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1. INTRODUCTION

It is known that, given two preferencee, for every commodity
bundle x one can find continuous utility'functions u, ‘and “2' )
representing those preferences such that u, (x) < u, (x). i §
Moredver, it is known that for anv preference and . any real
numbers r, < r2 one can find a representlng utlllty functlon
such that for all commodity bundles x one has’r1 <u(x) < r2 .
We want to present a drastic sharpening of these two; ;
facts, which we became aware of in discussing results of
Weinberg (1981) on the characterization of welfare measuree;
We show that even for utillty representations Ugr Uy which

are comparable in the sense that minimal and maximal utllltles

o

are the same for both representaticns, one can arrange ;tth,; :
get u, (x) smaller than uz(x) for all commodity bundles x # O3

or vice versa.

Though the argument is stralght forward, the result is

new to our knowledge.
We first proved it only for co
(cf. Trockel - Weinberg (1981a)). Following a suggestlon of

Gerard Debreu we extended our Propositlon to the case of
r times continuously dlfferentlable utllity function,
1< <o (ef. Trockel - Weinberg (1981b)).

ntinueus utiiity functions

In the proof of the continuous case we us
one utility functlon

ed the functlonx

which associates with every level set of
the minimal value of the second utility function on thls“_“”

ish the continuity of this

level set. One way to establ ‘i
o—called kL

minimal-value function is to apply a version of the s

Theorem of the Maximum (cf. Varian {1978} ).
There are also versions of. this theorem for contlnuously

differentiable functions which would build a possible tool
for the extension to the differentlable case of our original

result.
However, proofs of those versions rely on the Implicit

m and are based, therefore, on same rank -

Function Theore
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conditions for the derivatives of the Lagrange function
associated with the parametrized optimization problem.

Such a rank condition parallels the condition of non-
vanishing Gaussian curvature of indifference curves in points
of demand, which is used in Debreu (1972) to get continuous
differentiability of the demand function.

In our case this kind of rank condition amounts to re-
quiring that the Gaussian curvatures of the respective indif-
ference hypersurfaces are different at the point of interest.

In addition to this restriction coming from the rank
condition, a general differentiability result for the maxi-
mum-value function can be expected only in the case of
unique maximizers, i.e., when preferences are strongly
convex.

There is, however, a way to get the desired result
even in the case of non-convex preferences and without a re-
stricting rank condition. For this one has to replace the
minimum-value function by a smooth (Cm) function doing the
same job. A standard mathematical technique of smoothing is
the convolution with some smooth function (cf. Lang (1969)).

The essence of the proof in the present paper consists
of the choice of a suitable function to convolve with: i.e.,
such that the resulting smooth function inherits all the
Froperties of the minimum-value function which are necessary
fcr the proof in the orlglnal continuous Ltllity case.

At the end we discuss the consequence of our result
for Rawlsian social choice.

2, RESULT

Consider £ > 1 commodities. Let IRE be the consumption set
for all agents. Assume the agents' preferences, § , to be

reflexive, tran51t1ve, complete, and continuous binary

relations on IRz
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Continuity means that for all x EIRf the sets

{y GJRf_ | x £y} and {y EJRE | vy 4 x} are closed.
Moreover, we assume that except for the origin, which is an
absolute minimum for all preferences, there are no local
extrema at all. In case of smooth preferences this is fulfilled
whenever preferences are locally non-satiated.

Finally, we assume for each preference<$ the following
perfect substitution assumption*):

For all x EIKE and for all h € {1,...,£} there exists
a positive number N such that

x < Neh ; where e, is the unit vector having all compo-

nents zero except the h-th one. o

If we speak of a preference in the following it is always
understood that it has all the properties listed above.

We are going to prove the following
Proposition: Consider any pair u;, U of continuous utility
.functions_représehting the preferences(1 y Ry 0

respectively.
If u, € c(mrh,
utility function ﬁ1 , equivalent to Uy e

such that

**)'0 < r < =, then there is a

i) 9, € cr(mf)

ii) sup 4, (x) = sup u,(x)
e ! i
¥R, R,

iii) ianGT(x) = inﬁzuz(x)
X€ER XER

+

T | .
iv) 51(x) < u,(x) for every x €R, ¥+ 0.

*) In technical terms: the indifference surfaces have .to be

bounded.
**) £ € c'(X) means that £ is continuous and I times
continuously differentiable on X .
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The proof of the Proposition relies on the following
two lemmas.

Lemma 1:

Let ,; {2 be two preferences represented by
continuous utility functions Ugr Uy g respectively.
Let a = u,(0) and b = sup,u, (x). Then the
function V: {a,b) » IR XEIR+
defined by V(t) = inf'{uz(x) | x € u;1(t)} has the
following properties:

i) Vv 1is continuous

ii) V is increasing, i.e. (t> £') = (V(t) > V(E"))
iii) v(a) = u,(0) ’

iv) sup V(t) = sup, uz(x)

t€la,b) x€IR+ .
v) V(u1(x)) < uz(x) for all x €IR_.

For a proof see Trockel-Weinberg (1982).

Lemma 2:

Proof:

Let V : [a,b) » IR be continuous and increasing,
-0 < g < b g o , Then there is a function
¥: [a,b) » R such that

i) ¥ e c®(la,b))
ii) V¥ is increasing
iii) V(a) = v(a)

iv) sup Y(t) = sup V()
tela,b) . t€[a,h)

v) V(t) < Vv(t) for all t € (a,b) .

Let A,u: IR »IR be the functions defined by .

0 t =<0
A(t) '

n(e) = 2LENAU-L)
zk(s)k(1-s)ds
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and let V: (-=,b) » IR be defined by

(V(t) t € (a,b)

Vit) =
‘LV(a) t < a

Define the function V: (-»,b) » R by

Vi) = }u(s)-ﬁ(t-s)ds .
O .
The function U restricted to [a,b) has the properties
i), ii), iii) and v), independently of the specification of b .
It is ¢ since it is defined by convolution with a
c® function (cf. Lang (1969)).
It is increasing on [a,b) by definition since v is so .

1 1
V(a) = [u(s)V(a-s)ds = [u(s)V(alds = V(a) .
0 . : 0 .

¥(t) < v(t) on (a,b) because V is increasing.
Now assume that b = « . Then we have for all.t

- 1 _ 1 _ - 1 _
V(t-1) = fu(s)V{t-1)ds < fu(s)V{t-s)ds = F(t) = Ju(s)V(t)ds =
0 - o . | 0

= V(t) .
Since sup V(t-1) = sup ¥(t) , this chain of inequalities
telaw)  tela,®)
implies sup V(t) = sup W(t) = sup V() .
tela, =) t€[a,») tela,»)

Hence also property iv) holds in this case.

Consider now the case b<ew.
We want to define a gecond function ¥ which is defined on

some interval (b-g,b) and has properties i), i), ivl and v).
unction V we will glue together V and

Once we have this f
on having all of

¥ in a smooth way and by this get a functi
the five properties of Lemma 1. ‘

d = sup V(t) <=

Let us first assume that
tefa,b) .
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Denote V{a) = c. Define V*: [a,b) -+ IR by
V¥(t) =d + ¢ - V(t) .

Obviously, V*([a,b)) = (c,d). Since V* is decreasing on [a,b)
the inverse function V"‘_1 = U : (¢,d] » IR exists and is

increasing. Now define U : (~«,d) » IR by

U(t) T € (c,d)

inf U(o) = b T <C
o€ (c,d)

Define U : (-»,d) > R by

1T
U(t) = fu(o)U(1t~0)do .
0

Obviously, U is increasing and ¢C on (c,d) since defined by
convolution with tne_,Co° function y. We also have U(1) < U(T)

for all 1 € (c,d) and U(c) = U(c) =b = inf U(o) .
. g€ (c,dl] 1

Since U is increasing on (c,d) the inverse function U
is- definéd and decreasing:on (a,b) = T((c,d))}- - ;
) Next we will show that also ‘"' is ¢*. For this it
suffices to show that the derivative U' of U does not
vanish on {(a,b). We use the following-two facts. First, for
the derivative of U , which is defined by convolution, we have
at every 1 € (c,d)

U'(t) = (u x 0)' (1) = (u' x 0) (1)

i.e.
1

U' (1) = [u'(0)T(t-0)do .
o :

Secondly, by the symmetry of the function u we have
0 < =-u'(g) = u'"({1-0) for all o € (1/2,1).
Hence we get by substituting 1-¢ for o € [1/2,1]
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1 _ 1/2 _ 1/2 .
fu'(o)0(t-0)dc = [ p'(o)U(r-0)do - [ u'(o)U(1-(1-0))da
0] (0] 0
1/2 ) )
= { u'(o)[U(t=0) = U(r-(1-0))]do .
(0]

since U is increasing on (c,d) for every 1T € (¢,d) both
factors of the integrandkhence the integral,is positive. Now,
define the ¢~ function V : (a,b) -» (c,d) by

Fe) s=a+c-T ).

~ .
¥ is increasing since U T is decreasing on (a,b).

Ft) =a +.c =T (k) <@+c - V(L) =VIE)
sup %(t) =d = sup v(t) .
te{a,h) t€(a,b) -

Hence, in the case b < = the function V has the

desired properties. _
) Consider now the case [a,b] = [a,~) -

First {a,») is mapped onto (0,®) by the increasing
c” diffeomorphism £ w t-a . Then (0,=) 1is mapped by the
increasing ¢~ diffeomorphism t » arctan t onto (0,7/2).
Composition of ¥ with these two maps reduces our problem
to the case of finite b which we treated above. In fact, now

we have the situation a = 0, b = /2,

Now, we will glue together the functions V and v.

Define the C. function y :IR = [0,1] by

b b
y(t) = Il(s-b+8)1(b"s)ds//' bj A{s-bte) A (b-s)ds .
t - b-e

Define ¢ : [a,b) - DY

3
Gty = Y(0)F(E) + (=Y (E)VIE) -
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i) % is C” since v, ¥ and Y are so.

ii) ¥V anda ¥V are increasing. For increasing t also the
weight (1 - y(t)) of ¥(t) increases. Since
Yt) > ¥(t) for all t € (b-e,b), the function ¢ is
increasing by definition.
ii1) ¥a) = ¥(a) = v(a)
iv) sup G(ﬁ) = sup Vi) = sup V(t) = sup v(t)
Ee[a‘,b) t€ (a,b) t€(a,b) t€(a,bL
v) V(t) < V(t) for all t € (a,b) since ¥V and V have
this property.
' ' qg.e.d.

Proof of the Proposition: According to i) and 1ii) of
Lemma 1 the function Vv : [a,b) - R,

t b V(t) = inf {u,(x) | x € u;1(t)} satisfies the assumptions
of Lemma 2. ‘

Now define E1 as 51 =V o u, , where V is defined as
in Lemma 2. Now the properties of G% claimed in the Proposi-

tion are an immediate consequence of Lemma 1 and Lemma 2.

q.e.d.

Remark: Our result allows for an alternatiye symmetric formu~
lation. For simplicity's sake we will state this
only for the case of continuous utility functiOhs-
The extension to the smooth case is immediate.

Corollary: For any two preferences qu ' {2 and for any
a € (0,») there exist continuous utility function$
u, and u, representing <§; and $q
respectively such that
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i) u,(0) = inf u, (x) = inf u,(x) = uz(O) =0
' ®E er’
*E8
ii) sup u1(x) = sup uz(x) = a
£ £
:<€IR+ x(ﬂR+

i11) u (x) < u,(x) for all x e RV (o) .

The corollary is an immediate consequence of the propo-
sition and of the following Lemma 3. The proof of Lemma 3 is
straightforward and can be found in Trockel-Weinberg (1981a).

Lemma 3: For any preference and any a € (0,] there is

a continﬁOus utility representation u such that

inf u(x) = 0 and sup u(x) =a .
2 £
}{Eﬂ&+ XEIR_+

3. CONCLUDING REMARKS

Our result allows for an ‘application in social choice theory.
This is shown for a generalization of the continuous case in
Trockel-Weinberg (1982). Consider the following game for

individuals, having preferences on some choice set of alter-

natives. Each individual's strategy space is the set of

normalized cardinal utility_representations of his true

preference. Given the Rawlsian social choice function, which

associates with each tupel of strategies a feasible alterna-

tive such that the least individual utility level is maximal,

the outcome is determined by the utility of that alternative.
The result shows that there does not exist a Nash-equi-

n the case where the true (ordinal) preferences

Given the representation of the others, each in-
ranteing him dictator-

which was introduced

librium (even i
are revealed).

dividual may choose & representation gua
ship. This shows that the Rawlsian Rule,
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for ethical reasons - making the least privileged member of

the society best off -~ is not practicable due to an inherent
conceptual weakness.
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