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Abstract

The discrete lot-sizing and scheduling problem (DLSP) has been suggested for the simulta-
neous choice of lot sizes and production schedules. However, the common assumption of
instantaneous availability of the manufactured units is not satisfied in practice if the units arrive
in inventory in one batch no earlier than completion of the whole lot. Therefore, we present
additional constraints for the case of batch production. The resulting extgnded DLSP is
formulated as a mixed-integer linear program. The feasibility problem of this modification to
the standard DLSP is again NP-complete. A two-phase simulated-annealing approach is
suggested for solving the modified DLSP. Since DLSP is a finite-time-horizon model, sensible
target inventories have to be determined. Numerical results are presented for different problem
classes.

1. Introduction

One of the most challenging problems in production planning has been the simultaneous
choice of lot sizes and production schedules in order to minimize cost. In the early 1960s,
mixed-integer linear models were proposed in the economic literature to cope with this
situation, e.g., Adam [1963] and Dinkelbach [1964]. Their principal idea is to divide the finite
time horizon into (small) time intervals in which the machines can be used either for
production of at most a single product, or can be setup for such a production. Recent interest
in these models, now popular as the single- or multi-machine discrete lot-sizing and
scheduling problem (DLSP), stems from the development of new algorithms to solve these
problems. Fleischmann [1990], for example, suggests an exact algorithm for the single-

machine multi-item case with zero setup times. A comprehensive reference to these algorithms
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is given by Salomon [1991). After showing that generating feasible solutions for the single-
machine multi-item DLSP with non-zero setup times is NP-complete, he suggests a heuristic

based on Lagrangean relaxation.

All these modelling approaches pertain to the case of instantancous availability of the
manufactured units prior to the completion of the lot. However, this assumption is not satisfied
in practice if the units arrive in inventory in one batch no earlier than completion of the whole
lot. Therefore, we introduce additional constraints in order to model the case of batch
production. The resulting extended DLSP is formulated as a mixed-integer linear program. For
solving this problem a two-phase simulated-annealing (SA) approach is suggested because of
the general applicability of SA (Kuik and Salomon [1990] apply SA to the related multi-level
lot-sizing problem).

In many cases, there is no natural time limitation for production processes and demand will
be stochastic. Hence, finite-time-horizon models are applied repeatedly (rolling application)
in order to solve approximately the underlying infinite planning problem and to incorporate
new estimates based on more available data in each planning instance. In this context, a
special emphasis is put on the final inventories. Therefore, we determine sensible inventories
by a parametric application of the modified DLSP-model to the expected demand. These
inventories can be used as target (final) inventories for production planning in rolling ap-
plication, while actual (final and therefore new initial) inventories result from the deviation
of realized from estimated demand. Positive initial inventories yield more feasible production
schedules with respect to the demand restrictions with additional cost saving potential.
Therefore, optimal target inventories will also not be zero for all products simultaneously.

2. The DLSP in the Case of Batch Production

Ordinarily, DLSP is formulated for N items and a finite-time horizon of T time units. Here,
production scheduling and demand should be considered on different time scales: Typically,
demand can be estimated for example as demand per day, while the DLSP requires a less
coarse discretization of the time axis due to the underlying idea that during one time unit (e.g.,

hours or 30-minute intervals), the machine can be used at most for setup or production of only
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one ilem (see constraints (4) below). Hence, the time units for DLSP will be chosen to be the

greatest common divisor of sctup times and minimal production times for all items. The
different time scales of demand and scheduling yield a division of the planning period T into
M (demand) subintervals of lengths T,.-T,,, (m=1,...M; T,:=0; T,.=T) where demand d;, for
product i is positive only at times T, (le.ZO and d =0 1=1,..T; =T m=1,_.M,

i=1,..N).

A production schedule is a matrix (v,y)=((v;,), 04)) where

v are zero-one variables indicating setup in period 7 for production of product
i and
Yo are zero-one variables indicating production of product i in period ¢ with

¥ir.,=0 for formal reasons.

Then the objective is to minimize the sum of setup and inventory holding cost
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The objective (1) and constraints (2), (3) and (4) are taken from the standard DLSP [Salomon
1991, pp. 34 and 43]. Again, r; in (1) are sequence independent setup costs per setup period
and the inventory holding costs are given by the product of parameter A, (costs per unit and
period) with nonnegative inventories /,, The demand-satisfaction constraints (2) of standard
DLSP describe the dependence of current inventories on the inventories of the preceding
period, the quantity of the corresponding item produced (where o, is the production speed) and
the demand. The correct sequence of setup and production periods is modelled in equation (3)
where a;>0 is the corresponding number of setup periods. Constraints (3a) are additional to
the DLSP formulation due to Salomon [1991] and prohibit production of item i in periods
1,...,a; with no preceding setup. Constraints (4) are used to prevent simultancous action (setup
or production) on the machine.

These constraints alone do not pertain to the case of batch production. While the inventory
including work in process I;, (as described above) is required for computing holding costs in
(1), the last batch begun before time ¢ is not available for satisfying demand if the production

process of this batch is not finished by ¢. Therefore, we introduce inventory 7, which is

already available in demand instance T,,. In order to mode! this available inventory, some
auxiliary variables and constraints (5) - (12) are needed: Here, zero-one end-of-batch variables
e, indicate the production of the last unit of the current batch in r by e,=1. End-of-batch
constraints (5) - (7) are similar to setup constraints (3). E,,, V,, and D,, are set in equations
(8) - (10) to the cumulated number of completed batches, number of setup time units and a

correction term, respectively. This correction term is required to determine zero-one variables

¥im Which are then used in (13) to define the auxiliary inventory 7, of available units. It

should be noted that y,, vanishes even if the decision variable y, is equal to one, if period
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t is used for production of item i in a batch which was started before but has not been
completed by T,.. This behaviour of the auxiliary variables ¥, is guaranteed by constraints
(11) and (12), where the latter consists of two parts both of which are zero in the case of
incomplete production at time T,;: In this case, the difference between cumulated number of
setup periods before 7, and before ¢ S T,, is greater than zero for all batches that are
completed before T,,, while the second bracket is positive only in the case of no production

extending in time over T,.. Moreover, 7, may also vanish despite completion of the batch by

T..if not all of the units produced are needed to satisfy demand in 7,,. Note, that the auxiliary
inventory l:._ will be smaller than the actually available inventory only in this case.

Constraints (14) and (15) are the standard non-negativity and binary constraints, respectively,
for the decision and auxiliary variables. Initial inventories can be thought of as given constants

while final (target) inventories are implicitly included in the demand of period T.

Salomon [1991] shows NP-completeness of the feasibility problem of the DLSP with non-zero
setup times. The modified DLSP is also in NP, because feasibility of any given structure
(production schedule) for any problem instance can be checked in polynomial time. Since any
instance of the standard DLSP can be transformed to an instance of the modified DLSP (again
in polynomial time) and a feasible production schedule for the modified DLSP is also feasible
for its standard version given essentially by constraints (2) - (4), the standard DLSP reduces
to the modified DLSP which is then also NP-complete [Florian et al. 1980].

3. The Two-Phase Simulated Annealing

Simulated annealing is a multi-purpose heuristic for the solution of combinatorial optimization
problems that was first suggested by Kirkpatrick et al. [1983] and Cerny [1985). A neighbour-
hood structure is superimposed on the (usually finite but large) space of feasible solutions
(configurations or in this context production schedules). Given such a feasible configuration
(V... .y.) a candidate solution (V.. Y.s) is drawn randomly from the corresponding

neighbourhood. This new configuration will be accepted subject to either improvement of the
objective function or another random experiment with acceptance probability given bye ¢/
where AC=C(v_,y..) -C(v,,.y,) is the difference of the cost function values of the

candidate and the current configuration. y is a control parameter corresponding to temperature
in the original physical analogue in thermodynamics [Metropolis et al. 1953]. Infinite
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repetition of this procedure with a fixed value of control parameter ¥ can be viewed as one
realization of a homogeneous Markov chain where the current state of the Markov chain is
the last accepted configuration. Iterative reduction of the temperature (i.e., y) yields a sequence
of such Markov chains and it can be shown [Mitra et al. 1986] that, roughly spoken, the
sequence of configurations converges asymptotically to a globally optimal solution, almost
surely. Besides this convergence behaviour (although efficiency compared to tailored
algorithms is usually poor), the main advantage of SA relative to other (tailored) solution
methods suggested is its general applicability. Solving a specific problem with SA requires
only determination of a neighbourhood structure and an appropriate cooling schedule (i.c.,
choice of the sequence of control parameters ¥y and number and length of the finite
approximations of the homogeneous Markov chains). Van Laarhoven [1988] discusses
different cooling schedules and application of SA to selected combinatorial optimization
problems. However, it is important to point out that the neighbourhood choice is usually
performed on the set of feasible configurations only. Feasibility in the context of the modified
DLSP is mainly given by the demand-satisfaction under batch production (13) and setup
constraints (3) - (4). For a general problem instance, it is therefore necessary to construct an
initial feasible solution disregarding costs and to optimize with respect to the objective
function in a second phase. The overall structure of the two-phase algorithm outlined in the
following two sections is similar to the two-phase simplex method for the solution of linear

programs.

The neighbourhood structure for a given production schedule (v,y) is defined by reducing (v,)
to a "pure” production schedule y™* by physically eliminating setup periods. An element (v, ,
y,l,,) out of the neighbourhood of (v,y) is then obtained by exchanging the activities of two
arbitrary periods in y”™* and cxpanding (i.e., inserting setup periods in front of each

production batch and shifting later production by the corresponding number of time units)
Yim 10 (V,,.¥,a). During expansion of y22* to (v,,, Yo 2 Necessary condition for feasibility

(the last batch must be finished in or before period T) is checked and if this condition is
violated another configuration is drawn out of the neighbourhood of (v,y).
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.1 P 1: h for a ible Production Pl

The procedure described above does not ensure feasibility in the sense of (2) to (15) since the
demand-satisfaction constraints might not be satisfied. Therefore, a first production schedule
is chosen to consist of a single batch for each item where the baich size is determined to
satisfy the cumulated demand in T and production is carried out immediately. For this
situation, initial inventories are computed in order to fulfil the demand satisfaction constraints
(13) in each demand instance. Afterwards the sum of the positive deviations of these
hypothetically needed inventories from the actual inventories form the objective function and
are minimized in phase 1. As in the simplex method, a feasible production schedule is found
if this sum vanishes. SA will yield more feasible (in the sense that production is finished by
T) production schedules by restricting the exchange to active production periods only contrary
to the exchange of activities which also include the final idle periods.

3.2 Phase 2: Search for a Cost-Optimal Production Plan

The actual optimization with respect to the cost function is carried out in phase 2. Here, the
same neighbourhood structure is used, but exchanges are now carried out between arbitrary
(active and idle) periods of y ™. Production schedules that are not feasible in the sense of
(13) are not considered as candidates. Thus, feasibility is preserved before cach acceptance

in phase 2 subject to the acceptance criterion corresponding to the original cost function (1).

4. Parametric Optimization of Target Inventories

In chapter 2 the modified DLSP was introduced for the situation of deterministic (possibly
estimated) demand and given inventories. In most practical situations, the scheduling problem
arises in the context of rolling application with stochastic demand. Especially here, it is
important to find a sensible set of inventories which can be used as target inventories at each
planning instance. Actual final inventories are the initial inventories of the next interval. It
should be noted that these inventories will differ from the target inventories in practice due

to the deviation of realized from estimated demand. In this situation, demand is to be modelled
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by random demand variables. In order to find a set of sensible target inventories, the stochastic
demand variables are replaced by their expected values. For this demand structure, final and
initial inventories are assumed to be equal and varied parametrically in a modified DLSP
application in order to find a cost optimal set of target inventories. Additionally, sensible
target inventories for the stochastic application will usually contain a safety stock component

in order to compensate for the deviations of the realized from the estimated demand.

5. Numerical Results

Demand schedules are generated randomly for the numerical evaluation of the modified DLSP
solution procedure suggested in the preceding paragraphs. We consider planning horizons of
maximal length of 60 periods and up to six products which are distinguished into up to three
different categories depending on their demand expectations and variances. These consist of
products with high expected values and low variances, intermediate moments and finally of
products with low expected demand and high variances. Every tenth period is a demand
instance for all products. Demand for each product is measured in how many units can be
produced during one production period. Thus, all production speeds are equal to one.
Similarly, inventory costs for all products are assumed to be equal and unity. Setup of one
period is required for each product and the corresponding costs are set to 60.

The solution procedure is programmed in FORTRAN 77 and implemented on an IBM PC with
an 80 486 / 25 MHz processor for the parametric application of DLSP, and on an IBM
compatible NEC PC with an 80 486 / 20 MHz processor for the case of random demand. The
computation times required for solving the parametric DLSP on the first computer turn out
to be approximately 80 % of the computation times on the slower processor. We use a
geometric cooling schedule, the number of repetitions is given by "acceptances max constant”
and no acceptances at one temperature stage is used as the stopping criterion (for notation see
Collins et al. [1988]; the parameter values are given in table 1). Note that SA parameters used
for the numerical experiments below are constant while they should be problem-size dependent

for application to general problems. In most practical applications, finding a feasible
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Parameter Phase 1 Phase 2
Initial Temperature 10 100
Reduction 09 0.9
Max Number of Acceptances 120 70
Max Number of Repetitions 10 000 1000
Number of Reductions 50 50
Table 1: Parameters of Simulated Annealing Cooling Schedule

production plan will be of primary interest when cost parameters arc not easily estimated.

Therefore, the cooling schedule for phase 2 (optimization) is chosen to be coarser than for
phase 1 (feasibility). Suboptimal solutions obtained by this rough procedure are improved by
shifting batches to the right in order to fill unnecessary gaps.

To determine a set of sensible target inventories, we use the rounded expected values for the

demand in the demand instances. Due to computational restrictions (e.g., there are 10°

different inventory combinations for six products if inventories vary from 0 to 9), only
preselected initial and final inventories are tested in the parametric application of modified
DLSP. For each inventory configuration, this problem is solved 25 times with different
initializations of the random number generators due to the stochastic nature of the solution

procedure. The results of the best five of all investigated inventory configurations are given

in table 2.
Inventory Average CV" of Number Average CPU CV? of
Cost Cost of Best Time (s¢c) CPU Time
202000 1026.84 3.58 6 301 9.9
201000 1027.52 3.15 5 298 99
201100 1041.96 335 3 295 110
302000 1045.60 223 1 309 79
402000 1048.80 3.15 1 301 1.7
Table 2: Parametric application of the modified DLSP to selected inventory configurations
2 (Coefficient of Variation) 100
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Typically, asymmetric initial inventories yield the lowest costs despite the underlying
symmetric demand structure where each product category consists of two identical elements.
This result can be explained by the trade-off between the size of the set of feasible solutions
(which is larger for higher initial inventories) and the contribution to the final objective-

function value from the holding costs for the initial inventory.

The inventory vector (2,0,2,0,0,0) yields the lowest average cost value and outperforms the
other invetigated inventory configurations in 6 out of 25 repetitions. Safety stocks are set to
one unit for every product which yields target inventories for the DLSP of (3,1,3,1,1,1) for

products 1 to 6. This inventory vector is used as initial and target inventories for the modified
DLSP.

During the numerical experiments for the modified DLSP with randomly generated demand
structures it turns out to be necessary to differentiate between hard and easy problems. As an
elementary indicator of difficulty, we use the ratio of the total demand plus one setup period
per product and the length of the Planning period. Problems with an 85 % or higher degree
of difficulty are considered to be hard. Note that two problems with the same elementary

degree of difficulty can be quite different with respect to actual difficulty due to different
demand distributions over time.

One 3-product / 30-period (3/30) problem with a 63.3 % clementary degree of difficulty is
solved exactly by LINDO-386 on the IBM 80486 / 25 MHz after more than 48 hours of
computation. The same optimal solution is found much more rapidly (with an average CPU
time on the 20 MHz machine of 95.2 seconds) by the two-phase simulated annealing algorithm
in five out of ten repetitions while the other five solutions are near optimal with a coefficient
of variation of 2.63 %. Note that the CPU times for our solution procedure can be improved
by adapting the parameters of the cooling schedule (Table 1) to the actual problem size. Due
to the extremely high computation time required for the exact solution, we use the coefficient
of variation of the final objective function value for ten different realizations as a criterion of

stability and quality of the solutions found instead of the true optimum.
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Degree Number Average Average CV" of Unsolved
3730 of of cv? CPU average Problems
Difficulty | Problems of Cost Time (sec) CPU Time
Easy 70 - .84 15 227 103 94 -
Hard 85-92 15 207 103 16.7 -
Table 3: Results for the 3-product / 30-period DLSP
") (Coefficient of Variation) 100

The results obtained for the two different classes of difficulty are given in table 3 for the 3/30

problem, and in table 4 for the 6/60 problem.

Degree Number of  Average Average CV? of Unsolved
6/60 of Problems cv? CPU average Problems
Difficulty of Cost Time (sec) CPU Time
Easy 65 - .84 15 3.25 409 109 -
Hard 85-.92 15 292 747 41 133 %
Subclass 1 .85-.92 10 348 540 15 -
Subclass 2 85-.92 5 1.81 1185 88 40 %
Table 4: Results for the 6-product / 60-period DLSP
" (Coefficient of Variation) 100

For each of the 15 demand situations we compuie ten repetitions with new seeds for the

random number generator. In
most 5 %, indicating stable results. Co
a high elementary degree of difficulty. In particular,
of computation time for the 6/60 problems. The two-ph
sensitive to higher demands at the beginning of the planning
be an explanation for the substantial differences in computing

instances. A further natural subdivision of this class is found into pro

both cases, the coefficients of variation for the objective are at
mputation times tend to be higher for problems with
phase 1 can require a significant amount
ase solution procedure seems to be
period. This observation might
times of the hard problem

blems with an average

computation time similar to the class of easy problems and on the other hand problems which
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exceed 1000 seconds of required CPU time. In this latter class only, it happens that phase 1

of the algorithm is unable to find a feasible solution on several occasions. This may again be
due to the fact that the set of feasible solutions is in general smaller for a high demand density
towards the beginning of the planning period. This hypothesis is supported by the small
coefficients of variation of the final objective function value. A specific problem instance is

given in table 5 as an example for high demand distribution during the first two subintervals.

Demand 10 20 30 40 50 60
1 1 4 1 2 3 1
2 3 2 1 2 2 2
3 4 2 0 0 1 0
4 1 2 2 1 1 1
5 0 0 1 2 0 1
6 0 0 3 1 0 0
Table 5: Demand structure for a hard 6/60 problem

The elementary degree of difficulty is 88.3 % and a feasible solution is given in figure 1
(R stands for setup periods while production is indicated by 1).
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Figure 1: Production Schedule for the demand structure of table 5

This is the only feasible solution that is found by phase 1 in ten repetitions after 1204 seconds

of CPU time.
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6. Su and clusions

The problem presenied here differs from the standard DLSP given for example by
Salomon [1991] in considering the case of batch production, not necessarily vanishing
inventories, and in using different time scales for production scheduling and demand. The
feasibility problem for this modified DLSP is shown to be again NP-complete. The suggested
two-phase simulated-annealing solution method is based on intuitive ideas. The optimization
procedure is separated into phase 1 searching for a feasible solution and optimizing cost in
phase 2. Production schedules are generated by dividing, combining and shifting batches. The
numerical experiments presented indicate that our heuristic solution method yields stable
results in short computation times compared to the exact solution obtained by LINDO-386.
This is not surprising because of the large number of integer variables required in the
proposed mixed-integer linear model. The solution procedure can be readily applied to larger
problems where stable solutions will be obtained with reasonable computation times by a
problem-size dependent choice of the cooling schedule. In contrast to the prohibitive
computation times required for the exact solution, our SA approach allows the numerical

sensitivity analysis of cost parameters which are often not easily estimated in practice.

References

Adam, D.: Simultane Ablauf- und Programmplanung bei Sortenfertigung mit ganzahliger linearer
Programmierung, Zeitschrift fiir Betriebswirtschaftslehre 33 (1963), 233 - 245.

Cemy, V.: Thermodynamical Approach to the Traveling Salesman Problem: An Efficient
Simulation Algorithm, Journal of Optimization Theory and Application 45 (1985) 1,
41 - 51

Collins, N.E., R.W. Eglese, B.L. Golden: Simulated Annealing - An Annotated Bibliography,
American Journal of Mathmatical and Management Sciences 8(1988) 3 & 4, 209 -
307.

Dinkelbach, W.: Produktionsplanung, Witrzburg Wien 1564.

Fleischmann, B.: The discrete lot-sizing and scheduling problem, European Journal of Operations

Research 44 (1990), 337 - 348.

Florian, M., JK. Lenstra, A.H.G. Rinnooy Khan: Deterministic Production Planning: Algorithms
and Complexity, Management Science 26 (1988) 7, 669 - 679.

Kirkpatrick, S., C.D. Gelatt, M.P. Vecchi: Optimization by Simulated Anncaling, Science 220 (1983),
671 - 680.




472

Kuik, R.,

Metropolis, N.,

Mitra, D,

Salomon, M.;

Van Laarhoven, PJ.M.;

M. Salomon: Multi-level lot-sizing problem: Evaluation of a simulated-annealing
heuristic, European Journal of Operations Research 45 (1990), 25 - 37.

A.W. Rosenbluth, M.N. Rosenbluth, AH. Teller, E. Teller: Equation of State
Calculations by Fast Computing Machines, The Journal of Chemical Physics 21
(1953) 6, 1087 - 1092.

F. Romeo, A. Sangiovanni-Vincentelli: Convergence and Finite-Time Behavior of
Simulated Annealing, Advances in Applied Probability 18 (1986), 747 - 771.

Deterministic Lotsizing Models for Production Planning, Berlin 1991.

Theoretical and Computational Aspects of Simulated Annealing, Ph.D. thesis, Erasmus -
Universiteit, Rotterdam 1988,



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 

