing N~ at fixed ~¢ and large N~ improves the lattice approximation; 

large s ¢ at fixed NB and N~ make the lattice approximation worse. 

In the Monte Carlo simulation of more complicated systems, like SU(2) gauge 

models, one can, in general, not do the subtraction of the vacuum contribution by 

just taking the limit N~ ~ oo. In practice, one may then approximate physical 

quantities by taking N~ = N~ as the T = 0 contribution and keeping N~ << N~ for the 

remaining finite temperature term. In table 1 we present, therefore, the ratio e/esB 

for some small lattices with s ¢ = 1, for both these definitions of the vacuum term 

ev.  They are seen to give quite compatible results, if N~ is indeed much smaller 

than N~. 
The high temperature limit of SU(N) gauge theories is also expected to be of 

Stefan-Boltzmann form, as confirmed by a weak coupling expansion on the lattice 

[10]*. The Monte Carlo evaluation for SU(2) [1, 11] and SU(3) [12] leads to ratios 

e/eSB which at high T within errors agree with the values of table 1. 

3. The ideal Fermi gas on the euclidean lattice 

In the previous section we have discussed in detail h o w  one can calculate 

thermodynamic quantities on a finite euclidean lattice. In this section we shall 

therefore mention only the new features coming in, when one tries to deal with 
fermions on a lattice. 

TABLE I 

The ratio e/esB = (eE--ev)/esB with the vacuum energy defined as (a) ev =limN~oo eE or (b) as the 
value of eE on a symmetric lattice N~ = N~ 

7 8 9 10 

a b a b a b a b 

2 1.7543 1 .7314  1 .7468  1 .7336  1 .7429  1 .7347  1 .7407 1.7353 
3 1.8488 1 .7329  1 .8113  1 .7441  1 .7915  1 .7498  1.7803 1.7531 
4 1.7743 1 .4081  1 .6587  1 .4463  1 .5969  1 .4653  1 .5617 1.4757 
5 1.9569 1 .0627  1 .6877  1 .1691  1 .5409  1 .2193  1.4561 1.2461 
6 2 . 4 9 9 3  0 .6453  1 .9765  0 .9013  1 .6852  1 .0183  1 .5143 1.0786 

* A slight extension of the weak coupling expansion, which in ref. [10] was performed for zero 
temperature, yields at finite temperature to lowest order the free gluon gas. 



2 4 8  3". Engels et aL / Euclidean lattice thermodynamics 

In general there is no way of putting fermions on the lattice without doubling 
the number of species and preserving at the same time chiral invariance (for m = 0) 
and locality of the derivative. There are several proposals how to avoid species 
doubling on the lattice [13], but for the actual Monte Carlo simulation of fermions 
in general the original prescription of Wilson [14] has been used. He introduces 
an explicit chiral symmetry breaking term into the action, which however disappears 
in the continuum limit. In this way the lattice action for free fermions (spin ½) 
becomes 

} Sf(to, O)=Y~ O(x)to(x)-  K,, Y. O(x)D~.yO(y)+Kt30(x)D°.yto(y) , (3.1) 
x , ~ = 1  

with 

Dx~y =Sy.x+e~(1- 'y , )+Sx.y+e,( l+T,) ,  /z =0 ,  1, 2, 3 .  (3.2) 

Here x and y denote a summation over all lattice sites and an implicit summation 
of the Dirac indices is always understood. The y~,'s are the Dirac matrices and 
t0(x), 4~(x) denote dimensionless spinor variables at the lattice site x. The couplings 
K~ and Kt3 are given by 

K~ = ½~-lkf, K s = ½kf, (3.3) 

with 

k f  1 = mao~ -1 + 3~ -1 + 1. (3.4) 

Thus we get for the partition function of free spin i fermions and antifermions on 
the finite euclidean lattice of size N~ × N 3 

ZE(N~, Nt3, a,~, ~:) = 1-I [dO (x) d 0  (x)] e -s'~+'*) . (3.5) 
p x 

Here  ap denotes that we have to take antiperiodic boundary conditions for the 
fermionic field variables in 0-direction. The integral (3.5) has to be understood as 
an integral over non-commuting Grassmann variables. Furthermore,  we have 
neglected all multiplicative terms, which drop out in physical quantities after 
subtracting the vacuum terms. 

On the reciprocal lattice the action (3.1) becomes 

s,(to , & ) =  - E  - ' toqA qtoq , ( 3 . 6 )  
q 

with 

3 

Afq = 2K~ E cos (q,a~) + 2Ko cos (qoao) - 1 
t t = l  

3 

- 2 i K ~  ~ Y,  sin (q ,a~)-2iK~yo sin (qoa~) . (3.7) 
/ . t = l  
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For /z = 1, 2, 3 the momentum values q,  are given by eq. (2.14), whereas due to 
the antiperiodic boundary conditions in the 3-direction the zeroth component qo 
is given by 

2,r 
qo = N~a-----~ (jo + ½). (3.8) 

The partition function then becomes 

ZE = 1-I det Afo, (3.9) 
q 

with 

detA~q= 1 - 2 K ~ - 6 K ~ + 4 K o  sin 2 (~qoaB)+4K~ sin 2 (½q,~a~) 

2 -1 

+ 4 K ~  sin 2 (qoa~)+4K 2 ~ sin 2 (q~,a¢)] . (3.10) 
/ z = l  A 

To stress the similarity between eqs. (3.9), (3.10) and the corresponding result for 
bosons, eqs. (2.18), (2.20), we use the explicit form of the couplings K¢ and K~. 
The evaluation of the unnormalized free energy density yields then 

4N~ 2 
fife = --  a---~ In (k f /~ ) -  N - - - - ' ~  ~ In [ B 2 +  A + 4~(B + ~:) sin 2 (rr(/'o + ½)/N~)], 

J 

(3.11) 

with 

3 

A =  Y, sin2 (2~rjJN,~), (3.12a) 
t x = l  

3 

B = ma,, + 2 Y. sinR (~rjJN,~) . (3.12b) 
t x = l  

Thus it becomes clear from eq. (3.11) that we can calculate the vacuum contribution 
to the free energy in the same way as in the bosonic case. We get 

fva 4 = -4~: In ( k t /~ ) -  ~ ~ In [ 1 ( ~ / ~ - - ~  + ~/B 2 + A  + 4~:(B + ~:))]. 
d ' ¢  o- J 

(3.13) 

The physical free energy density is then again given by eq. (2.26) and, using eqs. 
(2.27a) and (2.28a), one can calculate the energy density of spin ½ fermions and 
antifermions with free creation and annihilation (chemical potent ia l /z f~  0). This 
yields 

4 ca,, = (eE-- ev)a 4, (3.14) 



250 

with 

J. Engels et aL / Euclidean lattice thermodynamics 

4 8E  2 127"~B2 (B+X~)sin2(~r(jo+½)/Na) 
4(k , ,  (3.15) eEa,, - N3Nt3 + A  + 4~:(B +s  c) sin 2 (Tr(]o+½)/N a) 

4 _ 8sc2 x. B + 2 ~  
eva~ - N 3 ~7 [ ( B 2 + A ) ( B 2 + A  +4E(B +E))]I/2+B2+A +4¢(B  +¢)  4¢kf. 

(3.16) 

In the case of massless fermions we can again compare the above result with the 
Stefan-Boltzmann form of the energy density of free massless fermion-antifermion 
pairs in the continuum: 

ef~ = 6~q'/'2B - 4  • (3.17) 

As in the bosonic case we have calculated the ratio e/ef~ for finite lattices and 
different values of ~. In fig. 5 we show the results for ¢ = 1 and various N~ as a 
function of N a. Corresponding results for other values of ~: are shown in fig. 6. We 
notice that for small values of Na the deviation from the continuum result is 
approximately twice as big as in the case of free bosons. In the limit Na/~ o oo the 
ratio e/ef~ goes to zero, whereas the corresponding quantity for bosons, e/esB, 
diverges in this limit. The reason for this is the different behaviour of the discrete 
hamiltonian versions of the energy density in both cases. As seen in fig. 2, the ratio 
ESBIEdisc for bosons goes to zero in the limit N o I ~  oo. The corresponding ratio 
for fermions diverges, as shown in fig. 7. This difference is due to the different 
finite lattice approximation of the low momentum region in the two cases. 

Icf 

No:40 
N~= 30 

N#: 20 

5 10 15 20 

N# 
Fig. 5. The ratio between the discrete euclidean (e) and cont inuum (e~) version of the energy density 

of free massless fermions and antifermions versus Nt3, for ~: = 1 and various N~. 
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c/eft 

N o  = 30 

I i i 
5 10 15 

N a / ~  

Fig. 6. The ratio e / e f i  v e r s u s  Na/~ for N~, = 30 and various ~:. 
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4. Conclusions 

We have calculated the behaviour of thermodynamic  quantities on finite euclidean 
lattices for free bosons and fermions and found that the influence of finite lattice 
size on quantities such as the energy density is by no means small. Therefore,  we 

also expect in the case of more  complicated interacting systems, like SU(N)  gauge 
theories, that one cannot obtain the correct finite tempera ture  continuum values 
by Monte  Carlo simulation on small lattices. One can, however,  use the results for 

~f~/~disc 
2 ~ No-= 10 

~ Ne=15 

Ne=20 
1 N o - :  30 

I I =, 5 10 

Fig. 7. The ratio between the continuum (eff) and discrete bamiltonian (E'disc) version of the energy 
density of a free massless Fermi gas versus inverse temperature 1/(a,,T) = Nt3/~, for various N,,. 
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the  idea l  gases  on finite la t t ices  as a r e fe rence  m e a s u r e  and  s tudy  the  finite size 

d e p e n d e n c e  of the  in te rac t ing  t h e o r y  in c o m p a r i s o n  to this  r e fe rence .  Such a 

p r o c e d u r e  was shown to be  qui te  successful  in the  case of pu re  SU(2)  and  SU(3)  

gauge  theor ies  [11, 12] at high t empe ra tu r e s ,  whe re  a co r rec t ion  using the 

coefficients of t ab le  1 was found  to r e m o v e  d i sc repanc ies  b e t w e e n  ca lcula t ions  on 

d i f ferent  size lat t ices.  Final ly ,  we no te  again  tha t  the  la t t ice  a p p r o x i m a t i o n  for  f ree  

Bose  and  F e r m i  fields at  f inite t e m p e r a t u r e  b e c o m e s  op t ima l  for  specific la t t ices  

(large N~ with Na  << N~). H e n c e  we expec t  increas ing  finite size dev ia t ions  also for  

S U ( N )  gauge  field s imula t ions  if we leave  this reg ion  of op t ima l  a p p r o x i m a t i o n .  

W e  thank  I. M o n t v a y  for  useful  discussions.  
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