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In the Monte Carlo simulation of QCD, the euclidean form of the partition function is
evaluated on a finite lattice. We use this method to calculate the partition function for non-
interacting Bose and Fermi fields. Here the expressions on the lattice can be evaluated in closed
form and the continuum limit is well-known; this provides us with a measure for finite lattice size
effects in such approaches.

1. Introduction

During the past year, the Monte Carlo simulation of Yang-Mills fields on a finite
lattice has proven itself an extremely useful tool in the study of finite temperature
thermodynamics for QCD systems. It is so far the only approach which allows a
unified treatment over the entire temperature range, from the ideal gas at high
temperature [1] through the deconfinement transition [1-3] into the non-perturba-
tive phase [4]. It was noted in these studies, as well as in corresponding ones for
the confinement problem, where the Monte Carlo approach to QCD was first
introduced [5], that already for rather small lattices the results become roughly
independent of lattice size. At T =0, it was moreover found that the lattice size
dependence of the plaquette average is in accord with finite size scaling [6]. At
finite temperatures, however, little is known of the effect that the finite lattice has
on the results. It may be expected that the extension of the Monte Carlo methods
to systems including fermions will for feasibility reasons require generally even
smaller lattices [7], so any such effects will be even stronger here.

It therefore seems to us useful to investigate the effect of finite lattice structure
by treating a system of non-interacting Bose and Fermi fields in the same euclidean
lattice approach as used in QCD. We shall see that in these cases the partition
function can be calculated in closed form on a finite lattice of any size. By comparing
the results thus obtained with the well-known continuum forms for ideal Bose and
Fermi gases, we can obtain a measure of finite lattice effects as well as some idea
of what lattice structure provides the best approximation.
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The partition function for a system characterized by a lagrangian density £(¢),
given in terms of Bose or Fermi fields ¢(x, t) and their derivatives, can be written
as a functional integral [8)

Z(8)=N®) [ [dplexp {(-S()}; (1.1)

the physical temperature T = 8" enters as boundary in the euclidean action,

<]
S(e) = —fo drf Ex L), (12)

with periodicity (antiperiodicity) for Bose (Fermi) fields
os/Elx, 0) = x@p/r(x, B) . (1.3)

The normalization factor N(8) is needed to assure the correct vacuum structure,
since the functional integral alone still includes the contributions of the zero point
(T =0) terms.

In sect. 2 we evaluate Z(B) on a finite x —7 lattice for non-interacting Bose
fields, in sect. 3 for Fermi fields. In sect. 4, we then summarize the most important
finite lattice features and their implications for general lattice calculations of
thermodynamic systems.

2. The ideal Bose gas on the euclidean lattice

Free scalar Bose fields provide the simplest possible case of a finite temperature
field theory, which can be solved exactly even in the continuum [8]. Here we want
to put this theory on a euclidean lattice, in order to study the influence of a lattice
cut-off on the thermodynamic quantities and to have a reference system for more
complicated theories of interacting Bosons, like the pure gauge field part of QCD.
There at present the lattice regularization seems to be the only way to get non-
perturbative results for physical quantities.

Our aim is to calculate the partition function

Z(B)=Tre*", (2.1)

where the hamiltonian is given by
H = [ & (), 0(0) 2.2)

and #(m, ¢) is the hamiltonian density of a free Bose field ¢ and its conjugate
momentum 7r:

H(m, @) =3(m>+ (Vo) +m’p?), (2.3)

m is the mass of the boson.



J. Engels et al. /| Euclidean lattice thermodynamics 241

After integrating out the 7-fields in the path-integral for Z we get the euclidean
version [eq. (1.1)] of eq. (2.1) with the euclidean action [8]

B 2
d
ste)=}] ar [ x{(59) Vel +me?]. 2.4)
0 T
On a finite lattice with Nz XN sites and lattice spacings as and a, in the
temperature and space directions x has the values x, = (aoag, aa,), with integer
ao and a. The partition function becomes

Z&(N,, Ng, a,, ag) =N’J- Mde (xo) e 5, (2.5)
with
, al N2N,/2
vl
_ 2 _ 2
S(¢)=%aia32{§=l(¢(x“+e;) (p(xa)) +(¢(xa+e:’2 ¢>(xa)) +m2¢’2(xa)}.
2.7)

Here ¢,, # =0, 1,2, 3 are the lattice unit vectors and ¢(x.) € R are continuous site
variables. We use periodic boundary conditions (pbc) in the space directions and
in this section, for Bose field variables, we also require pbc in the B-direction. We
have denoted the partition function as Zg, since it still has to be corrected for the
T = 0 contribution to agree with Z =Tr exp (—8H). An additional problem arises
for massless bosons. In this case the integral (2.5) as it stands is infinite, because
the integrand is constant along the line of constant field configurations, ¢ (x) = ¢(x')
for all sites, so that the integration along this line diverges. For the moment we
therefore consider only m # 0; we shall show later how the results have to be
corrected in the case m = 0, which, of course, is of particular interest to us.
With the transformation

F(xa)=aok 2 p(xs) (2.8a)
k'=3¢"14 £+ (ma,)?/2¢, (2.8b)
¢=a,/ag, (2.8¢)

we introduce dimensionless variables. We then obtain from eq. (2.5)
ZE(ND" N69 Aqy f) = N’ J. H d‘ﬁ (xot) e_S(é) > (2-9)

where

N'=[k&/27]VNe/? (2.10)
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the quantity

3
S=—Z{—<§2(xa)+Ka Z;,l é(xa+en)45(xa)+KBq5(xa+eo)<§(xa)} (2.11)

is the action of the anisotropic four-dimensional gaussian model [9]. The couplings
K,=t'k, Kz=¢&k (2.12)

become equal on the isotropic lattice with £ =1, yielding in eq. (2.11) the more
familiar form of a four-dimensional ‘‘spin”’-system, with a gaussian distribution for
the length |@(x, )| of the spin attached to the site x,. For £ =1 the critical case m =0
corresponds to the critical coupling § in the gaussian model.

To evaluate the partition function, eq. (2.9), further, we go over to the reciprocal
lattice of momentum coordinates and introduce Fourier-transformed field variables

1 —igx, ~
«wWZe Pe@(xa) ,
al¥g <
(2.13)
(1) = e T e
Xa) = TFT—=— “Pq >
¢ \/Ni.NB a ?

where the momenta g have the following values in the first Brillouin zone of the
reciprocal lattice:

2
,u=02610=j‘v%]'o, fo=0,%1,... £+(GNs—1), 3Nz ;
e (2.14)

T ju’ juzo,:tl:-'-:t(%Na—l),%Na-

2
l‘=1,2,3:qu=ﬁ

Here we have for simplicity assumed Nz and N, to be even. With the above
transformation and the completeness relation
Y e = N3Ngb0, (2.15)

one gets for the action

S=3k¢ 'Y 00iG N (an & q), (2.16)
q

where we have used the fact that the new variables ¢, fulfill the condition
C_g=¢r, (2.17)
since the original site variables ¢ (x,) are real. The dimensionless lattice propagator

G(a., & q) is given by

3
G (an, & q)=(ma,)’+4 ¥ sin’ (3q.a,)+4¢" sin® (Gqoag) . (2.18)
=1
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Due to eq. (2.17) the complex variables ¢, are not all independent and it suffices
to sum only over half of the reciprocal lattice. The integration measure then becomes
[10]

[1d¢ (x,)=2"""> ] deg,. (2.19)

q=0

Thus we have reduced the partition function for a free Bose field theory on a
euclidean lattice to a product of gaussian integrals, and we therefore finally obtain

Z5(No, Nay 0, £) =€ [1 G X(ar, £.9) - (2.20)
q
From this expression we find for the unnormalized free energy density

1 N, 1 _
Bfe = —mln Zp= —ﬁln g+m§m G Nan & q). (2.21)

The physical free energy density f is obtained from this expression by subtracting
the vacuum contribution

fo= lim fg, (2.22)

Ng—»w©

i.e. we normalize the ground-state energy of our hamiltonian to zero. Explicitly
we get in the limit Nz » o0

1/2

fat=En QIO+ s [ arm@ it (), 223)
2N0' i =172
with
B2(j) = Gma, )+ ¥ sin? (miu/N,) . (2.24)
w=1

The integral in eq. (2.23) is known and we finally have

foat=—¢ 1ng+Nizln (b+VE+bY). (2.25)
i

3
Combining egs. (2.21) and (2.25) yields the physical free energy density
fag=(fe~f)as. (2.26)

For the m =0 case, we have to suppress the g = 0 term in the summation (2.21),
since on a finite lattice with periodic boundary conditions it would lead to a
logarithmic divergence. In the limit N, - co, when the sum in (2.21) becomes an
integral, this divergence disappears. On a finite lattice, dropping g = 0 is equivalent
to the suppression of the integration over a constant field configuration in the
partition function (2.5).
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Using eq. (2.26) we can now calculate all other physical quantities on the lattice.
In the continuum the energy density ¢ and the pressure p are given by

e= % Bf)v, (2.272)

d
=2y Vs (2.27v)

On the lattice we rewrite the derivatives with respect to volume V and inverse
temperature 8 in terms of the lattice parameters a, and ¢ at fixed N,, Ng:

3| . £ 3

aB \ % - NBaU a‘f a,,’ (228)
) 1 9 1 9 £ 9 )

SN R SR . S (N R R 2.28b
BV}B 3NJa’ éa,l,, 3Nlal (aa,, ¢ a, 3|, ( )

From eq. (2.26) and eq. (2.27a) one obtains then the energy density on a finite
euclidean lattice

_ &, sin’ (m)o/Np) N £
NNg 7 b*+ ¢ sin® (mjo/Ng) N&

4 _
ea, =

SOVE+L +E+Y) .
(2.29)

Here ¥ indicates that for m =0 the j =0 term does not contribute to the sum.
For a massless Bose gas the well-known relation between energy density and
pressure,

(2.30)

=

Il
W=

™

holds even on a finite lattice.
We now want to study a little more in detail the behaviour of the energy density
on finite euclidean lattices, to see how well the continuum Stefan-Boltzmann law

esp=30m B " (2.31)

is approximated.

First of all, we note that the euclidean formulation contains two different approxi-
mations to the continuum result. One consists in replacing the space continuum by
a finite lattice (N, <00), the second in approximating the hamiltonian partition
function on a finite three-dimensional lattice by making, in addition, the temperature

direction discrete (N < 00),
Let us check first how well the hamiltonian energy density on a finite lattice,

w exp {—2mBw/N,a,}

4 2@
. _27 , 2.32
EdiscQ & N?, 2]: 1 —exp {—ZWBW/Naaa} ( )
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Fig. 1. The ratio between the discrete euclidean (¢) and discrete hamiltonian (eg.) version of the
energy density of a free massless Bose gas versus inverse temperature 1/(a,T) = Ng/¢, for N, = 10 and
various &,

with

1/2

W =(M§=1 ji) , (2.33)

is approximated by the euclidean version eq. (2.29). In fig. 1 we show the ratio
€/ &qisc In the case of massless bosons for N, =10 and various ¢ as function of
1/(Ta,) = Ng/¢. The limit £ > o0 at fixed N/ ¢ yields the hamiltonian form at fixed
finite temperature, that for Nz » o at fixed ¢ the hamiltonian form at 7 =0.

€se/ € disc

2

= Ng=30
Ng=20

Ng=15

Ng= 10

I
5 10

Np/E
Fig. 2. The ratio between the continuum (esp) and discrete hamiltonian (eg;s.) version of the energy
density of a free massless Bose gas versus inverse temperature 1/(a,T) = Ng/§, for various N,.
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Fig. 3. The ratio £/egg versus Ng for £ =1 and various N,,.

The discrete hamiltonian version is itself only an approximation to the continuum
form esp. In fig. 2 we note that egp/eq4ic approaches unity for N, > oo at fixed
1/(a,T) = Ng/¢; for N; > o0 at fixed &, a, and N,, i.e., in the low temperature limit,
the approximation becomes arbitrarily bad. The reason for this is that on a finite
spatial lattice, we lose the low momenta (<1/(N,a,)), and at low temperatures,
these give the dominant contributions to &sg.

If we compare the £ =1, N, = 10 curves in figs. 1 and 2, we see that an increase
of Ng improves the approximation of &/ 4isc, while it makes that of esg/ £4isc WOrSE.
Combining these opposing effects, we obtain for £/egp the behaviour shown in fig.
3. Corresponding results for other N, are also included, while those for different
£ are shown in fig. 4.

€/€gg

T

-

1 i
5 10 15

Np/7E
Fig. 4. The ratio £/ egp versus Ng/¢ for N, = 30 and various &
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From the behaviour of the energy density we conclude that the influence of
lattice size for finite temperature calculations on small lattices is by no means small.
Qualitatively we note:

too large or too small a value of Ny at fixed £ and N,, make the lattice approxima-
tion worse;

increasing N, at fixed £ and large N improves the lattice approximation;

large ¢ at fixed Nz and N, make the lattice approximation worse.

In the Monte Carlo simulation of more complicated systems, like SU(2) gauge
models, one can, in general, not do the subtraction of the vacuum contribution by
just taking the limit Nz ->00. In practice, one may then approximate physical
quantities by taking Nz = N, as the T' = 0 contribution and keeping Nz « N, for the
remaining finite temperature term. In table 1 we present, therefore, the ratio £/egg
for some small lattices with £ =1, for both these definitions of the vacuum term
ey. They are seen to give quite compatible results, if Ny is indeed much smaller
than N,.

The high temperature limit of SU(N) gauge theories is also expected to be of
Stefan—Boltzmann form, as confirmed by a weak coupling expansion on the lattice
[107*. The Monte Carlo evaluation for SU(2) [1, 11] and SU(3) [12] leads to ratios
£/ esg which at high T within errors agree with the values of table 1.

3. The ideal Fermi gas on the euclidean lattice

In the previous section we have discussed in detail how one can calculate
thermodynamic quantities on a finite euclidean lattice. In this section we shall
therefore mention only the new features coming in, when one tries to deal with
fermions on a lattice.

TABLE 1

The ratio £/esp =(eg—¢&,)/esp With the vacuum energy defined as (a) e, =limy,.. £g Or (b) as the
value of £g on a symmetric lattice N, = Ny

Na
N; 7 8 9 10
a b a b a b a b
2 1.7543 1.7314 1.7468 1.7336 1.7429 1.7347 1.7407 1.7353
3 1.8488 1.7329 1.8113 1.7441 1.7915 1.7498 1.7803 1.7531
4 1.7743 1.4081 1.6587 1.4463 1.5969 1.4653 1.5617 1.4757
5 1.9569 1.0627 1.6877 1.1691 1.5409 1.2193 1.4561 1.2461
6 2.4993 0.6453 1.9765 0.9013 1.6852 1.0183 1.5143 1.0786

* A slight extension of the weak coupling expansion, which in ref. [10] was performed for zero
temperature, yields at finite temperature to lowest order the free gluon gas.
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In general there is no way of putting fermions on the lattice without doubling
the number of species and preserving at the same time chiral invariance (for m = 0)
and locality of the derivative. There are several proposals how to avoid species
doubling on the lattice [13], but for the actual Monte Carlo simulation of fermions
in general the original prescription of Wilson [14] has been used. He introduces
an explicit chiral symmetry breaking term into the action, which however disappears
in the continuum limit. In this way the lattice action for free fermions (spin )
becomes

S0 0) =L Fw)- X {K, £ H0DLG0)+Kad0DEw0)}.  3.)
with

Dy =08y are, (1Y) +80yre,(1+7,),  ©=0,1,2,3, (3.2)

Here x and y denote a summation over all lattice sites and an implicit summation

of the Dirac indices is always understood. The y,’s are the Dirac matrices and

¥(x), ¥(x) denote dimensionless spinor variables at the lattice site x. The couplings
K, and K, are given by

Ka' = %fﬂlk{ ’ KB = %kf > (3'3)
with
ki'=ma & +3¢67 1 +1. (3.4)

Thus we get for the partition function of free spin 7 fermions and antifermions on
the finite euclidean lattice of size Nz X N

Ze(Noy N 0 €)= | TTIdW (1) (x)] €5 (3.5)
ap x
Here ap denotes that we have to take antiperiodic boundary conditions for the
fermionic field variables in B-direction. The integral (3.5) has to be understood as
an integral over non-commuting Grassmann variables. Furthermore, we have
neglected all multiplicative terms, which drop out in physical quantities after
subtracting the vacuum terms.
On the reciprocal lattice the action (3.1) becomes

St(Wa Wa) = — % YAy, (3.6)
with

3
Afl =2K, ¥ cos(g.a.)+2Kg cos (qeag)—1
w=1

3
_211<¢7 Z Y sin (quao-) ‘2iKB’Yo sin (qoaB) . (3.7)
1

n=
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For u =1, 2,3 the momentum values g, are given by eq. (2.14), whereas due to
the antiperiodic boundary conditions in the B-direction the zeroth component go
is given by

277' 1
= fo+3) . 3.8
do Nag (Jo+2) (3.8)
The partition function then becomes
Zg=[]det 4, (3.9)
q

with
3 2
det AL = [( 1-2K; — 6K, +4Kg sin® Gqoas) +4K, ¥ sin’ (%quaa))
p=1

3 2
+4K 3 sin® (qoag) +4K% Y sin® (quac,)] ) (3.10)
n=1

To stress the similarity between eqs..(3.9), (3.10) and the corresponding result for
bosons, egs. (2.18), (2.20), we use the explicit form of the couplings K, and K.
The evaluation of the unnormalized free energy density yields then

. |
B = — D210 (ky/ )~y 3 In [B2+ A +4£(B + &) sin® (m(jo+ D/ No)],

aﬂ N%,a?,
(3.11)
with

3
A=Y sin’>(2#j./N,), (3.12a)

m=1

3

B=ma,+2 Y sin’ (mj./N,). (3.12b)

u=1

Thus it becomes clear from eq. (3.11) that we can calculate the vacuum contribution
to the free energy in the same way as in the bosonic case. We get

4¢
N>

foas=—4£1n (ki/ €)= 5 SIn3(VB*+ A+ VB’ + A+4£(B +£))].

(3.13)

The physical free energy density is then again given by eq. (2.26) and, using egs.
(2.27a) and (2.28a), one can calculate the energy density of spin 3 fermions and
antifermions with free creation and annihilation (chemical potential u;=0). This
yields

can=(ex—€,)as, (3.14)
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with

— 4k, (3.15)

4
EEAqs =

8¢” 5 (B +2¢&) sin” (7(jo+3)/ Na)
NoNg 5 B>+ A+4£(B+£)sin’ (7 (jo+3)/Np)

B+2¢
[(B*+A)B*+A+4¢£B+£)]*+B*+ A+4£(B+¢)

—4&ks .
(3.16)

8¢’
“TNT T

In the case of massless fermions we can again compare the above result with the
Stefan—-Boltzmann form of the energy density of free massless fermion—antifermion
pairs in the continuum:

Eff=67'077'2344. 3.17)

As in the bosonic case we have calculated the ratio £/eg for finite lattices and
different values of ¢ In fig. 5 we show the results for £ =1 and various N, as a
function of Ng. Corresponding results for other values of ¢ are shown in fig. 6. We
notice that for small values of N the deviation from the continuum result is
approximately twice as big as in the case of free bosons. In the limit Nz/& - 00 the
ratio /&g goes to zero, whereas the corresponding quantity for bosons, &/egpg,
diverges in this limit. The reason for this is the different behaviour of the discrete
hamiltonian versions of the energy density in both cases. As seen in fig. 2, the ratio
£sp/ Eaisc fOT bosons goes to zero in the limit Nz/¢ —» 0. The corresponding ratio
for fermions diverges, as shown in fig. 7. This difference is due to the different
finite lattice approximation of the low momentum region in the two cases.

€ /e¢f

Fig. 5. The ratio between the discrete euclidean (¢) and continuum (e¢) version of the energy density
of free massless fermions and antifermions versus N, for £ =1 and various N,
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€ /e

R
/

Ng /&
Fig. 6. The ratio ¢/ versus Ng/¢ for N, =30 and various £

4. Conclusions

We have calculated the behaviour of thermodynamic quantities on finite euclidean
lattices for free bosons and fermions and found that the influence of finite lattice
size on quantities such as the energy density is by no means small. Therefore, we
also expect in the case of more complicated interacting systems, like SU(N) gauge
theories, that one cannot obtain the correct finite temperature continuum values
by Monte Carlo simulation on small lattices. One can, however, use the results for

Ef?/sdisc
|
2k NU=1O

Ng=15

Ng=20
Ng=30

I 1
5 10

Np/&
Fig. 7. The ratio between the continuum (&) and discrete hamiltonian (e4ic) version of the energy
density of a free massless Fermi gas versus inverse temperature 1/(a,T) = Ng/¢, for various N,,.
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the ideal gases on finite lattices as a reference measure and study the finite size
dependence of the interacting theory in comparison to this reference. Such a
procedure was shown to be quite successful in the case of pure SU(2) and SU(3)
gauge theories [11,12] at high temperatures, where a correction using the
coefficients of table 1 was found to remove discrepancies between calculations on
different size lattices. Finally, we note again that the lattice approximation for free
Bose and Fermi fields at finite temperature becomes optimal for specific lattices
(large N with N3 « N,,). Hence we expect increasing finite size deviations also for
SU(N) gauge field simulations if we leave this region of optimal approximation.

We thank I. Montvay for useful discussions.
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