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INTRODUCTION

“By their fruits ye shall know them” —Matthew 7:20

The brain computes, that is, it transforms immense amounts of highly redundant
sensory information into decisions—taking into account various internal states—that
ultimately manifest themselves in motor output. But how do these computations
occur? In particular, how are the constitutive elements of nervous systems, the
neurons, involved in such computation? And to what extent can they be said to
instantiate computations? Furthermore, how can models of the nervous system, or
parts of it, be evaluated in terms of such computations expressed at the neuronal level?
The task of our group was to evaluate these and similar issues.

Before launching into this task, we would like to emphasize that models at the
biophysical and network levels have found widespread acceptance within the neuros-
cience community. Modeling as a formal, quantitative means of describing neuronal
systems has become a powerful tool in the repertoire we have available for under-
standing the nervous system. This may reflect the shift of neuroscience from a
descriptive science to a more explanatory, physics-like science. The growth of mode-
ling is due to a number of distinct causes:

1. Limitations of Intuition: Modeling transcends the limitations of human intuition
when faced with complex neuronal systems. Neurobiology, in particular as
practiced at the biophysical or circuit level, contains a large number of highly
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nonlinear elements, e.g., ionic channels, bursting or oscillating neurons, which
severely limit the ability of the researcher to understand the system and make
predictions. Extreme sensitivity to parameters and to the cascades of nonlinear
elements preclude any simple analysis and leave quantitative models as the
only alternative. This situation is quite different from that of fifteen, ten, or
even five years ago, where modeling, together with computational consider-
ations, was marginalized and met with considerable scepticism.

2. Data: Detailed and comprehensive data concerning the kinetics and distribu-
tion of ionic channels and neurotransmitters, the morphology and distribution
of nerve cells and their connectivity patterns, and how these change over time
are becoming available. Data of this kind are best organized in the form of
functional models that can be used to test the consistency of the data and draw
attention to areas that require further research.

3. Hardware: The widespread availability of massive and cheap computing
power, mainly in the form of easy-to-use, single-user, UNIX type workstations
with graphical abilities, has enabled more researchers to participate in mode-
ling directly. Supercomputers such as the CRAY Y-MP or the Connection
Machine are used mainly for detailed investigations of network dynamics.

4. Mathematical Tools: 1t has been fortuitous that the formalism introduced by
Hodgkin and Huxley in 1952, in which ionic conductances are modeled in
terms of one or more fictive activation and inactivation “particles” with
first-order kinetics, has proven adequate to model, with various modifications,
the ever-growing number of ionic currents, including calcium-dependent ones.
This formalism, together with cable theory, represents the framework within
which single cells and networks have been analyzed.

Neural modeling efforts’ have led to a number of successful predictions. For
instance, the theoretical analysis of Rall and Shepherd (1968) of the laminar field
potential in the olfactory bulb predicted the existence of (reciprocal) dendro-dendritic
synapses between individual granule and mitral cells. These synapses were inde-
pendently observed in an electronmicroscopic study by Reese (Rall et al. 1966).
Another instance is the model of synchronization of neuronal discharge in the
disinhibited hippocampal slice by Traub and Wong (1982). It predicted that bursts in
a single pyramidal cell could evoke bursts in one other pyramidal cell (confirmed with
the aid of dual recording by Miles and Wong 1986) and also that stimulation of a single
neuron could evoke synchronous firing in a large (e.g., thousands of cells) population
of disinhibited cells (experimentally verified by Miles and Wong 1983). Another
p.rediction comes from the work of Kepler, Marder and Abbott (19905 who studied a
circuit consisting of a single oscillator electrically coupled to a nonoscillatory neuron.

! Here we only consider neuronal models, i.e., models which ultimately express high-level behavior,

perception, action, etc. in terms of the interaction among many neuron-like components; this rules out
more abstract theories, such as the black-box models of cognitive science.
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This work was motivated by the experiments of Hooper and Marder (1987), who
showed that the frequency of the bursts generated by the anterior burster (AB) neuron
was decreased by its coupling to nonbursting cells. This model made certain predic-
tions regarding the interactions of oscillatory and nonoscillatory neurons that were
later confirmed experimentally (Sharp et al. 1992).

Models in neuroscience can be classified into two broad, nonexclusive categories
(see also Sejnowski et al. 1988): One group of models has as its principal aim the
detailed and quantitative description of the system under study. Knowledge of the
individual components, usually the behavior of single cells or voltage-clamp data from
individual ionic currents, is used to predict the evolution of the entire system in time.
Such an analysis helps to pinpoint the shortcomings of the original data, highlights the
key role of certain parameters and, if successful, reassures one that the behavior under
scrutiny can indeed be explained within the current framework. Examples of such
models span the entire gamut of spatio-temporal scales, from the analysis of quantal
release at the afferent synapse to the Mauthner cell (Korn and Faber 1992) to firing
properties of sympathetic ganglion cells (Yamada et al. 1989) and cortical pyramidal
cells (Stratford et al. 1989; Koch et al. 1990; Lytton and Sejnowski 1991), to the
modeling of small networks of bursty cells in the lobster (Marder 1992, Marder et al.
1992) and the large-scale modeling of hippocampus, olfactory and visual cortex
(Traub and Miles 1991; Wilson and Bower 1989; Bush and Douglas 1991; Worgétter
and Koch 1991). Note that such models can also be considered as a compact
description of the properties essential for the behavior of the system.

In contrast to these models motivated primarily by biophysics, computational
models seek to study how particular information processing tasks, e.g., computing the
direction of motion or depth from binocular disparity, can be instantiated in neuronal
hardware. Here the emphasis is on the computational metaphor with a concomitant
reduction of biophysical or anatomical detail. Such models come in very different
flavors of neurobiological realism, from the investigation of the interaction between
excitation and silent inhibition in retinal ganglion cells (Koch et al. 1982) and the
analysis of the circuits underlying the detection of relative motion in the fly (figure-
ground discrimination; Reichardt et al. 1983; Egelhaaf et al. 1988) to the conventional
connectionist or Hopfield (1984) class of neural networks (as well as their intellectual
spawn) for perceptual, motor, and memory tasks. In each case, the emphasis is on the
processing (e.g., AND-NOT gates in the Koch et al. 1982 study) and the representation
of the information (unit vs. place coding in connectionist systems; Ballard et al. 1983).

Of course, today many models cannot be clearly segregated into one or the other
category and represent an intermediate type. However, the primary intent behind the
constuction of the model is usually either a descriptive or a computational one.

Over the last five years or so, a new simulation, or more correctly, emulation,
technique has emerged: analog very large-scale integrated circuits (VLSI) fabricated
using CMOS design methodologies and technology. This approach towards building
neuronal circuits has been pioneered by Mead (1989) at Caltech where he and his
group have constructed a number of neurobiological circuits, ranging from the silicon
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retina (Mead and Mahowald 1988) and cochlea (Lazzaro and Mead 1989) to circuits
mimicking the vestibulo-ocular reflex (DeWeeth and Mead 1990) and central pattern
generators in various invertebrates (Ryckebusch, Bower and Mead 1989). More
recently, Mahowald and Douglas (1991) have successfully built an analog VLI model
of a cortical pyramidal cell, including a number of adapting currents (Im, LAHP, and
14). The key difference between these circuit emulations on the one hand and digital
computer simulations or digital hardware on the other is that the device physics is
exploited to implement the various primitives found in biological circuits. For in-
stance, the current flowing through a field effect transistor biased in the subthreshold
range is exponential in the gate voltage, with an effective “gating charge” of 0.7. Such
a circuit element can be used to mimick the activation or inactivation variable
associated with voltage-dependent conductances (Mahowald and Douglas 1991).
Mead (1989) argues that the physical constraints imposed on the density of wires in
the essential two-dimensional world of electronic circuits as well as the noisy nature
of these analog components are very similar to the type of constraints imposed on
biological circuits, These methods are radical different from computer simulation,
because they force the VLSI designer to implement very robust and adaptive algo-
rithms with an eye towards minimizing unnecessary communication among elements.
As silicon foundry services (e.g., MOSIS) and VLSI design tools become more widely
available, this simulation technology will become more widely used.

FROM BIOPHYSICS TO COMPUTATION AND BACK

What is meant by the term “computation” or by the phrase “this neuron implements
a multiplication”? In the most general sense a computation represents a fixed mapping
or transformation from the states of one physical system to the states of another
physical system, with the mapping corresponding to a given function. Examples
include the position of two marked pieces of wood implementing multiplication
(exploiting the fact that log(xy) = log(x) + log(y)), or a marble rolling downhill and
coming to rest at the bottom of the valley, implementing the minimization of a
two-dimensional functional via the use of gravity, or an electrical charge flowing onto
digital gates, implementing a digital NAND, or the action of a transient, inactivating
potassium current (Ia) implementing a temporal delay in certain neuronal systems. In
order to instantiate a sufficiently powerful class of computations, in particular in order
to make decisions, certain minimalist requirements need to be met, most importantly
the existence of some nonlinear element.

These requirements, however, are very weak, as argued by D. Hillis as well as R.
Rivest. It is obvious that general models of computation (i.e., simply the requirement
that the system must be able to “compute™) do not provide enough constraints to help
understand computations in neuronal systems. What is needed to build a computa-
tional engine, from a practical point of view, are units with a nonlinear input-output
function and some memory units, a mechanism for the amplification and distribution
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of signals to other units (a high fan-in and fan-out) as well as a means of fast
communication among units. However, the detailed nature of the elementary comput-
ing units, e.g., whether they implement a threshold function or a squaring unit or
whether they are nonstationary, does not matter a great deal. Thus, since almost any
model of a neuron fits the above requirements, these constraints are too weak to truly
help us.

One reason why existing computational models seem to tell us so little about the
design of biophysical circuitry is that the data structures we use in our computational
models do not map in a natural way onto the biophysical medium. The assumption
made in most modeling efforts is that details of the biology can be ignored when
specifying the function to be computed and the algorithm and data structures to be
employed, because the biophysical medium is powerful enough to implement what-
ever functions we have independent reason to believe are being computed. As D. Kirsh
pointed out, the issue highlighting this problem is our ignorance about possible models
of computation. At presént we operate with a small set of formal models of computa-
tion, such as Turing machines, lambda calculus, and Boolean networks. Traditional
computer science is built on the assumption that data structures such as graphs,
balanced trees etc. will work for formal analyses of computations. These are all
pointer-based notions and may prove to be wrong or irrelevant data structures for
biological systems where timing, connectivity, etc. is so important.

All these problems do not invalidate the usefulness of a more detailed computa-
tional analysis in the sense of the word used by Marr and Poggio (1977). For instance,
an analysis of the motion problem at the abstract computational level leads to the
realization that estimation of the two-dimensional optical flow from the time-varying
intensities falling onto the retina is an ill-posed problem requiring the use of a
smoothing stage. A similar analysis of the problem of extracting depth from two-
dimensional images leads to the insight that a number of constraints are needed by
any system, whether a fly, a cat, a Californian surfer, a robot or an analog VLSI chip,
to solve this problem (smoothness, forbidden zone, figural continuity, spatial coin-
cidences, epipolar lines, etc.). Since they do not depend on any particular algorithm
or hardware, such constraints are exceedingly useful in attempting to understand how
a particular system solves this problem. Thus, we reaffirm the notion that such
constraints are very useful and are probably a conditio sine qua non for understanding
complex information processing systems.

Furthermore, we all believe to a greater or lesser extent that the inverse route, from
biophysics and circuits to computation, is both possible and desirable, in the sense that
we will ultimately have some understanding of which biophysical mechanisms or
circuits are responsible for which computational task. Where we differed substantiaily
within our group was how much “blood, sweat, and tears” this program is likely to
cost and what its limitations are likely to be. For instance, in many systems of tightly
interlocking elements it may be very difficult to isolate the contribution that any
individual component makes to the overall task or a synergistic effect may be involved,
with many mechanisms contributing simultaneously.
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MODELS OF COMPUTATION IN SINGLE CELLS

The vast majority of neural network models contain few if any of the plethora of
biophysical and anatomical complexities we know are present in real neurons. At the
other extreme, there exist models of Purkinje cells with a thousand or more compart-
ments, each one representing, in great detail, a small fraction of the cell and its synaptic
input. Along the middle ground would be a “canonical” or “simplified” model of a
neuron which, while more faithful to biological reality, does not overwhelm us with
its wealth of—possibly irrelevant—detail. Conceptually, such a neuron can be sub-
divided into a small number of functional compartments:

1. the postsynaptic region, translating local transmitter input into a conductance
change;

2. one or several dendritic compartments performing spatio-temporal integration
of the membrane potential;

3. aresponse generator converting the current flowing from the dendrite into the
cell body into a pattern of action potentials;

4, anerve terminal transducing the action potential into probabilistic release of
packets of neurotransmitter.

The mechanism of release of neurotransmitter from nerve terminals has been
described by the collective work of Katz, del Castillo and Miledi (for a summary, see
Katz 1966). According to their wotk, the action potential arriving at the nerve terminal
causes membrane depolarization, resulting in the influx of Ca“*. Neurotransmitters
are stored at the synaptic terminal in synaptic vesicles, each of them containing about
4,000-10,000 molecules of a given mediator, e.g., ACh or glutamate. These vesicles
are released from specialized (active) zones following the calcium influx and bind to
postsynaptic receptors. The release of vesicles is not deterministic but is governed by
probabilistic laws (Katz 1966).

One essential aspect of transmitter release concerns the probabilistic or stochastic
nature of neurotransmitter release at central neurons (see Korn and Faber, chapter 2;
Redman 1990; Korn and Faber 1987; Korn et al. 1981; Larkman et al. 1991; Jack et
al. 1990). In the case of central neurons, one anatomical synapse usually contains one
active release zone. Because a given neuron makes many synapses onto a given
postsynaptic target in its terminal arborization, the number of active zones, n, for a
given connection among two neurons ranges from as few as 1 or 2 to as many as 100,
with n = 5-15 being the most common for inhibitory synapses. Vesicles are released
independently at each active zome, either spontaneously with a very low rate of
occurrence (less than 0.1 Hz) or synchronously at some of the terminals, following an
impulse. Itis now generally accepted thata single, rather than many, vesicle is released
at a single active zone; the probability of this all-or-none release is p. Besides these
two parameters, » and p, a third parameter g refers to the size of the postsynaptic effect
produced at the postsynaptic location by the binding of the released neurotransmitter
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and the subsequent opening of ionic channels. g can be thought of as the unitary
postsynaptic conductance change following the release of one packet of neurotrans-
mitter. The probability distribution associated with the vesicle release approximates a
binominal distribution; either a simple one, with p the same for all active zones, or a
compound distribution, where p differs from one active zone to the next. This general
scheme varies in its details for different cells.(Korn and Faber 1992); however, these
three parameters, #, p, and g, characterize the process and must therefore in many cases
replace the simplistic assumption of a fixed, deterministic synaptic weight Tjj (or wi)
between neuron i and neuron j in neural network models. The possible consequences
of the stochastic release for neuronal computations have been explored by Burnod and
Korn (1989).

It is important to realize that the parameter g depends to some extent on the
postsynaptic targets (Korn and Faber 1991). Also, p can vary with firing frequency,
from very low values (p = 0.05-0.1) to higher ones (0.3-0.6). This feature manifests
itself as plasticity, with facilitation in the case of low release probability and depression
in the case of large p values. Furthermore, p appears to be inversely proportional to 7,
so that the mean release, np, remains invariant with changes in the number of synapses.
The postsynaptic quantal response, g, also appears to vary with properties of the
postsynaptic cell; in the case of the motoneuron a quanta on a distal dendrite may open
up to 5-10 times more channels than a quanta on the soma (Jack et al. 1990).

Considerable progress has been made in recent years in formulating and analyzing
quantitative models of synaptic release. It is agreed that the membrane depolarization
following invasion of the presynaptic terminal by an action potential opens calcium
channels in the membrane, elevating intracellular calcium. This calcium then brings
about the exocytosis of the vesicles containing the neurotransmitter. One group of
models (Fogelson and Zucker 1985; Simon and Llinas 1985) asserts that the spatio-
temporal patterning of intracellular calcium alone is the necessary and sufficient
condition for vesicular release. The alternative calcium-voltage hypothesis (Parnas et
al. 1986)is based on the assumption that calcium is essential but not sufficient in itself
to evoke release of neurotransmitter. According to this detailed model—formalized in
compact form by Lustig et al. (1989)—an additional molecule must be activated by
membrane depolarization which binds calcium. In its bound form this molecule
induces exocytosis.

A feature neglected by the majority of the modeling community is the ability of
neurons to respond in a qualitatively very different manner to synaptic input activity
(McCormick 1990). A tonically active cell fires one or more action potentials, in a
manner reminiscent of the Hodgkin-Huxley squid axon. Increasing the input current
leads to an increase in spiking activity. Bursting cells discharge by generating fast
sodium spikes superimposed onto a broader calcium-mediated response. Following
such a burst, the membrane is hyperpolarized for some time (between 20-200 msec)
and remains silent. After a while, the cell may once more begin to fire a burst and the
cycle begins anew. Thus, the patterns of action potential discharge in the tonically
firing versus the bursty cell are quite distinct. In cortex, such bursting cells appear to
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be predominately pyramidal cells localized to layer V. Why cells discharge in these
two patterns is at present not known. Finally, a third type of cellular response consists
of a plateau potential, that is an equilibrium state in which the membrane is depolarized
and may discharge action potential (Marder 1992). Such cells behave in a flip-flop
manner; once stimulated they will remain in their firing state until the membrane is
sufficiently hyperpolarized by an external current input. At that point in time, they will
return to their stable quiescent state.

As described in the background paper by Marder (1992), input by various neuro-
modulators can switch one cell from a bursty firing mode into a tonic firing mode.
Such behavior has been observed in both invertebrate ganglions (Marder 1992) as well
as in the mammalian thalamus (McCormick and Pape 1990; Pape and McCormick
1989) and appears to correlate in the latter case with the gross behavioral categories
of deep sleep and wakefulness. Since cells respond radically differently in these states,
it is crucial that models incorporate this behavior.

Besides engaging in state-dependent switching, neuromodulators such as noradre-
naline, acetylcholine acting on the muscarine receptors, serotonin, and the ever-grow-
ing list of neuropeptides can also vary the spatial and temporal time scale over which
neurons can act. This diversity of actions is enhanced at the molecular level by
cell-specific regulation of receptors and their gene expression as well as protein
modification, giving rise to an enormous substrate of mechanisms possibly regulating
synaptic efficacy and plasticity (Betz 1992).

In the hippocampus, activation of noradrenergic fibers leads, via a second messenget,
to the blockage of one or more potassium currents, thus controlling spike frequency
adaptation and consequently the gain of the neuron. Likewise, LHRH-like peptide acting
on the bulifrog sympathetic ganglion cell can increase the gain of the neuron over many
seconds (Adams et al. 1986). The dominant feature of most of these neuromodulators is
their temporal time scale. Their duration is in the second to minute range.

It is important that realistic models incorporate this diversity of time scales: while
the passive membrane time constant in a quiescent cell may be in the 10-20 msec
range, it can drop to 3-5 msec during action potential discharge. Firing frequency
adaptation is controlled over tens of msec to hundreds of msec, while the effects of
modulatory substances extends for seconds and minutes.

The dominant model of the dendritic tree is the one developed by Rall (1989). This
model assumes that synaptic inputs can be treated as current inputs and that the
membrane does not contain any (significant) membrane nonlinearities. The resultant
theory describes reasonably well the response of alpha motoneurons to one or a few
synaptic inputs from Ia afferents (Burke 1990). A number of other cells, such as
subclasses of retinal ganglion cells, also appear to possess passive dendritic trees,
devoid of any significant membrane nonlinearities. However, the majority of neurons
do contain significant membrane nonlinearities in the dendritic tree. In particular, at
least two classes of calcium channels have been observed in the dendritic tree of most

central neurons, as have been fast and sustained sodium channels and a number of
potassium channels (Llinas 1988; McCormick 1990).
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The majority of modelers have neglected voltage-dependent conductances in the
dendrites (for an exception see Traub et al. 1991), both for reasons of computational
complexity as well as for paucity of hard data concerning the detailed distribution of
these currents and their kinetic description. This lack of data is grounded in the
difficulty of directly recording in the dendritic tree. Consequently, conclusions con-
cerning the nature of active conductances usually have to be inferred from recordings
done at the cell body. This biophysical complexity could, at least in principle, give
rise to computational complexity, in which, for instance, dendritic spikes subserve
threshold computations at many different dendritic locations prior to the spiking
threshold at the soma (Llinas and Sugimori 1980; Mel 1992).

A further complexity is the presence of voltage-dependent synaptic conductances,
in particular the glutamate-activated n-methyl-d-aspartate (NMDA) receptor. The
associated channel displays voltage-dependent behavior due to the blockage of the
channel by Mg2 * at voltages around the resting potential (i.e., =70 mV); more
depolarized potentials relieve this block. Since this ionic channel requires a conjunc-
tion of presynaptic neurotransmitter and postsynaptic voltage depolarization in order
to open, it has been proposed to underlie Hebbian learning. Indeed, experimental
evidence implicates NMDA receptors in the induction of some forms of associative
LTP in the hippocampus (Bekkers and Stevens 1990; Brown et al. 1990). Detailed
biophysical modeling (Mel 1992) has shown that a cell endowed with a population of
mixed NMDA and non-NMDA synapses approximates a multiplicative-like behavior,
instantiating a so-called sigma-pi neuron (in such a formal model, synaptic inputs
interact in a multiplicative-like manner prior to ssmmation at the soma). Poggio and
Girosi (chapter 7) argue that such units could undetlie interpolation-like learning
schemes (look-up table learning).

Following a discussion of these and other biophysical mechanisms possibly under-
lying information processing (such as dendritic spines, the influence of synaptic
location on function, gap junctions, dendro-dendritic synapses, branch point failures,
etc.), we agreed on “a” simple neuronal model (the Dahlem neuron) which, while
reflecting some of the biophysical complexity, would not impose too large a burden
on researchers studying the behavior of large neuronal networks. Such a simplified
neuron should include:

1. elementary, time-dependent, synaptic-induced conductance changes with vari-
able time constants;

multiple overlapping time scales in the conductances controlling excitability;
fast Hodgkin—-Huxley-like spiking mechanism;

bursts and plateau potentials (if they exist in the cell type investigated);

a small number (2—4) of dendritic compartments;

topology of the synaptic network interconnectivity.

S

What is important in this list is not the detailed form of, say, the conductance changes
or of the fast spiking mechanism, but that these mechanisms are included.
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Koch and Poggio (1987) proposed that a short list of biophysical mechanisms and
the neuronal operations they implement would prove to be very useful in under-
standing neuronal information processing. This approach is similar to C. Mead’s
(Mead and Conway 1980), who discussed the small number of physical effects
underlying computations in digital computer systems. Koch and Poggio argued for a
similar “biophysics of computation” program, in which various biophysical mechan-
isms are thought of as implementing specific formal operations, such a gain control,
multiplication, linear addition, etc. Their list has been recast and elaborated by Douglas
and Pamas in Fig. 6.1, which emphasizes the direct mapping of some significant
biophysical mechanisms and their neuronal operations onto a model neuron. In some
sense, it is our hope that this Daklem neuron will replace the much, much simpler
McCullough and Pitts neuron as the primitive building block in neuronal networks. It
is important to point out that the mechanisms listed are a subset of the mechanisms
known to exist in nerve cells. In particular, none of the biochemical or biophysical
mechanisms modulating the neuronal response via second messenger systems and
phosphorylation of ionic channels have been included here. Their time course makes
them less relevant for “fast” neuronal computations of the kind underlying perceptual

or motor tasks (i.e., a brief fraction of a second), but crucial for subserving adapation,
plasticity and learning,

MODELS OF COMPUTATION IN NETWORKS

The style of modeling neural networks is a trade-off between biological verisimilitude,
computational load, and functional abstraction. Thus the models range from very
detailed “rococo” models, with the number of neurons and types matching those found
in a particular biological circuit, to “baroque” simplified neurons in circuits that
preserve average connectivity, to the “postmodern” and “minimalist” networks com-

posed of highly simplified neural elements and the austere connectivity of artificial
neural networks.

“Rococo” Models

Typically the number of “neurons” Nmodel in these simulations satisfy Nmode] =
O(Nbiology), with an accurate connection topology (Traub and Miles 1991; Wilson and
Bower 1989). The individual neurons are usually of the compartmental type, with the
detailed dendritic geometry reduced to a few (4-20) compartments. The somatic
compartment contains active conductances that replicate the intrinsic excitability
characteristics of the particular cell types; active currents are added to dendrites ad
libitum. The conductances follow Hodgkin-Huxley-like dynamics, and the output will
demonstrate tonic, bursting, and adaptive discharges. Lack of experimental data may
limit the accuracy of the kinetics; however, both the membrane as well as the synaptic
currents should have correct overlapping of time scales. The fundamental idea
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underlying this sort of modeling is to create as accurate a model of the biological
circuitry as possible, with the aim of comparison with physiological experiments.

“Baroque” Models

In these models, simplification is achieved by replacing detailed connectivity with
average connectivity and by considering the interaction of populations of neurons
rather than individual neurons (see the target article by Douglas and Martin 1992).
Each population is represented by a detailed neuron with characteristics similar to
those described in the previous section. However, the spike output is encoded in terms
of firing frequency and used to represent the average discharge rate of the population.
The statistical variability of the population discharge can be approximated by con-
volving the spike output of the reference neuron with a suitable interspike interval
distribution. Models of this kind have been used to investigate the synchronization of
discharge in neocortical pyramidal cells (Bush and Douglas 1991).

“Postmodern” Models

Neurons in such models usually have two state variables: a fast variable corresponding
to voltage and a second, slower variable corresponding to accomodation or adaptation.
The best known one is the singularly perturbed system of FitzHugh (1961) and
Nagumo et al. (1962). These models reproduce most of the dynamical behavior seen
in biophysically more faithful models, but at a much reduced complexity, and have
lead to novel—and experimentally vetified—predictions (Guttman et al. 1980). These
single cell models have also been incorporated into simple networks and their temporal
evolution has been studied (Rinzel and Ermentrout 1989; Abbott 1990).

“Minimalist” Models

These are typical artificial neural network models (Hopfield 1984; McClelland and
Rumelhart 1988). The neurons are reduced to “neural-clements” that are usually
linear-threshold elements with graded input and output. They are connected in very
simple topologies, for example, three-layered, feedforward networks. These networks
are used to investigate synaptic learning and pattern recognition tasks or for analyzing
varjous perceptual tasks in cortex, such as optical flow or binocular disparity. Despite
their simplicity they are able to solve some interesting problems (Lehky and Sejnowski
1988; Zipser and Andersen 1988; Worgotter and Koch 1991).

The type of model that will be used for a particular application is a matter of
intuition and degree of experimental detail available as well as computational cost. It
is instructive to consider how properties of neuronal networks scale with size.

As argued by Traub, the number, 7, of synaptic inputs to a particular cell depends
on N, the number of neurons in the population, and p, the probability of connection,
such that I = Np. Clearly, if I and p must be preserved, then the number of cells in the
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model must agree with that of the original network. If it is necessary to reduce the
number of cells in the model so that Nmodel << Nbiology, then it will also be necessary
to change I, p, or both. Which strategy is used will depend on the problem in question.
For example, in an investigation of epileptic synchronization, it is the chain reaction
of excitation between neurons that is important. In this case, connectivity is irrelevant.
The model would be effective provided that I > 1, which ensures at least one
connection between cells (Traub and Miles 1991). In other cases the nature of the
physiological process may preclude reduction of N. Suppose we wish to understand
how recurrent inhibition regulates the influence that one pyramidal cell exerts on
another, randomly chosen, pyramidal neuron (Miles and Wong 1987). It turns out that
the excitatory effect of one neuron percolates along a series of postsynaptic targets,
progressively increasing the total network excitation. Clearly this effect depends on
the propagation of excitation across the network of individual neurons, and correct
simulation requires that Nmodel = O(Nbiology)-

Figure 6.1 shows that individual neurons can be decomposed into biophysical
mechanisms, which can be interpreted as computational “operations.” This interpre-
tation is influenced by a digital/logic view of neuronal computation. Moreover, it is
restricted to the level of single neurons. A different approach emphasizes analog signal
processing at subneuronal, neuronal, and network level (Shepherd 1972; Mead 1989;
Douglas etal., in preparation). By contrast with Fig. 6.1, this view stresses the adaptive
processes that adjust the performance of neurons to match their input, gain control,
signal/noise enhancement, signal restoration between computational stages, short- and
long-term memory, and signal averaging. The multi-level and multi-timescale nature
of these processes is exemplified by adaptation. In this case, the adjustment occurs on
a number of time scales and acts, e.g., via up-down regulation of channels, the balance
of activation of synaptic vs. extrasynaptic inhibitory channels, short- and long-term
constant feedback inhibition, and changes in dendritic time constant and length
constant due to prevailing spontaneous synaptic input. Rules of this type will then
allow us to reduce complicated circuits into simpler signal processing modules.

CONCLUSION

1. Neuronal modeling at both the detailed biophysical/anatomical level as well at
the more abstract computational level is widely accepted in the neuroscience
community today and represents an important tool in the armory of the
neurobiologist.

2. Given the immense diversity in receptors, ionic channels, and neuronal mor-
phology observed across species and within species in different parts of their
nervous system, each particular neuron and circuit needs to be modeled in its
own right. We did, however, generate a figure, formalized as the Dahlem
neuron, that emphasizes the more important biophysical mechanisms under-
lying neuronal computation. Thus, it appears that the autocratic reign of the
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simplified McCullough-Pitts neuron is being replaced by a democratic rag-bag
of neurons with very eclectic properties. Variations from one neuron to the next
are grounded in the evolutionary nature of the system and we may not be able
to derive them from computational considerations.

3. We simply do not yet know to what extent the observed bioghysical and
anatomical complexity is mirrored in computational complexity.

4. 'We are agnostic when it comes to making the transition from the simple systems
we can model today to the quantitatively much larger brain circuits we would
like to understand. As argued by Marder, our collective experience with circuits
of two or more neurons in invertebrates has shown that intuition is over-
whelmed by our inability to predict the consequence of small variations in
various parameters in these strongly coupled and highly nonlinear feedback
systems. This is one of the principal reasons experimentalists have enthusias-
tically endorsed and participated in neuronal modeling. At the moment, only
further trial-and-error experimentation and the further development of analy-
tical models of neuronal interactions will enable us to tell to what extent the
chiasm between simple neuronal systems and large-scale neuronal networks
can be bridged.

5. This calls for novel experimental techniques. Thus far, electrophysiologists
have been inhibited in their approach to large networks by the embarrassing
smallness of their tools (Douglas and Martin 1991). It is crucial that larger tools

be employed to derive insight into activities occurring in large neuronal
structures,
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