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Uniqueness of Mean Maximizers via an Ergodie Theorem

WALTER TROCKEL!

Summary: In the present paper known and well established facts and methods of ergodic
theory are used to prove a theorem on uniqueness of imean maximizers. The problem ariges
in economic theory. As a corollary of our present result one gets single-valuedness, hence
continuity, of market demand as a relation of prices. The statement and proof of the theo-
rem i8 anteceded by an extengive economic motivation.

1. Introduction to the Economic Problem

The idea of decentralization of consumption and production decisions by means of
a system of equilibrium prices is basic for economic equilibrium theory. The ex-
planatory value of such an equilibrium price system depends crucially on the con-
ception that it uniquely determines an economy’s total demand and total supply.
We are concerned with the consumption side of an economy. The importance of
the problem does not depend on whether we look at the consumption sector of a
competitive market economy or a centrally planned economy.

Consider, for example a blue print of a socialist economy as described by OSKAR
LANGE (1938). Assume the central planning board gives a price system of consump-
tion goods to a household. Now, unless we do not make the heroic and unjustified
assumption of strictly convex preference relations for every household, we cannot
expect that the households’ optimization problems, given their wages and the
price system, will have unique solutions. Accordingly, the total demand, i.e. the
aggregate demand of all households in the economy, will in general fail to be
unique. Hence the mere information on what the prices for consumption commodi-
ties are, does not suffice to clear the market, i.e. total demand may fail to meet
total supply. Consequently LANGE’s competitive solution could not work. Now,
the non-uniqueness of a household’s,demand for consumption goods is a pheno-
menon, which occurs only at certain exceptional combinations of wage and price
system. If the number of households is very large one may expect that these ex-
ceptional budget situations are different for the various households. If there is
enough diversification of households’ characteristics, i.e. of preferences and wages,
one may hope that for any given budget situation, i.e. pair of wage and price
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system, the result of most households’ optimization problems are unique bundles
of consumption commodities. As a consequence the aggregate demand set at that
price system will be small, i.e. will contain only very similar commodity bundles.
In the idealized case of a continuum of households, which expresses in 4 conven-
ient way the large number of households, aggregate demand, which is an integral
rather than a sum, can be hoped for to be unique. This idea was already expressed
by AuvcustiN CourNoT (1838) and referred to later on by WALRAS (1874), who
contributed this regularizing effect of aggregation to the “Law of large
numbers”.

In (1972) GERARD DEBREU conjectured that a “suitable diffusion” on a measure
space of consumers’ characteristics might imply that aggregate demand is a 0
or even C't function of prices. This conjecture initiated a series of articles concerned
with the problem of “smoothing demand by aggregation™.

A major difficulty, conceptually as well as formally, was it how to formalize
“suitable diffusion”. Equal distribution as formalized via LEBESGUE measure seem-
ed to be an ideal candidate to express suitable diffusion. Unfortunately the
space of preferences is not an EvcLipean space. In his parametric approach Sox-
DERMANN (1975) coped with this difficulty by considering only spaces of preferen-
ces parametrized by open sets of an EvcrLipean space. This made the LEBESGUE
measure (locally) available. However this did not suffice to yield sufficient diversi-
fication. Preferences may change with a finite set of parameters without changing
demand behavior at all. Therefore SoNDERMANN had to make an additional as-
sumption to guarantee richness of demand behavior for his finite dimensional
families of preferences. This was performed in terms of a differential-topological
transversality assumption. A more general version, independent of the differential
context, was given by HiLDENBRAND (1980). This parametric approach has two
drawbacks, however. The first is that the concentration on finite dimensional
subsets of the huge space of preferences is very restrictive. The second disadvan-
tage is that suitable diversification is not expressed in measure theoretical or,
more specifically, in probalistic terms.

On one hand it is clear that not all properties of preferences which might pos-
sibly be considered are of any relevance for the analysis of the demand. On the
other hand one had to find a natural substitute or generalization of what LEBES-
GUE-continuous probabilities are onsuhsets of an Euclidean space. This led to the
idea that the space of preferences or, more generally of preferences and wages,
could he modelled as a G-space, the acting group being the group of price systems
or, more generally of budgets. The HAAR measure transported in this way to the
orbits under the action generates just the diffusion or diversification which cor-
responds to the economic intuition. Moreover, it turned out to yield uniqueness of
aggregate demand (cf. TRoCKEL (1980)) and, if combined with methods of diffe-
rential topology, also continuous differentiability of the aggregate demand as a
function of prices {cf. DIERKER; DIERKER; TROCKEL (1980) and (1981)).

The present result extends to a considerably more general situation than needed
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in the specific economic framework described above. However. it is likely that a
general result of this kind will turn out useful for different parts of economic
theory. For example. in the theory of rational expectations equilibria it is a fun-
damental problem how to describe diversification of information among the
members of an economy. Again the spaces involved exclude the direct appli-
cability of LEBESGUE or even HAAR measure. However, again a treatment via
G-spaces seems possible. Itis crucial to point out that the group structure cannot
he chosen in an ad hoe way but has to be present in an inherent way in the eco-
nomic model under consideration.

In the next section I shall briefly describe how the group of prices acts on
commaodities and preferences in the context of aggregate demand and what kind of
assumnption yields uniqueness of aggregate demand. The precise statement and the
proof can be found in TROCKEL (1980). The result can also he derived directly from
a slightlv modified version of our present theorem, to be proved below.

2, An Example: Mean Demand

We shall concentrate on the case of two commodities which is no restriction and
simplifies notation. Moreover it allows for graphical illustration.
Consider a situation as pictured in Figure 1.

7 Figure 1

k)

Every consumer has the consumption set R, which is a subset of the commodity
space R2 Both commodities are assumed to be perfectly divisible. Any consumer
(or household) is described by a positive real number, w, his wealth (or wage) and
by a preference relation, >. on R, ie.a reflexive, transitive, complete binary
relation. The preference is moreover assumed to be continuous and monotone.
This can most easilv be formalized by representability by a continuous function

w: R’ ~ R such that

i) x> y<ulr)=uly) and
i) (= yp i=1, 2; z+y)=(u(@) > u(y)) -

Such a funetion is a utility function. Clearly, for every increasing functions: R~ R,
the utility function i ou represents > as well. A price system, p, is a positive linear
funetional on R2 restricted to R*. The price system p and the wealth w determine
the budget constraint pz=w, under which an optimal commodity bundle with
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respect to > has to be chosen. Monotony of > resp. u reduces the inequality
pr=w to the equality pr =1 The set g(>.w. p) i8 the demand set at the price
system p of a household described by (. w). In Figure 1 we have g(>=. v p)=
={y, z}. The line through 4 and z is the budget line pir=w where = py = pz.
The curved lines are indifference curves of =, i.e. iso-utility lines for u.

Since (. w. p)=q(=. tw.tp) for any t=>0, ie. since demand is positively
homogeneous of degree zero, one may choose p”’( py. 1), i.e. the space of price
systems can be chosen S = WL {1} rather than RL. C learly, S is a group under
coordinatewise multiplication.

Consider the following action of S.

SXRL =R (g 1), ((rgx) = (g - ooy =227,
Now let § be a Polish space of preferences. This can be shown to be the case for all
usual specifications of § (cf. HILDENBRAND (1974)). We consider now the action
of S on & defined as follows.

Sx8-9:((g. 1), )~ 2,
where >, is defined by

Pz a2y
The combined effects of the actions of S on itself, on R”. and on § are illustrated

in Figure 2 for the acting price system ¢=(2. 1).

24

Figure 2

The indifference curves through y and z and through »* and z* correspond to =
and }z,, respectively. It can directly be concluded from Figure 2 that gog( 2, w,
gop)=g¢(z,, w,q op) or, equivalently, gog(’z, w,gop)=g(z, w,p). If one
considers probabilities on § which are integrals of ergodic quasi-invariant prob-
abilities on the orbits So = w.ith respect to some probability on §, one gets for

LeBESaUE almost every w& R, that demand. integrated over preferences, is a
singleton. Integration over wealth by LEBESGUE-continuous probabilities vields
demand sets which are singletons for every price system.

The diversification of tastes, accomplished by the action of S, is obvious from
Figure 2. Both households. (’z. ) and (}z,, ), have demand sets which fail to be
singletons, however at different price systems. At the price system p almost all
(= w), for ¢ near identity <8, have single-valued demand. The key property is
gopliz, w, gop)=¢( =z, w, p), which asserts that one may analyze demandwfnr
varying preferences in an S-orbit at a fixed price system p by analyzing demand
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for a fixed preference if prices vary in S. This “duality” property corresponds to
the probability of replacing space average by time average in BiIskuor#’s Indivi-
dual Ergodic Theorem. However here we are not concerned with equality of inte-
grals of functions rather than with equality of integrals of cardinalities of set-
valued mappings.

Let me conclude this section with the most simple example for a mean demand
problem where a structure, as described above, vields uniqueness. We consider a
continuum of consumers, say (0, 1], which have to decide, whether to buy one unit
of a eertain commodity or not. Assume consumer ¢ decides not to buy unless the
price p of the commodity is smaller or equal that ¢. Accordingly, his (partial)
demand function for this commodity is

i (0,1] 40, 1) s p s {é it P
Putting f,(t) ={0, 1} instead. makes f, a correspondence, i.e. a set-valued mapping.
In this example there is enough diversification of demand hehavior. Hence the

1
mean demand relation F: (0, 1]~ R defined by F(p):f fi(p) dt=1—p is a conti-
0

nuous function of the commodity price.

3. Some Basie Facts and Notation

Consider a binary relation B 8 X X, where §issome locally compact commutative
group and X is an EvcLipean space, say X =R"

Assume that if for every p€S the section B,={x¢X | (p, 2)€ B} is compact.
Moreover, assume that B is upper hemi-continuous, i.e., for every open set G X
the strong inverse {p¢€S | B,C (G} is openin S.

Let T be some Polish space. Consider a real-valued function f on T'X X, whose
sections J,=({, -) are continuous functions on X.

Let y be a specification of the HaaR measure on the BoREL o-field &(S) of 8.

Assume that for y-almost every p€S the function f(¢, p, Se=f{t, ) | B, has at
most one maximizer on B,

We are interested in conditions on a probability on the BoreL o-field &(7) on T
which imply that the mean of the individual maximizers is a singleton for every
peS.

Denote by ¢(t, p) the set of maximizers for the function f(t. p, ), t€ T, p€S. For
every t€ T the set (Graph ¢),={(p, x)€SXX [ x€¢(t, p)} defines again an upper
hemi-continuous relation (cf. HILDENBRAXD (1974)).

Denote by $M the cardinality of a set M. We define now three actions of the
group Son S, T and X.

0: SX8 ~+8:(q. p)>rgop=poq
a:SXT-T:(q.t) =1,
b:SXX~X: (g x)—>a
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The actions 0 Xb of § on S X X and o Xa xXb of S on § X T X X are defined by

oxXb: S¥(SXX)-S¥XX:(q p. x)~(qop. 2%
and
oxaxb: SX(SXT» X)-8S¥Tx¥X:(q pta)~(qop, t, 7).

Let us state now the following duality condition on the actions o, @, and b. Note
that (0 Xa Xb),=0xaxblg. ).

D: 1. oxXb(SXB)y=8B
2. 7g€8:foloxaxb),=f.

This means that 1) whenever x< B, then J/'< B, _ and that 2) I By =
=ftg | By p®0)

Next let us recall some facts on quasi-invariant measures.

Let p be a measure on (7. B(T)). The measure class [p] of u is the set of all
measures on (T, &(T)) having the same null sets as y has.

A measure p on (T.B(T)) is quasi-invariant under the action of group S, if for
everv ¢€S, one has y,=[u]. Here g, is defined by pq(E)=y(E’q). K. E,,Eaﬁ?;(T).
E,={t, |te E}. pis invariant under S if for all €S one has p, = p.

The action of S on T'is ergodic with respect to uresp. uis ergodic with respect to
S, if everv set W € B(T) which is invariant under §, i.e. M = M, 7q<5, has either
full measure or measure zero.

If S acts on T, there exists an (almost evervwhere) unique partition of T into
disjoint BOREL subsets, the orbifs. on which the action of 8 is transitive, i.e., the
orbits are the smallest subsets of T which are invariant under the action of S.

If Sactson T, and p is a measure on T, quasi-invariant under the action of S,
then g has an integral representation u= f £ u’(dt). such that the measure &, t¢ 7T,
on (T, #(T)) are concentrated on the orbits ty=1{t, 1g<S} and p’is a measure on
(T, 6(S)). Here o(S) is the finest sub-g-algebra of S(T') containing the orbits t,
12T, as atoms. Moreover, the action of S on { is ergodic with respect to &, .

I conclude this section with the remark that any nonempty measure class
containsg a probability measure. For more details T refer to MAckEY [1968].

4. Result

Proposition: Let B and q be defined as in section 3. Assume q¢(t. p)=1 for y-al-
most every peS. Let p be some probability on (T, B(T)) which is quasi-invariant
under the action a of S. Then under the duality assumption D one has for every p€ S:

= gt p) udh=1.
2

If | is continuous then _ﬁtf q(t. p) u(dt)=1.
7

The integral for the correspondence. i.e. set-valued mapping, ¢ is defined as
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follows.
Jeit. p) u(dt)={f glt, p) u(dt) | g (. p) ST, B(T), ) ,
t=1, .., n, gf, p)€¢(t, p) u—ae.in T} .

Note that [¢du is well-defined without any measurability or integrability as-
sumption on ¢. However, fgdy, may be empty. The p-integral of ¢ is nonempty if
¢ has integrable selections. For example fydu=0 if ¢ is integrably bounded (i.e.
39=(¢y .- gn): T ~X such that g;c €T, B(T), ), i=1,....nand —g=¢(:, p) =
=¢) and has a measurable graph. U [ is continuous it follows from Theorem 3,
p- 29 and Lemma 1. p. 55in HILDENBRAND (1974)that fgdu=+0. Hence $fpdu=1

in this case.
Our concern, however, is whether f ¢du has not more than one element. To show
that ﬁf @(t, p) p(dl) = 1 for every p< S we do not need any assumption as to how |
T

depends on teT.
Proof: Since y admits the disintegration u={ &’(dt) we get
Jottp)udty=J Jot', p) &de) i)
Therefore. it suffices to show that y’-almost everywhere on T one has
# j g(t’. p) E(d) =1

Choose some t€ T and keep it fixed for the following considerations. Since &, lives
on the orhit {., we have

quv(, p) M) = ff;

Now the orbit {¢ is homeomorphic to the factor space S/C, via the map h:t5—
~S/C, : t,~+¢C,=[q}, Since t is fixed we drop the subscript t in [g], for conveni-
ence and write [gq] instead of [¢],. Denote & 0k~1 by f,. Then we have

[olt'. p) &ddt)=_[¢(h~1q). p) Eddlq) .

7 80y
where £, is ergodic and. in particular. quasi-invariant under the action of § on
S/C,. It remains to show that HHg(h~1q], p)=1, for everv p&S and &-almost
everywhere on S/C,.

Since S is locally compact and commutative it is unimodular. Hence, C, is an
invariant subgroup. Therefore, S/C, is a topological group which is locally com-
pact and commutative, hence unimodular, since § is so. As C, is also closed it is
unimodular, too (¢f. NACHBIN (1965), p. 87). Accordingly, the Haar measure yon 8
is the homeomorphic product of HAAR measures 7, and y, on S/C; and C,, respec-
tively.

Due to assumption D we have (27¢ Byy=>{(x€ B,.-,) and [(t,. p. 2) =]t ¢~ 10
op.x), hence q¢(l,. p)=3¢lt, ¢ 'op). As, by assumption, # ¢, p)=1 for
y-almost every pes, we have I q(t,, p)= 3 ¢t, ¢ lop)=1 for all pcS and y-al-
most every q¢8. Since for g<Cp. we have #Hq(t, g7 1op)=frg(ty. p)=F¢lt, p),
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this implies that for 7,-almost every [g],=[q]¢S/C, we have Fq(h~'[q]. p)=1.
By the uniqueness of HAAR measure the measures 3, and 7, must be equivalent.
Therefore, 3 ¢(h~1{g]. p)=1 &,-almost everywhere on S/C,. ®

5. Coneluding Remarks

It can easily be seen from the proof that it suffices to assume. u to be absolutely
continuous with respect to a quasi-invariant measure rather than to be quasi-
invariant itself. In particular. this allows a purely local reasoning, where some
small neighborhood of the identity of the acting group plavs the role of the group
in determining the distribution on 7. The class of so characterized probabilities
u reflects the idea, that ohservation of members of t< T, in the model under con-
sideration, can only be expected up to a certain degree of precision. In a certain
neighborhood of the “true” t all#’ are “‘almost equally likely” to be ohserved. This
lack of precision in observation already suffices to yield uniqueness of mean maxi-
mizers.

Accordingly non-uniqueness of mean maximizers results only from an unduely
sharp interpretation of the observed element ¢.

Clearly the space X which we assumed to be EvcLipean may be any space on
which a DANIEL integral exists. For example X may he a BAxacH or only a locally

convex topological vector space. The reasoning of the proof would not be affected
at all.
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Zusammenfassung

Es ist ein Problem der 6konomischen allgemeinen Gleichgewichtstheorie naclizuweisen,
dali die Murktnachfrage eine Funktion der Preise ist, obwohl individuelle Konsumenten
bei manechien Preisen mengenwertige Nachfragen haben knnen. Die spezielle Struktur des
dkonomischen Modells erinbglicht ¢ine Lésung mittels eines Ergodensatzes. Diese Struktur
kann in rein mathematischen Termen ohne Bezug zum 6konomischen Kontext formuliert
werden.

PeswoMe

B nacroauteft pasoTe npuMeHAIOTCA M3BECTHEIE 1T XOPOII0 000CHOBAHHBIE (HAKTHL H METO/I6E DProIH-
YecKoil Teopiir 171 JOKA3aTeNbCTBA OJHON TeopeMbl INHCTBEHHOCTH MAKCHMH3ALMN B CpeJHEM.
9710 1podaeMa pronoMIirMeckoll Teopint. Kak ¢1ecTBne HACTOALErO PesyapTaTa IOAYYAeTCH OJHO-
AHAYHOCTE I HENPePHIBHOCTD CTIPOCA B BABHCHMOCTIL OT 1{EH.

BrickashBaHUIO Il T0KA3ATEIBCTBY TEOPEMBl HPEIECTBYET OAPODHAA DKOHOMIYECKAA MOTHBI-
pOBEa.
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