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DLSP for two-stage multi-item batch production

W. BRUGGEMANN and H. JAHNKE#

The standard mixed-integer linear model formulation for the multi-item discrete
lot-sizing and scheduling problem (DLSP) is extended by additional partially non-
linear constraints for the case of two-stage batch production. The corresponding
feasibility problem is NP-complete in the case of non-zero setup times. A simulated
annealing approach is suggested for computing production schedules on both
stages. Numerical results are presented.

1. Introduction

In general, manufacturing is a multi-level process, where coordinating the different
stages requires additional effort compared to single-stage problems. The multi-level
lot-sizing problem deals with choosing cost-optimal lot-sizes in the case of un-
capacitated (MLLP) or capacitated (MLCLP) production facilities. For the MLLP,
some research on serial and assembly product structure is reviewed by Salomon (1991).
The MLCLP is known to be NP-hard even for a single product (Chen and Thizy 1990).
Salomon (1991) reviews bricfly the literature on the MLCLP and suggests heuristics for
the single bottleneck case. Maes et al. (1991) present heuristics for the MLCLP with
capacity constraints on more than one production stage. However, these approaches
do not consider the sequencing of the batches within a production pertod. In contrast,
the discrete lot-sizing and scheduling problem (DLSP) is a deterministic production
planning model for the simultaneous cost-optimal choice of the lot-sizes and the
sequence of jobs in the multi-item case. The principal idea of the DLSP is to divide the
finite time horizon into (small) time intervals in which the machines can be used either
for production of at most a single product, or can be set up for such a production. By
considering only finite production speeds, the manufacturing capacity is limited. A
comprehensive reference to the DLSP is given by Salomon (1991). Drex] and Haase
(1992) explore the similarities of different model types suggested for the lot-sizing and
scheduling problem,

The standard DLSP pertains to the case of instantaneous availability of the
manufactured units prior to completion of the lot. But in practice units may arrive in
inventory in one batch no earlier than completion of the whole lot. The DLSP is
modified for this case of batch production by Briiggemann and Jahnke (1993). Salomon
(1991) shows that generating feasible solutions for the standard DLSP with non-
vanishing setup times is NP-complete, which is also true for the version modified for
batch production. Especially in this latter case, exact algorithms will be time-
consuming, if they succeed in finding a solution at all. However, in practical
applicationsit is desirable to study the sensitivity of the optimal schedules to changes in
the cost parameters which are often not known precisely. Moreover, quick responses to
changing data are needed in applied production planning. These tasks can only be
accomplished by fast heuristics even though the solutions proposed might be
suboptimal.

tInstitut fiir Logistik und Transport, Universitit Hamburg, Von-Melle-Park 5, 20146
Hamburg, Germany.
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The coordination of production in the multi-level case can be carried out by storing
a sufficient amount of inter-stage inventory or by synchronizing the stage-individual
production schedules. Increasing inter-stage inventory yields an enlarged degree of
independent action on each stage at the price of higher holding costs. In the case of
batch production, the restrictions of upstream requirement for the following manu-
facturing stage are even more prominent, since final-stage production may start only
after components become available by completion of the whole batch on the
preprocessing stage. In order to model the case of two-stage batch production for a
single machine on each stage, we introduce additional constraints in §2. Note again
that finite production speeds imply limited capacity on each stage. The resulting
extended DLSP is formulated as a mixed-integer, partially non-linear program. It can
easily be concluded from the single-stage case that this problem is also NP-complete.
For solving this problem, we suggest a heuristic based on simulated-annealing (SA)
because of its general applicability (§3). Numerical results are presented in §4.

2. DLSP in the case of two-stage batch production

In the following, we assume that N® products are manufactured on the final
production stage 2, each using a certain number out of the NV components from the
preprocessing stage 1 for which there is no (external) demand. In order to model this
two-stage manufacturing, constraints are introduced in the subsequent section
describing demand schedule and batch production on each stage separately. We
assume that capacity utilization can be planned independently for production on each
stage. This part of the model is developed from the single-stage case in Briiggemann and
Jahnke (1993) whereas the interdependencies between the two production stages are

modelled in §2.2. Here, the requirements (internal demand) for components are
generated from the current production schedule of the final stage.

2.1. Stage-individual batch production

External demand is given for the products of the final stage only while the
requirements for the preceding stage are variable and depend on stage-2 decisions.
Therefore, the following first subset of the constraints is explained in terms of the
independent stage 2 in direct analogue to the single stage DLSP.

Ordinarily, DLSP is formulated for N*¥ items and a finite-time horizon of T time
units. Here, production scheduling and demand should be considered on different time
scales: typically, demand can be estimated for example as demand per day, while the
DLSP requires a less coarse discretization of the time axis due to the underlying idea
that during one time unit (e.g. hours or 30-min intervals), the machine can be used at
most for setup or production of only oneitem (see constraint (4) below). Hence, the time
units for DLSP will be chosen to be the greatest common divisor of setup times and
minimal production times for all items and stages. The different time scales of demand
and scheduling yield a division of the planning period T into M (demand) subintervals

of lengths T, — T, | m=1,..,M; T,=0; Ty =T) where external demand d? for
product i is positive only at times T

m(dP 20 and d¥ =0 for t=1,...,T; t#T,
m=5L.. M i=1,. N
A production schedule for either stage (j=1,2) s a matrix (pV, y i) = ((pUN. (P
where X (Y, y) = (), (y)
e

on stage j and
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v are zero-one variables indicating production of product i in period ¢ on stage
Jj with y& ., =0 for formal reasons.

Then the objective is to minimize the sum of the stage-individual cost contributions,
which consist of the total of setup and inventory holding costs,

Min C((U“’, y(l)),(U(Z)’ y(Z)))z C(“((U“), y(l)))+ C(Z)((U(Z), y(Z)))

2 N T o
=3 T Y At Hory (1

j=li=1:1=1
subject to
19 +of) —dP =1 =1 2= NT=1T @
VI i 4 2 Y —p J=L%i=1, . NY%t=al +1,...,T;1=0,...,a" -1 (3)
,VE{)::O ]=],2,z=1,,N“’,t=1,,af” (3(1)
NG
Y 04+ o)< j=12%t=1,...,T. @
i=1

The objective (1) and constraints (2), (3) and (4) are similar to the standard DLSP
(Salomon 1991, pp. 37 and 43). For each stage, r¥” in (1) are sequence independent setup
costs per setup period and the inventory holding costs are given by the product of
parameter h{ (costs per unit and period) and non-negative inventories . The
demand-satisfaction constraints (2) of the standard DLSP describe the dependence of
current inventories on the inventories of the preceding period, the quantity of the
corresponding item produced (where ol is the production speed), and the demand or
requirement, respectively. The correct sequence of setup and production periods is
modelled in equations (3) where a) >0 is the corresponding number of setup periods.
Constraints (3 a) prohibit production of item i in periods 1,...,a" with no preceding
setup. Constraints (4) are used to prevent simultaneous action (setup or production) on
the machines.

These constraints alone do not pertain to the case of batch production. While the
inventory including work in process I (as described above) is required for computing
holding costs in (1), the last batch begun before time ¢ is not ready for satisfying demand
if the production process of this batch is not finished by t. Therefore, we introduce
inventory 2! for stage 2 which is already available in demand instance T,,

el >y yi j=1,2i=1,... ,N%t=1,...,T (5)
esg)gy(.}) j:I,z;i—_-I,...,N(j,;t:1,---aT (6)
e -y, j=1,2i=1,... . N%t=1,...,T (7
R <y i=1,... ,N%m=1,. Mrt=1..T, (8)
< o
sae( ¥ )
t=t+ |
(«z; Z"‘ o2 a(Z)e(Z)) i=1,..., N m=1,... M;t=1,...,T, (9)

Iy= Z(o‘z'f,;’-,:, d®) +13 i=1,..  NPm=1..,M (10)
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e, 19,19, T@ >0 j=12%i=1,.. N9%i=1... . Tim=1..M (1D

it
Y2, =000y, J2e(0.1}  j=1.%i=1.  NOt=1. Tim=1,...M. (12)

In order to model this available inventory, constraints (51-10) and some auxiliary
variables are needed: here, zero-one end-of-batch variables e}’ indicate the production
of the last unit of the current batch in ¢ by e}’ = 1. End-of batch constraints (5}H7) are
similar to setup constraints (3). It should be pointed out that ¢! assumes only a value of
zero or one by construction without explicit binary constraints. Additionally, zero-one
production variables of available units of final products 72 are introduced in (8) and (9)
which resemble the decision variables y!2'. It should be noted that 7#2) vanishes even if
the decision variable 32’ is equal to one, if period ¢ is used for production of item j in a
batch which was started before but has not been completed by 7,,. Hence, §i7), may only
assume a value of 1 if item i is produced in period ¢ and the corresponding batch has
been finished by T,,. This behaviour of the auxiliary variables ji2) is guaranteed by
constraints (8) and (9), where the latter consists of two parts, both of which are zero in
the case of incomplete production at time 7, in this case, the first bracket (the difference
between cumulated number of setup periods before 7T, and before t < T,) is greater than
zero for all batches that are completed before T,,, while the second bracket is positive
only in the case of no production extending in time over T,, (for more details, see
Briiggemann and Jahnke 1993). Moreover, 72} may also vanish despite completion of
the batch by T, if not all of the units produced are needed to satisfy demand in T,,. Note,
that the auxiliary inventory of available units 72, which is defined using the
production variables y{Z) in (10), will be smaller than the actually available inventory
only in this case. Constraints (11) and (12) are the standard non-negativity and binary
constraints, respectively, for the decision and auxiliary variables. Initial inventories of

stage 2 can be thought of as given constants while final inventories are implicitly
included in the demand of period T.

2.2. Coupling preprocessing and final stage

The two stages of final-units and component production are joint by the internal
demand on the preprocessing stage 1 which is generated depending on the actual stage
2 production schedule. In contrast to the given demand instances T,, for the final
products, components are required whenever the final stage is set up for manufacturing.
These requirement instances are indicated by variables z,, defined in constraints

(13)-(16).

2l —oi2) k=1,... . N®=1,.... T (13)
<102 k=1,....N®t=1,...,T (14)
s k=1,... . N®t=1,....T (15)
>0 k=1, N®:=1,. T (16)

The =y, are zero-one variables similar to setup and end-of-batch variables. where

2= 1 means the beginning of setup for production of item k in period t on stage 2.

Intern: ' i iti i i i
1l demand for components d{}' is positive only in the requirement instances and

depends on the size of the current batch on stage 2. More specifically, the requirement

of component i is calculated in such instances as the production

multiplied by coctticients pu

the batch size of the final product which is set up in period ¢

d‘.“:%j,- i.m I " Y ) ' i
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k=1 T=q =1
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>0 =t Nr=1,..,T, (18)

where [-]*:=max {0, } is the maximum operator. The batch size is computed as the
second sum in (17). Here, the maximum operator term equals one until setup and
manufacturing of the current batch have been completed, and vanishes afterwards.
Setup periods are excluded by multiplying the zero-one result of the maximum
operator by the production variables %2, The correct choice of the actually
manufactured final product is ensured by the multiplication of the batch size by the z,,
variables. Note the non linearity of constraints (17) because of the product of decision
variables and the use of the maximum operator.

It should be emphasized that the variable requirement instances make up the main
difference between preprocessing stage and final stage. Besides these variable
requirement instances, constraints (19)~21) for actually available component inven-
tory are very much alike the corresponding stage 2 constraints (8)-(10):

POy i=1,... . NWs=1,..., Tt=1,...,s (19)

y“,-,‘;s( Y vﬁ-r”)+(a(i”—Z(v‘i}’—a‘,-”e‘,-}’)) i=1,... . NOs=1,...,Tit=1,...,s (20)
T =1

=t+1

+

M= Z(og“y“},lg—d‘iy)H}g,) i=1,... NVs=1,...,T (21)
=1\
>0, #0e{0,1} =1, NOs=1,...,Tt=1..5 (22

In the case of non-zero setup times, the single stage DLSP for multi-item
batch production is of the same complexity as the NP-complete standard DLSP
(Briiggemann and Jahnke 1993). The two-stage DLSP is also in NP, because feasibility
of any given structure (production schedule) for any problem instance can be checked
in polynomial time. Since any instance of the single-stage modified DLSP can be
transformed to an instance of the two-stage DLSP in polynomial time, and a feasible
production schedule for the two-stage DLSP contains also a feasible solution for the
single-stage version, the single-stage DLSP reduces to the two-stage DLSP which is
then also NP-complete (Fiorian et al. 1980).

3. A simulated annealing solution procedure for the two stage DLSP

Simulated annealing is a wide-spread heuristic for the solution of combinatorial
optimization problems. Van Laarhoven and Aarts (1987) is a general reference on SA.
This heuristic has been applied to scheduling and many related problems: Van
Laarhoven et al. (1992), for example, study an SA application to the job-shop
scheduling problem; Matsuo et al. (1988) propose an SA based heuristic for the job-
shop scheduling problem and the single machine weighted tardiness problem (1989),
while Vakharia and Chang (1990) apply simulated annealing to the scheduling problem
of a manufacturing cell. An SA approach for the flow-shop problem is discussed for
example by Ogbu and Smith (1990). SA is also employed by Kuik and Salomon (1990)
for the uncapacitated multi-level lot-sizing problem. Briggemann and Jahnke (1993)
present a two-phase SA solution procedure for the modified single-stage DLSP.

Batch production on each stage and coupling of preprocessing and final production
schedule are modelled separately in the previous section. This twofold character is
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reflected in the proposed algorithm as well: production schedules are generated and
optimized for the final stage using the method by Briiggemann and Jahnke (1993).
Afterwards, the resulting component requirements are computed. These are used to
concretize the requirement satisfaction constraints (17121) for the preprocessing
stage. Subject to the requirement data, component manufacturing is optimized using
the same solution procedure as for the final stage. Of course, this procedure is sub-
optimal, since both stages are treated almost separately, i.e. the algorithm does not
consider the common optimization problem.

3.1. Two-phase simulated annealing

In order to achieve stage-individual solutions by a simulated annealing based
algorithm, a neighbourhood structure is superimposed on the finite but usually large
space of feasible configurations or solutions of either stage (in this case production
schedules). Given such a current feasible configuration on stage j, (4, y¥ ), a candidate
solution (oY vy ) is drawn randomly from the corresponding neighbourhood. This
new configuration will be accepted subject to either improvement of the objective
function or another random experiment with acceptance probability given by
exp(—ACY/y) where ACY =iy Y —COwD ., Y9y is the difference of the
contributions CY to the cost function value of the candidate and the current
configurations. y is a control parameter corresponding to temperature in the original
physical analogue. Infinite repetition of this procedure with a fixed value of control
parameter y can be viewed as one realization of a homogeneous Markov chain where
the current state of the Markov chain is the Jast accepted configuration. Iterative
reduction of the temperature (i.e. 7) yields a sequence of such Markov chains and it can
be shown (Mitra et al. 1986) that, roughly spoken, the sequence of configurations
converges asymptotically to a globaily optimal solution, almost surely, if the Markov
chains are irreducible.

Solving a specific problem with SA requires determination of a neighbourhood
structure and an appropriate cooling schedule (i.e. choice of the sequence of control
parameters y and number and length of the finite approximations of the homogeneous
Markov chains). Different cooling schedules are discussed for example by Van
Laarhoven (1988). On stage j, the neighbourhood structure for a given production
schedule (', y') is defined by red ucing (r, y) to a *pure’ production schedule y\pure
by physically eliminating setup periods. An element (¢, Y9 ) out of the neighbour-
hood of (tY. y) is then obtained by exchanging the activities of two arbitrary periods
in YY" and expanding (i.e. Inserting setup periods in front of each production batch

and shifting la}er production by the corresponding number of time units) yY'rPere to
(% ¥40). During expansion of Yaari™ to (08 0

_ . éan Yean) @ NECESsAry condition for feasibility
(the last batch must be finished in or before period T)is checked and if this condition is
violated another configuration is drawn o

1er cC ut of the neighbourhood of (v, y).
However, it is important to point out

that the neighbourhood chojce is usually
performed on the set of feasible configurati

. ‘ ons only. Feasibility in the context of final
and preprocessing stages 1s mainly given by the dem

under batch production (10 or(21) and setup constra

. ' ints (3) and (4). On either stage, it
1s therefore necessary in general to construct an init

ial feasible solution disregarding
function in a second phase. The
ined in more detail in the following
ges is described in §3.2.
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3.1.1. Phase 1: search for a feasible production plan

The main ideas of the two-phase algorithm developed from the single-stage case are
illustrated more easily for the final stage because of its externally given demand
structure. A first possibly infeasible production schedule is chosen to consist of a single
batch for each item where the batch size is determined to satisfy the cumulated demand
in T. Production is carried out as soon as possible in the chronological order of
cumulated demand exceeding initial inventory. As an example, the demand schedule
for the final stage of a particular problem instance with six products, 60 periods, and six
equidistant demand instances is listed in Table 1. Figure 1 shows the corresponding
initial production schedule, where S stands for a setup period while production is
indicated by 1. Each row corresponds to one of the six products while the 60 time
periods are represented by the columns. Inventories for the example can be found in the
second column I of Fig. 1. For the first perhaps infeasible production schedule,
hypothetical inventories are computed which would be needed to fulfil the demand
satisfaction constraints (10) in each demand instance. Afterwards the sum of the
positive deviations of these hypothetical inventories from the actual inventories form
the objective function and are minimized in phase 1. A feasible production schedule is
found if this sum vanishes. SA will yield more feasible (in the sense that production is
finished by T) production schedules by restricting the exchange to active production
periods only, neglecting the final idle periods. A first feasible production schedule for
the example given in Table 1 can be found in Fig. 2.

3.1.2. Phase 2: search for a cost-optimal production plan
The actual optimization with respect to the cost function is carried out in phase 2.
Here, the same neighbourhood structure is used, but exchanges are now carried out

PDemand instances

Demand product 10 20 30 40 50 60
1 2 4 1 1 2 2
2 3 [ 2 3 2 3
3 1 0 0 0 0 0
4 1 3 1 2 2 0
5 0 0 0 1 1 0
6 0 0 0 1 0 0

Table 1. Demand structure for a problem with six products, 60 periods and six demand
instances.
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Figure 1. Initial (infeasible) stage 2 production schedule for the demand of Table 1.
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Figure 2. First feasible stage 2 production schedule for the demand of Table 1.

between arbitrary (active and idle) periods of y¥ 7 Production schedules that are not
feasible in the sense of (10) are not considered as candidates. Thus, feasibility is
preserved in phase 2 before each acceptance subject to the contribution of the final-
stage production schedule to the original cost function (1). Typically, the optimized
production schedules are more plausible than the first feasible ones, Depending on cost
parameters, they exhibit fewer and larger batches with a resulting small total of setup
costs and less used machine capacity. Production is carried out as late as possible in
order to save inventory holding costs. See Fig. 3 for the example and note the

improvement of the objective function value where the cost parameters are as defined in
§4.

3.2. Coupling preprocessing and Jinal stage

Components are required for every batch of final products in its first setup period.
Throughout the following, we assume the matrix of production coefficients to be the
identity matrix, ie. there is a -1 correspondence between final products and
components. Thus, required units of components and requirement insta
determined, and can be found in Fig. 4 for the example.

As already mentioned above, the preprocessing stage is subsequently optimized
using the same two-phase solution procedure discussed in the preceding section. The
resulting production schedule on the preprocessing level is combined with the
production plan for stage 2 yielding the common production schedule, which is shown
in Fig. S for the example, where s and i are used for the preprocessing stage in direct
analogue to S and 1 in the final-stage figures.

The two-phase solution procedure for the single-stage DLSP tends to be sensitive
to higher demand at the beginning of the planning period (Briiggemann and Jahnke

nces are easily

there is no feasible solution due to instantaneous requirement of more units than are

stocked. In contrast to the first feasible solutions, optimized production schedules

reveal the  in this context disadvantageous structure of fewer and larger batches
more often. Since the difference between two :

exchange of two activities only, the solution s
from high entropy configurations with
orgamzed arrangement with a high deg
process, it is therefore reasonable to sto
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Figure 3. Final phase 2 stage 2 production schedule for the demand of Table 1.
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Figure 4. Structure of required components for the production schedule in Figure 3.
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Figure 5. Common production schedule for preprocessing and final manufacturing stage.

of compactness in order to successively replace the stage 2 production schedule if the
algorithm fails to find a feasible solution for the preprocessing stage. In this case, the
corresponding requirements are generated from the replacement production schedule
(RPS), and phase 1 is triggered again. Thus, a list of selected RPS is compiled for this
purpose during phase 2 of stage 2. The acceptance of an RPS depends on two criteria:
for a feasible solution of the preprocessing stage to exist, a necessary conditionis that at
any time the ratio of the capacity, which has been used previously to uphold stage 2
production (i.e. number of production periods including setups on the preprocessing
stage for the required amount of components minus inventory), to actually available
capacity does not exceed a value of one. Asan approximation, this ratio is computed for
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the first requirement instance of each component. Prior to listing of a production
schedule, the maximum of these ratios is checked to be less than {1—¢), e>0. The
chance to solve the stage-1 feasibility problem is improved depending on &, which is
paid for by higher stage-2 costs. Among the production schedules that fulfil the
condition for the first batches, it is desirable to enlist configurations that exhibit
suitable different degrees of compactness identified by their objective function values.
From this list, the actually used RPS is chosen subject to minimal increase of costs.
However, the list might be empty when the optimization phase for the final stage is
finished, and the algorithm might moreover be unable to find a feasible solution on the
preprocessing stage, even if the final production schedule reveals an approximative
maximum ratio between (1-¢) and 1. This problem is tackled by an iterative restart of
the final-stage phase 2 to explore different solution structures: in the first place, stage 2
optimization is carried out again unchanged. For the second iteration, setup costs are
reduced in order to avoid the preference for large batches. If even this approach does
not yield a production schedule of sufficiently low compactness, phase 2 search is

activated again with the more exhaustive phase-1 cooling schedule (Table 2) and
reduced setup costs.

3.3. Choice of target inventories and cooling schedule

In many cases, there is no natural time limitation for production processes and
demand will be stochastic, Hence, finite-time-horizon models are applied repeatedly in
order to solve approximately the underlying infinite planning problem and to
incorporate new estimates based on more available data in each planning instance. In
this context, a special emphasis is put on the inventories at the end of the planning
horizon on both stages. Thus, sensible inventories have to be determined which can be
used as target stock for production planning, while actual inventories result from the
deviation of realized from estimated demand Or requirement. Sensible inventories can
be found for example by a parametric application of the two-stage DLSP-model to the

he follow: ‘ | , rget inventories of the final stage used for
the following numerical experiments are based on the more detailed analysis by

Briiggemann and Jahnke.(l993) for the single-stage case, while the inter-stage stock
(number of components) is chosen to be larger than, and asymmetrical to, the final-

) ) Parameter Phase | Phase 2

Initial temperature

Reduction O'IS())4 :)08

;\A{ax num&er of acceptances  (-24- NOV. T 30 15N
aX number of repetitions 19- N N

Number of reductions 8§+ 1000375 N;};)_ 23

Table 2. Simulated annealing cooling schedules.
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the first requirement instance of each component. Prior to listing of a production
schedule, the maximum of these ratios is checked to be less than (1—¢), £>0. The
chance to solve the stage-1 feasibility problem is improved depending on ¢, which is
paid for by higher stage-2 costs. Among the production schedules that fulfil the
condition for the first batches, it is desirable to enlist configurations that exhibit
suitable different degrees of compactness identified by their objective function values.
From this list, the actually used RPS is chosen subject to minimal increase of costs.
However, the list might be empty when the optimization phase for the final stage is
finished. and the algorithm might moreover be unable to find a feasible solution on the
preprocessing stage, even if the final production schedule reveals an approximative
maximum ratio between (1-¢) and 1. This problem is tackled by an iterative restart of
the .ﬁnal-stagc phase 2 to explore different solution structures: in the first place, stage 2
optimization is carried oyt again unchanged. For the second iteration, setup costs are
rcduged in order to avoid the preference for large batches. If even this approach does
not vield a production schedule of sufficiently low compactness, phase 2 search is

activated again with the more exhaustive phase- | cooling schedule (Table 2) and
reduced setup costs.
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product inventories in order to cope with the infeasibility problem in the case of high
and early requirements. Inventory holding costs per unit are assumed to be lower on
stage 1 compared to the final-product stage. Note that the two stages can be decoupled
by increasing the inter-stage inventory.

Since the solution method presented here consists essentially in repeated appli-
cation of the single-stage algorithm, the cooling schedules are adjusted according to the
corresponding problem sizes for each stage individually. The problem size is defined as
the number of bits occupied by the data (Florian et al. 1980, p. 676), and is given in the
case of the single-stage DLSP by inventory, setup times, and demand or requirements.
Thus, it is asymptotically proportional to the product of the length of the planning
period and the number of products or components. Since the modified single-stage
DLSP is NP-complete, the number of trials for each phase and stage determined by the
cooling schedule should depend on NY-T exponentially in order to maintain the
solution quality. However, we do not follow these general considerations here. Since
phase 1 of each stage is concerned with finding a feasible solution rather than
minimizing cost, we use a fairly large number of repetitions at high temperature with
slow cooling. By the resulting increase of the acceptance probability the search for a
feasible solution is less restricted. Usually, such a cooling schedule yields large
computation times. However, this is not necessarily the case here, since phase 1
terminates immediately after a feasible solution is found. In most practical applications,
finding a feasible production plan will be of primary interest when cost parameters are
not easily estimated. Therefore, the cooling schedule for stage individual phase 2
(optimization) is chosen to be coarser than for phase 1 (feasibility). The main task of
phase 2 is to improve the initial feasible solution and to generate sensible production
plans in reasonably short computation times. Suboptimal solutions obtained by this
rough procedure are improved by shifting batches to the right in order to fill
unnecessary gaps.

In the conducted numerical experiments, a geometric cooling schedule is applied,
the number of repetitions is given by ‘acceptances max constant’ and no acceptance at
one temperature stage ‘max constant’ is used as the stopping criterion (for notation see
Collins et al. 1988). The initial temperature of phase 1 is determined according to the
expected changes in the hypothetically needed inventories during the neighbourhood
search. Similarly, phase 2 cooling starts at a temperature which depends on the
expected magnitude of change in the objective function and therefore on the data given
in §4. The maximal numbers of repetitions and acceptances for phase I are chosen
proportional to N - T rather than exponentially, while these parameters of the cooling
schedule for phase 2 depend linearly on the number of products N U only. The cooling
schedules used for both stages in the numerical experiments are shown in Table 2. The
actual maximal number of repetitions and acceptances are rounded to smooth values.

4. Numerical results

Demand schedules are generated randomly for the numerical evaluation of the two-
stage DLSP solution procedure suggested in the preceding paragraphs. We consider a
planning horizon of 60 periods and six products which are distinguishable into different
categories depending on their demand expectations and variances. For example, there
are products with high expected values and low variances, intermediate moments, and
products with low expected demand and high variances. Again, the matrix of
production coefficients is assumed to be the identity matrix. Every tenth period is a
demand instance for all final products. Demand for all products and components is
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measured in how many units can be produced during one production period. Thus, all
production speeds are equal to one. Similarly, inventory costs for all components are
assumed to be equal and unity, while final products can be stored at a doubled cost rate
due to their higher value. A setup of one period is required for each batch and the
corresponding costs are set to 120. The inventory used for both stages are given in the
second column of Fig. 5.

The solution procedure is programmed in FORTRAN 77 and implemented on an
IBM compatible NEC PC with an 80 486/20 MHz processor. During the numerical
experiments it turns out to be necessary to differentiate between hard and easy
problems. As an elementary indicator of difficulty, we use the ratio of the total demand
for final products plus one setup period per product and the length of the planning
period. Note that two problems with the same elementary degree of difficulty (DOD)
can be quite dissimilar with respect to actual difficulty due to different demand
distributions over time. The demand schedules are drawn randomly from DOD
intervals which are specified in Briiggemann and Jahnke (1993) for the single-stage
DLSP according to similar computation times of the corresponding problems
(Table 3). All DOD intervals contain their left boundary value with the exception of the
0-85-0-88 interval which is open. Problems with a >88% degree of difficulty are
considered to be toughest. The highest DOD considered is 0:92 since the set of feasible
solution becomes very small beyond this limit (it might even be empty) and hence there
is no decision problem of any interest left.

For each DOD interval or subclass, 15 demand schedules are generated by chance
according to the demand categories described above. We apply the solution procedure
to each of these problem realizations ten times with new seeds for the random number
generator. The results are shown in Table 3. It should be emphasized that the CPU
txme(s1 for our solution procedure are obtained by a code which is not optimized for
speed.

In the single-stage case it was possible to check the solution quality for a very small
example by comparison to the exact solution which was also found by the proposed SA
al_gonthm in five out of 10 repetitions while the other five solutions were near optimal
with a !ow coefficient of variation (CV). Due to the non-linearity in the coupling
constraints (17) and the increased intricacy, it is not amenable here to validate the
proposgd solution procedure by comparison to the exact solution, We still use the
coefﬁc.lenF of variatif)p of the final objective function value for ten different realizations
as a criterion of stability and quality of the solutions found instead of the true optimum.

Degfree Avera‘ge Average CV! of Use of

o Ccv CPU average Unsuccessful iti
difficulty of cost time (s) CPU time trialesSS ’ a(gi?\filgc?sal
0-60-0-70 2-89 356 6
0-70-0-80 309 351 679 — ?/8
0-80-0-85 321 400 1523 -— | 1/2
0'85—0'88’ 339 492 17-83 2 19/18
8‘88-0‘92; 382 670 21-68 — 20/22
-88--0-92 2:52 1119 4800 29 36;149

Table 3. Results for the six-product/60-period two-stage DLSP. !

Coeffici cation) 100,
? Easy subclass. 3 Hard subclass. (Coefficient of variation) 100
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In all cases, the coefficients of variation for the objective function values are at most
59/, indicating stable results and an appropriate selection of the cooling schedule. CPU
times tend to grow with DOD and are roughly doubled compared to the single-stage
case for the easy problem classes (Briiggemann and Jahnke 1993). In particular, phase 1
can require a significant amount of computation time for the more difficult problems
on both stages. The two-phase solution procedure for the final stage is sensitive to
higher demands at the beginning of the planning period as discussed in Briiggemann
and Jahnke (1993) for the single-stage DLSP. The same phenomenon can be observed
for phase 1 of the preprocessing stage. Due to this sensitivity there are problem
instances with DODs in the 0-88-0-92 interval where the algorithm fails to come up with
a feasible solution in some or even all of the ten different trials. The division of the
problems in this interval is refined into problems with an average computation time
similar to the easier problems, and with a feasible solution found in every trial (easy
subclass). On the other hand, there are problems where it happens that the algorithm is
unable to locate a feasible solution on several occasions. Two different cases arise: first,
no feasible solution is found for the final stage. These demand realizations are not
considered any further in the numerical evaluation, since this is exclusively a single-
stage problem. Second, the algorithm is not able to match a feasible final-stage solution
with a preprocessing production schedule. High DOD in combination with high initial
demand density is typically characteristic for the hard subclass. It is important to point
out that in this subclass the algorithm relies heavily on the replacement and
retriggering devices as can be seen in the last column of Table 3, where the first number
indicates how often RPS are used while the second gives the number of final-stage
phase-2 restarts. This explains the high average computation times in this subclass and
the large coefficient of variation for CPU times of 487, because the additional devices
for finding a feasible solution on the first stages are used with different frequencies. It
should be noted, however, that a feasible solution is achieved by these devices in many
hard problem instances.

5. Summary and conclusions

The standard DLSP (e.g. Salomon 1991) is extended here for the case of two-stage
batch production with not necessarily vanishing inventories and using different time
scales for production scheduling and demand. The feasibility problem for this two-stage
DLSP with non-vanishing setup times is shown to be again NP-complete. The
suggested SA solution method is based on intuitive ideas. The optimization procedure
for each stage is separated into phase 1 searching fora feasible solution and optimizing
cost in phase 2. Production schedules are generated by dividing, combining and shifting
batches. This approach is carried out for the final stage subject to the externally given
demand. The resulting production schedule induces component requirements for the
preprocessing stage. Afterwards, the two-phase algorithm computes a stage 1
production schedule fulfilling these requirements. In the case that no feasible solution is
found for the preprocessing stage, additional algorithmic devices are suggested. The
numerical experiments presented indicate that our heuristic solution method yields
stable results in short computation times. In contrast to the probably large
computation times required for the exact solution, our SA approach allows the
numerical sensitivity analysis of cost parameters which are often not easily estimated in
practice. Moreover, the study of the trade off between increased inter-stage inventory
holding costs and the reduced degree of independent action on each stage leading
usually to higher setup costs is made amenable by the relatively short computation

times.
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