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1. Introduction . 0 5

In this paper a new alternative approach to the pro-
blem of uniqueness of mean demand of an economy's«censump—
tion sector is suggested.

Decentralized decision making of individual agents can
clear the markets and thus result in equilibrium only if
aggregate demand of an economy is single valued rather than
multivalued. The individuals' tastes, however,:are des-:
cribed by non-convex preference relations which result in
multivalued individual demand sets, given prices"and

wealths.

Thus, we can state the economic problem as follows:

Is multivalued individual demand compatible with single

valued mean demand?

It is generally agreed in the 11terature that only
sufficient diversification of tastes can yleld a unlque
mean demand. This sufficient diversification has to be made

precise in terms of measure theory.

In the so called parametric framework due to Sonder—'

mann (1975) the space of preferences is a subset of the set

of all preferences which is parametrized by a subset of a
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ffinite dimensional Euclidean space. For the parametric
approach see also Araujo - Mas-Colell (1978}, Yamazaki
*(1978) and Hildenbrand (1978).

The dispersedness assumptions in the quoted litera-
ture essentlally imply that the "bad behavior" occurs in
'?a set of positive codimension only. The uniqueness of mean
" demand, therefore, depends on the special family of prefe-
:irences and of its parametrization.
| Inathis paper we are interested in the dispersedness
. properties of the set of all preferences, considered as its
own parameter space.

We shall reduce in the following the economic problem

to a problem in the theory of Hausdorff measure and of

Hausdorff - Besicovitch dimension.

2. The Model

We consider the consumption sector of an economy with 2

commodities which is defined by its constituting consumers.

The consumption set for each consumer is sz ; the

nonnegative orthant of the commodity space, I%z

.

A consumer is described by the pair (&, w) , of his
consumption characteristics where 2 is a binary rélation

2
on the consumption set, R, ,and w is a positive real

number. The relation £ represents the consumer's taste and

is called preference relation, the‘number w “deséribes the

consumer's wealth.
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The set P of preference relations can be topologized
in different ways. We will not become specific about pro-
perties of 2z and about the topology on P |

The space of price systems is the set
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Here any norm in R . is good.

Each pair (p, W) € S «x i determlnes a budget set

-+

B : {xe]Rf|pst},

P.w

The set of E, - maximal elements in Bp;nr is the de-

Y 7

mand set of consumer. (&, w) at the”price system p. .

Since consumers' preferences are not assumed to be convex

the demand sets cannot be expected to'be_si‘ng]..e’_;ons., Tl}g;{e-

fore we are led to a demand correspondence . .

w ¢+ P x 8 x ]ﬁ_l_-——-'- IRf'_ .

Our economlc problem can now be stated as follows*

Which probablllty u on the space P x ]R of consumption

characteristics has the property that for ang p € S

# oolx, prw) =1 u - almost evervwhere on Pxfl+ L2
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For shortness and simplicity we fix p ¢ § and
SWE ]§+_ for the following and concentrate on measures

on P .

;; 3. Hausdorff Measure and Hausdorff - Besicovitch Dimension

Vie mentioned above that the "bad" set of preferences
Tiﬁ the articles working with the parametric framework
;lcorrespond to manifolds of positive codimension in a finite
7 dimensional linear space or manifold. But even "bad" sets
:filling out much more of a space of preferences than any
fi‘manifold would do, could still have measure zero.
‘Looking for a more general concept of dimension one 1is

" first led to the tonlodical dimension. For a definition see

f;'Hurewibz and Wallmann (1941). Since homeomorphisms, which

" preserve the topological dimension of a set, do not necessa-

rily preserve the measure zero, however, this notion turns

. out to be useless for our purpose.

| There is, however, a differént notion of dimension be-
'1ing only a metric invariant rather than a topological one.

This notion is intimately related to the concept of Haus-

dorff outer measure.

These two concepts are suitable for the characteriza-

tion of the aegreé of dispersedness or scatteredness of sets

in separable metric spaces;

Denote by A and R a separable metric space and the
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extended real numbers, respectively. Recall that an outer
measure on A 1is a nonnegative, extended real-valued,
monotone, ¢ - subadditive mapping up* defined on the

power set of A . It is a metric outer measure if for all

T U < A :

d(T, U) > o= u*(T v U) = u*(T) + p*(U) .

Here d denotes the metric on A and
d(T, U) := inf {d(t, u)|t ¢ T , u ¢ U} .
If u* 1is a metric outer measure on A a set T c A

is called u* - measurable if and only if for every U c A

p*¥(U) = u*¥(U n T) + pu*(U\T) .

The uy* - measurable subsets of A build a o¢ -~ algebra
on A including the Borelian subsets of A . The restric-
tions of u* to this o - algebra or to the Borel o - al-
gebra are measures in its usual meaning. For details see

Caratheory (1918).

Definition: For any positive number K the K - dimensio-

nal (Hausdorff (1919} (1927)) Hausdorff (outer)
measure is the metric outer measure ui on A

defined by:

¥ T c A :
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Lol
uE(T) := sup inf { T (diam 7%
>0 i=1

[++]
\J T, =T, dlamT, <e , 1 ¢ N} .
i=1 *

The Hausdorff outer measure is regular in the follo-
#ing sense. For every T < A there exists a decreasing se-
juence (U )

n’' neN

Ty = wx (/U .
:.K K neN n

of open sets containing T such that

We shall use this concept of Hausdorff measure to de-
fine the dimension of a set in a separable metric space.
This is possible because any set can have finite non-zero
K - dimensional Hausdorff measure for at most one K ¢ R.

We note the following important fact:

If T<cU, uE(T)”< o and KXK' » K> o, then uﬁ.(T) = O.

For a given set T < A there may be no real number

K > o such that o < ME(T) < « . In any case the following

definition does make sense.

Definition: For any T < A the Hausdorff - Besicovitch

dimension of T is

dim T := sup {K > O|u%(T) = w}
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This definition of dimension implies for any T < A :
(o] >
*(T) = for K dim T .

For finite-dimensional A the Hausdorff - Besicovitch

codimension of any subset T of A is defined by

codim T ¢:= dim A - dim T .

The Hausdorff - Besicovitch dimension of a set T c A
does not depend on A but only on T considered as a
metric space, i.e., any embedding of T into a different
metric space will not change dim T . Thus dim T is an

intrinsic property of T .

The Hausdorff - Besicovitch dimension of a set is al-
ways at least as large as its topological dimension. Run-
ning through all topologically edquivalent metrizations of
the épéce and taking the infinmum of the corresponding
Hausdorff - Besicovitch dimensions yields the topological
dimension.

The following properties of Hausdorff measures and of
the Hausdorff - Besicovitch dimension might be important
in an application to mean demand analysis.

The n~dimensional Euclidean space has not only linear
and topological but also Hausdorff - Besicovitch dimen-
sion n .

The n-dimensional Hausdorff (outer) measure coincides

on Lebesgue measurable sets with a measure which is equi-
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valent to the Lebesgue measure. The n-dimensional Lebesgue
' measure gives mass one to a unit cube, whereas the n-dimen-
sional Hausdorff measure gives mass one to the unit ball.

| Any subset of n-dimensional Euclidean space has n-di-
: méhsional Hausdorff measure zero if its Hausdorff - Besico-
Qitch dimension is smaller than n . For example, the Haus-
;:}dprff - Besicovitch dimension of the irrationals in the
{‘unit interval is one, since its one dimensional Lebesgue
énd Hausdorff measure are one. On the other hand the irra-
tionals have topological dimension zero.

. The use of this fractional notion of dimension allows
for the analysis of situations which, by the irregularities
;d,Pf the shapes involved, are excluded from the linear or

;éifferentiable analysis. Transversality conditions in the
1iiéifferential framework yield locally positive integral

‘”*}inear codimension and thus positive integral Hausdorff -

,fjgesicovitch codimension. A smaller fractional codimension
. allows for a much stronger concentration of the "bad" pheno-
:imenon in a neighborhood in the space, still small enough

' from the measure theoretical point of view.

J;4. Application To The Economic Problem

The mathematical work to do is to compute the Haus-

dorff - Besicovitch dimensions of the space of preferen-

ces, P, and of its subset E of all preferences yiel-
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ding fwultivalued demand at p , w . This is supposed to

be a non-trivial task. Once it is done one only has to

compare dim P and dim E . If dim E < dim P =n ¢ R
* =

then un(E) o .

Then individual demand is unique u; - almost every-

where on P .

But still dim P = n can be infinite. Since we are
intereésted in the existence of a natural probability mea-
sure on P in terms of which we can state our result and
which allows forming a mean demand via integration, we

would need
u;(P) < =,

By normalization we would get the probability. But

u*(P) < = presumes that dim P = n < = . In this context
it might be of interest that Larmann (1967a) (1967b) gave
a characterization of spaces having finite Hausdorff ~ Be-
sicovitch dimension. He also gave examples of such spaces

being not Euclidean.

Summarazing one can say:
Prove: 1) dim P =: n < e
2) dim P > dim E ( = u*(E) = o)
3) u;(P) < o

Properties 1) 2) 3) imply that mean demand with respect
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V;'Hg is unique, given price p and wealth w .

‘JN But.even a weaker version of 3) would help. If u; would

-~ be o-finite or would have at least the finite subset pro-

- perty, one could replace P by a subset having finite

. u¥ - measure.
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