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GLUEBALL MASS ESTIMATE FROM FINITE TEMPERATURE SU(2) LATTICE STUDIES 
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Finite temperature Monte Carlo simulations of the SU (2) Yang-Mills system on the lattice are used to obtain an esti- 
mate of the mass m G of the lowest gluonium state. Taking gluon matter in the hadronic regime, below the deconfinement 
transition, to follow the usual string or bag model pattern, we find from the temperature dependence of the energy density 
and of the specific heat that m G = (1.7 ± 0.5)x/~, where o is the string tension. 

Monte Carlo studies o f  the SU(2) Yang-Mil ls  sys- 
tem on the lattice at finite physical temperature T 
have revealed a deconfinement transition [ 1 - 3 ]  at the 
critical temperature T c ~ 0.5 x ,~ ,  where the system 
changes from gluonium matter  to gluon gas; here a de- 
notes the strong tension. Above Tc, at sufficiently high 
temperatures,  this gluon gas attains the (parameter-free) 
S te fan-Bol tzmann  limit of  an ideal massless boson gas 
[3] .  Below Tc, the behaviour of  the system is less well 
understood;  but  if  we believe that  it also provides there 
a reasonable approximation to the real qua rk -gh ion  
world,  then we expect  gluonium matter  to exhibit  the 
same basic features as hadron matter .  

The description of  hadrons as bound states of  quarks 
leads to a resonance spectrum, starting with a lowest 
state o f  mass m 0. In the continuum, both bag [4] and 
dual string [5] models predict the density r (m)  of  reso- 
nance states to increase exponential ly with increasing 
resonance mass m and thus yield the form ,1 

r (m ) = d~ (m - mo ) + cO (m - 2mo ) m - a  e bm , 

a, b, c, d = const. (1) 

t Supported by the Bundesministefium for Forschung und 
Technologic, Bonn. 

,1 We have ignored here the possibility of discrete excited 
states below the continuum threshold m = 2m 0 . 

first obtained in the statistical bootstrap model  [6] .  
While the constant b is determined by the bag size or 
the string tension (Regge slope), a depends more on 
the details of  the model  [7] .  The normalization c fixes 
the relative strength of  resonance excitation to the d- 
fold degenerate ground state. 

It is well known that  a density of  states of  the form 
(1) is associated with critical behavior [8] : the parti- 
t ion function 

Z ( T ,  V) = exp dm r ( m )  

X fd3pexp[ -T- l (p  2 + m 2 ) t / 2 ] )  , (2) 

for an ideal gas of  resonances, or its derivatives, be- 
come singular at the temperature T c = 1/b; above Tc, 
the integral (2) is no longer defined. If we identify this 
critical behaviour with the deconfinement transition 
of the SU(2) lattice problem at T c = 0.5 x /o ,  then the 
approach to deconfinement is governed by the lowest 
gluonium mass m 0 = m o as scale. Comparing the form 
predicted by eq. (1) with that obtained from the Monte 
Carlo simulation of  the SU(2) Yang-Mil ls  system thus 
gives an estimate of  the glueball mass m G . 

We note that  this approach - using the resonance 
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spectrum of  hadron physics to determine the glueball 
mass - provides an alternative to correlation length es- 
timates o f m  G [9-11  ]. In the field-theoretic confine- 
ment problem, i.e. for the T = 0 case using a symmetric 
space-t ime lattice, the correlation function p (r) for 
two lattice plaquettes separated by r links is expected 
to vanish exponentially for large r, 

p(r)  ~ exp - ( r / ~ ) .  (3) 

In the scaling limit of  vanishing bare coupling, g2 ~ 0, 
the dimensionless correlation length ~ must diverge 
and the lattice spacing a go to zero such that 

m G =- 1 /~a ,  (4) 

approaches a finite limit, interpreted as lowest "bound- 
state" mass of  the theory. Hence Monte Carlo calcula- 
tions of  p(r)  for sufficiently large r over a range of  suf- 
ficiently small g2, when compared with the form (3), 
yield an estimate for m G . An evaluation of  SU(2) re- 
sults gave [9] m G = (3.7 + 1.2)x/o; the relation o 
= l/2rra' between o and the Regge slope a ' ,  together 
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Fig. 1. Energy density versus temperature in the critical region; 
the dashed line (SB) is the Stefan-Boltzmann limit e/T 4 
= lr2/5. The triangular points are from calculations using a 
93X 3 lattice. 
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Fig. 2. Specific heat versus temperature in the critical region; 
the dashed line (SB) is the Stefan-Boltzmann limit Cv/T 3 
= 47r~/5. On the highest temperature point we show typical 
error bars. 

with the empirical value a '  = 1 GeV -2 ,  then implies 
m 6 = 1.5 -+ 0.5 GeV. Results from a simulation using 
the icosahedral subgroup [10,12] of  SU(2) agree with 
this value. An evaluation based on the analytic continu- 
ation of  the strong coupling expansion [11 ] leads to 
a somewhat lower value, with m G = (1.8 +- 0.8),v~. 

Returning now to finite-temperature thermody- 
namics, we show in figs. 1 and 2 or SU(2) Monte Carlo 
results for energy density and specific heat as function 
of  the temperature. To obtain them, we have used a 
73 X 3 lattice, corrected for finite-size effects [13].  
The connection between g2 and a is given by the re- 
normalization group; the temperature is T = 113a, 
since we have three lattice sites in the temperature di- 
rection. The lattice spacing is taken to be the same in 
all directions. The data shown are based on a larger 
number of  iterations (about 3 000 per point) than our 
previous work [3] ; the resulting critical temperature is 
with T c ~ 43 A L somewhat higher than the 40 A L 
found there. We note that both energy density and 
specific heat values lie near the asymptotic S tefan-  
Boltzmann limits already at T ~ 50 A L . 

The region of  interest in the present problem is 
that of  temperatures just below T c, where we expect 
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gluonium matter ,  consisting dominantly of  the various 
excited glueball resonances. As T-+ 0, the system will 
contain more ground states (glueballs) and fewer reso- 
nances, eventually becoming an ideal gas of  glueballs. 

For a gluonium gas characterized by a resonance 
spectrum of  the form (1), we obtain for the energy 
density 

o o  

e(T)  = e G ( T  ) +  c T f dmm 3-a 
2rr 2 2m G 

X exp(m/Tc)[Kl(m/T ) + (3T/m)K2(m/T)] , 

with 

eG(T ) = d(m3T/2n2)[&(mG/T) 

(s) 

+ ( 3 T / m G ) K 2 ( m G / T ) ]  , 

for the energy density of  an ideal glueball gas. The 
specific heat per unit volume is given by 

(6) 

,( i f  m4 Cv(T )= ~ e(T) + - -  dm ~'(m) 
2"n'2 2m G 

× [K 2 (re~T) + (2T/m)KI(m/T) 

+ 9 (Tim)2K 2 (m/T)]) . (7) 

Besides the glueball mass raG, eqs. (5) and (6) still con- 
tain the parameters a, c and d of  the spectrum (1), b 
having been identified as T c 1. We shall now see that  
these are also essentially determined by the form of  
the Monte Carlo results. 

At T = T e, the energy density (5) remains finite only 
if a > 7•2, as can easily be seen by  use of  the large-ar- 
gument approximation of  the Hankel functions. Sim- 
ilarly, the specific heat stays bounded for a > 9/2. If 
we interpret the results of  figs. 1 and 2 as an indica- 
t ion of  finite e and a diverging C V at T = T c, then we 
must have 7/2 < a <~ 9/2. The ground-state degeneracy 
is chosen as d = 6, in accord with strong coupling [14] 
and bag model  [15] estimates. Finally,  the constant 
c in eq. (1) is fixed by the value of  e(Tc). With all 
other parameters thus determined,  we can now com- 
pare the functional form of  e(T), from eq. (5), and 
both form and normalization of  Cv(T) ,  from eq. (7), 
with results of  our Monte Carlo simulation of  the 
SU(2) Yang-Mil ls  system, in order to estimate m G. 
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Fig. 3. Energy density, normalized to the critical value e c at 
Tc, versus the temperature variable x = (Tc/T - 1); the curves 
are the resonance gas predictions for m G = 3.0, 3.5 and 4.0 T c. 
The triangular points are from calculations using a 93X 3 
lattice. 

In fig. 3, we show the energy density (5) for a = 4 
and mG/T c = 3.0, 3 .5 ,4 .0 ,  in comparison with the 
lattice results of  e. Both quantities are normalized to 
tile value at T c and plot ted against the dimensionless 
" temperature"  x = (T c - T)/T. It is seen that m G 
= (3.5 -+ 0.5) T c yields reasonably good agreement. We 
have repeated this procedure for different values of  a 
in the range 7/2 < a ~< 9]2; to illustrate the results, we 
show in fig. 4 the forms for m G = 3.5 T c with a = 3.75, 
4.0 and 4.25, in comparison with the lattice results. It 
is evident that  a variation of  a does not  produce very 
significant changes. Also shown here is the contribu- 
t ion of  the pure glueball gas, which is seen to give the 

dominant contr ibution for x ~ 0.5. Finally we show in 

fig. 5 the specific heat C v from eq. (7), for the m G 
= 3.5 and 4.0, with a = 4. Also here the agreement is 
found to be reasonable, although at small x the lattice 
results appear to increase significantly slower than the 
gluonium gas. This may well be a reflection of  the fin- 
ite lattice size, preventing a true divergence at x = 0. 

Taking into account both  the range of  m G allowed 
for a given a and the possible variation with a, we con- 
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Fig. 4. Energy density, normalized to the critical value e c at 
Tc, versus the temperature variable x = (Tc/T - 1); the curves 
are the resonance gas predictions for m G = 3.5 T c, with a 
= 3.75, 4.0 and 4.25. The dashed line (GG) is the result of the 
ideal glueball gas alone. The triangular points are from calcula- 
tions usiflg a 93 × 3 lattice. 
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Fig. 5. Specific heat versus x = (Tc/T - I), with the resonance 
gas predictions for m G = 3.5 and 4 T c. The error bars are 
typical values. 

clude that m G = (3.5 -+ 1.0)Tc,  which with the rel~,tion 

[10] A L = (0.01 l -+ 0 .002)  V ~  gives us m G = (1.7 
+ 0.5) x / a .  Using the physical value o f  the string ten- 

sion (0.16 GeV 2) in this result based on S U ( 2 ) Y a n g -  

Mills lat t ice studies, we would  have a glueball mass 

o f m  G = (0.7 + 0.2) GeV. 

Summarizing,  we have presented a m e t h o d  o f  ob- 

taining an es t imate  for the mass m G of  the lowest  

g luonium state,  based on the expected  physical (reso- 
nance)  features of  the conf inement  regime o fg luon  mat-  

ter.  In closing, we no te  some fur ther  possible sources o f  

error and ways to improve the accuracy of  the result. 

Since the energy densi ty around T c changes very rapidly,  

small modi f ica t ions  o f  the value o f  T c can lead to con- 

siderable changes in e(Tc) .  Given more  accurate  latt ice 

calculat ions,  more  suitable normal izat ions  appear pos- 

sible. The degree o f  " s ingu la r i ty"  o f  C V on the lattice 

depends o f  course on the lat t ice size. Thus simulat ions 

using a larger lat t ice then 7 3 × 3 can provide more  reli- 

able points  near  T c as well as test the premise that  

C v ( T c )  diverges. Final ly,  it would  cer ta inly be o f  inter-  

est to see if  and h o w  our conclusions are modi f ied  in 

a compar ison  o f  eqs. (5) and (7) wi th  the results of  

SU(2)  latt ice simulat ions [ 16,17] 

One o f  us (H.S.) wants to  thank L.D. McLerran for 

a s t imulat ing discussion. 
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