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Abstract 

We have measured the spin-dependent structure function ~ of the proton in deep inelastic scattering of polarized muons 
1 

off polarized protons, in the kinematic range 0.003 < x < 0.7 and 1 GeV 2 < Q2 < 60GeV 2. Its first moment,  fo ~ ( x ) d x ,  is 

found to be 0.136-4-0.011 (stat.) q-0.011 (syst.) at Q2 = 10 GeV 2. This value is smaller than the prediction of  the Ellis-Jaffe 
sum rule by two standard deviations, and is consistent with previous measurements. A combined analysis of all available 
proton, deuteron and neutron data confirms the Bjorken sum rule to within 10% of the theoretical value. 

i Now at CERN, 1211 Geneva 23, Switzerland 
2 Now at University of Montreal, PQ, H3C 3J7, Montreal, Canada 
3 Now at Max Planck Institute, Heidelberg, Germany 
4 Permanent address: Paul Scherrer Institut, 5232 Villigen, 
Switzerland 
5 Permanent address: Miyazaki University, 88921 Miyazaki-Shi, 
Japan 
6 Permanent address: KEK, 305 Ibaraki-Ken, Japan 
7 Permanent address: University of Buenos Aires, Physics De- 
partment, 1428 Buenos Aires, Argentina 
8 Now at SSC Laboratory, Dallas, 75237 TX, USA 
9 Permanent address: The American University, Washington D.C. 
20016, USA. 
lO Present address: ESFR, F-38043 Grenoble, France. 
ll Supported by Bundesministerium fiir Forschung und 
Technologie 
12 Supported by the Department of Energy 
13 Supported by the National Science Foundation 
14 Supported by lshida Foundation, Mitsubishi Foundation and 

T h e  spin  d e p e n d e n t  s t ruc tu re  f u n c t i o n s  o f  the  nu-  

c leon,  gl and  g2, can  be  m e a s u r e d  in po la r i zed  deep  

ine las t ic  l e p t o n - n u c l e o n  sca t t e r ing  [ 1 ]. M e a s u r e m e n t s  

o f  gl for  the  p r o t o n  and  the  n e u t r o n  a l low us to tes t  a 

f u n d a m e n t a l  Q C D  sum rule ,  de r ived  by  B j o r k e n  [ 2 ] ,  

and  to s tudy  the  in te rna l  sp in  s t ruc tu re  o f  the  nuc leon .  

El l i s  and  Jaffe  [3 ]  have  der ived  sum ru les  for  the  pro-  
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ton and for the neutron, under the assumptions that the 
strange sea is unpolarized and that SU(3) symmetry 
is valid for the baryon octet decays. 

First measurements of ~ were performed by exper- 
iments at SLAC (E80 and El30 [4] ) and at CERN 
(EMC [5] ). The analysis of these data [6,5] showed 
a deviation from the Ellis-Jaffe prediction, with the 
implications that the total contribution of quark spins 
to the nucleon spin is small and that the strange sea is 
negatively polarized. Recently, two experiments have 
measured ~ from polarized muon-deuteron (SMC 
[7] at CERN) and ~ from polarized electron-3He 
scattering (E142 [ 8 ] at SLAC). The conclusions from 
these two experiments appeared to be at variance. 
However, combined analyses [9-12] showed that the 
experimental data agree in the kinematic region of 
overlap, and emphasized that the conclusions are very 
sensitive to the small-x extrapolation of gl (x) and to 
higher order and higher twist QCD corrections. Ad- 
ditional data are required to provide a more stringent 
test of the sum rules and to clarify the contribution of 
the quark spins to the nucleon spin. 

In this paper, we report the results of a new mea- 
surement of ~ at CERN, where longitudinally polar- 
ized muons were scattered from longitudinally polar- 
ized protons in the kinematic range 1 GeV z < Q2 < 
60 GeV 2 and 0.003 < x < 0.7. The experiment is sim- 
ilar to the previous SMC experiment with a deuteron 
target [7]. 

The positive muon beam had an intensity of 4 x 
107 muons/spill with a spill time of 2.4 s, a period 
of 14.4 s, and an average muon energy of 190 GeV. 
The beam polarization was determined from the the 
shape of the energy spectrum of positrons from the 
decay /~+ ---* e+~'e~z. The polarimeter is described 
in Ref. [ 13]. The polarization was measured to be 
Pu = -0 .803 4- 0.029 (stat.) 4- 0.020 (syst.), in good 
agreement with Monte Carlo simulations of the beam 
transport [ 14]. 

A new polarized target was built for this experiment. 
Its design is similar to that used in the earlier EMC 
proton [5] and SMC deuteron [7] experiments. The 
target consists of an upstream and a downstream cell, 
each 60 cm long and 5 cm in diameter, separated by 
30 cm, and with opposite longitudinal polarizations. 
The target material was butanol with about 5% of wa- 
ter, in which paramagnetic complexes [ 15] were dis- 
solved, resulting in a concentration of 7.2 x 1019 un- 

paired electrons per cm 3. The material was frozen into 
beads of about 1.5 mrn diameter. 

A new superconducting magnet system [ 16] and a 
new 3He/aHe dilution refrigerator were constructed. 
The magnet system consists of a solenoid, 16 cor- 
rection coils, and a dipole. The solenoid provides a 
magnetic field of 2.5 T with its axis aligned along the 
beam direction and with an homogeneity of 2 x 10 -5 
throughout the target volume. The dipole magnet pro- 
vides a magnetic field of up to 0.5 T in the vertical 
direction. The dilution refrigerator achieved a temper- 
ature of about 0.3 K with a cooling power of 0.3 W 
when polarizing. The typical temperature in frozen 
spin operation was below 60 mK. 

Protons were polarized by dynamic nuclear polar- 
ization (DNP). This was obtained by applying mi- 
crowave power near the resonance frequency of the 
paramagnetic molecules. To achieve opposite proton 
polarizations in the two target cells simultaneously, 
we used slightly different microwave frequencies. In 
addition, frequency modulation of the microwaves re- 
duced the polarization buildup time by about 20% and 
increased the maximum polarization by 6%. The mean 
polarization throughout the data-taking was 0.86, with 
a maximum value of 0.94. 

The measurement of the proton polarization, Pr, 
was performed with 10 coils along the target using 
continuous-wave NMR with series Q-meter circuits 
[ 17,18]. The NMR signals were calibrated by mea- 
suring the thermal equilibrium signals at different tem- 
peratures around 1 K, where the natural polarization 
(_~ 0.25%) is known from the Curie law. The ther- 
mal equilibrium signals were corrected for systematic 
effects including a small change in size with the field 
polarity and the contamination with background sig- 
nals. The signals were also corrected for Q-meter non- 
linearity effects present at large polarizations. The rel- 
ative accuracy of the polarization measurement was 
3%. 

The spin directions were reversed every 5 hours with 
only small losses of polarization and running time, by 
rotating the magnetic field direction using a superpo- 
sition of the solenoid and the dipole fields. In addition, 
the spin polarization in each target cell was reversed 
via DNP once a week. During spin reversals by field 
rotation, the field was made slightly inhomogeneous 
to avoid depolarization due to superradiance [ 19]. 

The momentum of the incident muon was measured 
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using a bending magnet upstream of the target. Its 
track was reconstructed from hits in scintillator ho- 
doscopes and proportional chambers. The trajectory 
and the momentum of the scattered muon were deter- 
mined from hits in a total of 150 planes of proportional 
chambers, drift chambers and streamer tubes located 
upstream and downstream of the forward spectrome- 
ter magnet (FSM). The large number of planes min- 
imized the effect of  individual plane inefficiencies on 
the overall track reconstruction efficiency. The scat- 
tered muon was identified by having traversed a 2 m 
thick hadron absorber made of iron. Incident and scat- 
tered muon tracks determined the interaction vertex 
with an average resolution of 30 mm (0.3 mm) in the 
direction parallel (perpendicular) to the beam direc- 
tion. 

The readout of the apparatus was triggered by coin- 
cident hits in three large scintillator hodoscopes, one 
located just downstream of the FSM and two located 
downstream of the hadron absorber. A dedicated trig- 
ger for events with small scattering angles used ho- 
doscopes with finer segmentation close to the beam 
and covered mainly the small x range. 

Cuts were applied to minimize smearing effects, to 
limit the size of radiative corrections, to reject muons 
originating from the decay of pions produced in the 
target, to ensure that the beam flux was the same for 
both target cells and to ensure proper separation of 
events originating from the upstream and downstream 
target cells. After cuts, the data sample amounted to 
3.1 x 106 events and 1.3 × 106 events for the large and 
small angle triggers, respectively. 

The virtual-photon proton asymmetry AlP is related 
to the measured muon-proton asymmetry A p = (0"T$ _ 
o -TT) / (o -TJ .  + 0-TT) by [1] 

A~ = °"1/2 - 0"3/2 AP 

O'1/2 -l'- 0"3/1 = " ~ -  - -  ~TAp' ( 1 )  

where 1/2 and 3/2  are the total spin projections in 
the direction of the virtual photon. The depolarization 
factor D and the coefficient 7/ depend on the event 
kinematics. In addition, D depends on the unpolarized 
structure function R ( x ,  Q2), which was taken from a 
global fit of the SLAC data [20]. The asymmetry A2 p 
arises from the interference between transverse and 
longitudinal virtual photon polarizations and is con- 
strained by the positivity limit I A~L < v'-R. We have 

measured A~ in a dedicated experiment, where the 
dipole field was used to hold the proton polarization 
in a direction perpendicular to the beam. We found A~ 
to be compatible with zero within a statistical uncer- 
tainty of 0.20, which is a stronger constraint than the 
one imposed by the positivity limit. In addition, since 
the coefficient r / i s  small in the kinematic range cov- 
ered by our experiment, we neglected the term ~TA~ 
and included its possible effect in the systematic error. 

The asymmetry A p is extracted from combinations 
of data sets taken before and after a polarization re- 
versal. Each event is weighted with the corresponding 
values of D and the dilution factor f ,  the fraction of 
the event yield from protons of hydrogen in the target 
( f  "~ 0.12). Since we take data simultaneously with 
oppositely polarized cells, the incident muon flux, the 
amount of material in the target cells and the absolute 
value of the spectrometer acceptances, au and aa, can- 
cel in the determination of A~. The subscripts u and d 
refer to the upstream and downstream target cells, re- 
spectively. The only assumption in deriving A p is that 
the ratio r = au/aa remains constant within the typi- 
cal period of time between two polarization reversals 
(At ,-~ 5 hours). A time dependence of r leads to a 
false asymmetry of 

1 Ar 
aA~ - 4 fp t zPrD r ' (2) 

In order to estimate the uncertainty due to this ef- 
fect, we have studied the time dependences of all de- 
tector efficiencies; we then reprocessed the data after 
artificially imposing on the whole sample the largest 
of the variations observed within two polarization re- 
versals. We also reanalyzed the data ignoring the in- 
formation from a fraction of the planes in our cham- 
bers. In this way, we artificially reduced the redun- 
dancy of the spectrometer and became more sensitive 
to time dependences. Finally, we divided the data into 
different subsets according to a variety of criteria (e.g. 
data-taking periods, radial vertex position, events re- 
constructed in different parts of the spectrometer) and 
looked for disagreements between the different sam- 
pies. From these studies we concluded that A r / r  < 
7 × 10 -4, corresponding to a false asymmetry AA1 p < 
7 × 10 -3. 

Spin-dependent radiative corrections to A~ were 
calculated using the approach of Ref. [21 ]. They were 
found to be small over the whole kinematic range. The 
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on the virtual photon proton asymmetry AlP and the spin structure function ~ of the proton 
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x-range (x) (Q2) AlP glp glp 
(GeV 2 ) ( Q2 = 10 GeV 2 ) 

0.003-0.006 0.005 1.3 0.0534-0.0254-0.007 1.34-t-0.624-0.27 2.48-t- 1.15-t-0.49 
0.006-0.010 0.008 2.1 0.0424-0.0244-0.005 0.73-t-0.42-t-0.11 1.13-1-0.65 4-0.17 
0.010-0.020 0.014 3.7 0.0484-0.0224-0.005 0.524-0.24-t-0.06 0.674-0.314-0.08 
0.020-0.030 0.025 6.0 0.0504-0.0314-0.005 0.344-0.214-0.03 0.384-0.244-0.04 
0.030-0.040 0.035 8.1 0.069-t-0.0394-0.006 0.354-0.204-0.03 0.374-0.204-0.03 
0.040-0.060 0.049 10.8 0.1244-0.034-1-0.009 0.464-0.134-0.03 0.45 4-0.13 4-0.03 
0.060-0.100 0.077 15.5 0.1614-0.0354-0.012 0.384-0.084-0.03 0.364-0.084-0.03 
0.100-0.150 0.122 22. i 0.275-t-0.0474-0.019 0.404-0.074-0.03 0.38-t-0.064-0.03 
0.150-0.200 0.172 28.5 0.2734-0.0674-0.020 0.26-t-0.064-0.02 0.254-0.064-0.02 
0.200-0.300 0.241 36.3 0.2674-0.0704-0.022 0.164-0.044-0.01 0.164-0.044-0.01 
0.300-0.400 0.342 46.4 0.5294-0.1154-0.043 0.174-0.044-0.01 0.184-0.044-0.01 
0.400-0.700 0.481 58.0 0.5204-0.1564-0.049 0.064-0.024-0.01 0.084-0.024-0.01 

The first error is statistical, the second one is systematic. For the evaluation of ~ (Q2 = 10GeV2), it has been assumed that A p does not 
depend on Q2. 

SMC 0.8 • ~.[~ 
zx EMC 

o SLAC ~ 

~,~- 0.4 

0 

. . . . . .  i . . . . . . . .  i . . . . . . . .  

1 0  - 2  1 0  - 1  

x 

Fig. 1. The virtual-photon proton cross section asymmetry A~ as 
a function of the Bjorken scaling variable x. Only statistical errors 
are shown with the data points. The size of the systematic errors 
for the SMC points is indicated by the shaded area. 

uncertainty in the radiative corrections arises predom- 
inantly from uncertainties in the structure functions 
used as input. Asymmetries arising from electroweak 
interference are negligible in the Q2 range of this ex- 
periment. 

The results for A p for each x bin at the respective 
mean Qz are given in Table 1, and are shown in Fig. 1. 
Sources of systematic errors include the uncertainties 
in the beam and target polarizations, the structure func- 
tion R, the dilution factor f ,  the radiative corrections, 

the momentum measurement, the kinematic smearing 
corrections, the stability in time of the acceptance ra- 
tio, and the neglect of A2. The different systematic 
errors were combined in quadrature. 

The spin structure function ~ was evaluated from 
the average asymmetry A p in each x bin using the 
relation 

A~ (x, Q2)FP (x,Q 2) 
~(x'Q2) = 2 x [ l + R ( x ,  Q2)] 

(3) 

The unpolarized structure function, FP(x, Q2), was 
taken from the NMC parametrization [ 22]. The uncer- 
tainty is typically 3% to 5%. The lowest x bin is out- 
side the kinematic region covered by the NMC data, 
but we have verified that their parametrization extrap- 
olates smoothly to the HERA data [ 23 ], and estimated 
the corresponding uncertainty to be 15%. The struc- 
ture function ~ is practically independent of R due to 
cancellations between the implicit R dependences in 
D and F2 and the explicit one in Eq. (3).  Results for 

are given in Table 1 and Fig. 2. 
To evaluate the integral f~(x ,  Q2)dx at a fixed 

Q2, we recalculated ~ at Q02 = 10 GeV 2, which rep- 
resents an average value for our data. Using Eq. 3, we 
obtained ~ (x, Q2) in each bin assuming A1 (x, Q2) 
to be independent of Q2. This assumption is consistent 
with our data, with previous experimental results for 
both the proton [5] and deuteron [7], and with recent 
theoretical calculations [ 11 ]. The values of ~ (x, Q2) 



404 Spin Muon Collaboration/Physics Letters B 329 (1994) 399-406 

2 • S M C  / 
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Fig. 2. The solid circles (right-hand axis) show the struc- 
ture function xg~l as a function of the Bjorken scaling variable 
x, at Qo 2 = 10GeV 2. The open boxes (left-hand axis) show 

f~.~(x)dx, where is the value of at the lower edge of X m  x 
i 

each bin. Only statistical errors are shown. The solid square shows 
1 

result fo ~ (x)dx, with statistical and systematic o u r  e r r o r s  c o m -  

b i n e d  in quadrature. Also shown is the theoretical prediction by 
Ellis and Jaffe [ 3 ]. 

are shown in Table 1. 
The  integral  over  the measured  x range is 

0.7  

f ~'(x,  Q2o)dx=O.131 ± 0.011 ± 0.011.  

0 . 0 0 3  

(4 )  

Here,  and in the fo l lowing ,  the first error  is statistical 

and the second is systematic.  The  contr ibut ions  to the 

sys temat ic  error  are detai led in Table 2. 

To es t imate  the integral  for x > 0.7, we take A1 p = 

0.7 ± 0.3 for  0.7 < x < 1.0, which  is consis tent  

wi th  the bound  At < I, and also with  the result  

f rom per turbat ive  Q C D  [24] that Al --~ 1 as x ~ 1. 

This  cont r ibut ion  amounts  to 0 .0015 + 0.0007. The  
1 

integral  fx, ~ ( x ) d x  as a funct ion  o f  the lower  in- 
tegrat ion l imit ,  Xm, is shown in Fig.  3. The  contr i-  

but ion to the integral  f rom the unmeasured region 
x < 0 .003 was evaluated assuming  a Regge- type  de- 

pendence  glp(x) = constant [25 ] ,  that we fit to our  

two  lowes t  x data points.  We obtain  fgoo3 ~ ( x ) d x  = 
0.004 4 -0 .002 ( s t a t . ) .  We increase this error to 0.004 

so that it covers  the results obta ined  when  ei ther the 
lowes t  x po in t  or  the three lowes t  x points  are used 

to de te rmine  the extrapolat ion.  This  range also covers  

the results obta ined  us ing the general  fo rm o f  R e g g e  

0.20 

.~-  ~ El l is -Jaffe  

0.0~ 

} 
0 . ,  

0 f /  . . . . . .  I . . . . . . . .  I . . . . . . .  
10-2 10-1 

x 

Fig. 3. The spin dependent structure function ~ (x) at the average 
Q2 of each x bin (Table 1). Only statistical errors are shown with 
the data points. The size of the systematic errors for the SMC data 
is indicated by the shaded area. The EMC points are reevaluated 
using the NMC F2 parametrization [22]. 

Table 2 
Contributions to the error on F, p 

1 

Source of the error AF p 

Beam polarization 0.0057 
Uncertainty on F2 0.0052 
Extrapolation at low x 0.0040 
Target polarization 0.0039 
Dilution factor 0.0034 
Acceptance variation Ar 0.0030 
Radiative corrections 0.0023 
Neglect of A2 0.0017 
Momentum measurement 0.0020 
Uncertainty on R 0.0018 
Kinematic resolution 0.0010 
Extrapolation at high x 0.0007 

Total systematic error 0.0113 

Statistics 0.0114 

dependence  ~ ( x )  cx x" ,  wi th  0 < a < 0.5 [25] .  Al -  

though gl shows a tendency to increase at low x, Table 
1, we do not  cons ider  the trend signif icant  enough  to 

call  into ques t ion the val idi ty  o f  R e g g e  behavior.  

The  result  for  the first m o m e n t  o f  glp(x) at Q02 = 
10 G e V  2 is 
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1 

(Q~) = / ~ (x ,  Q~)dx = 0.136 4- 0.011 + 0.011. F p 

0 
(5) 

The Ellis-Jaffe sum rule, including first order QCD 
corrections [26] ,  predicts F p = 0.176 4- 0.006 
for a s ( 1 0 G e V  2) = 0.23 + 0.02, corresponding to 
as(M 2) = 0.113 4- 0.004 [27] and four quark fla- 
vors. Our measurement is two standard deviations 
below this value. 

The first moment F p can be expressed in terms of  the 
proton matrix element of  the flavor singlet axial vector 
current ao [5] and the SU(3)  coupling constants F 
and D [28] .  We obtain a0 = 0.18 4- 0.08 4- 0.08. In 
the quark-parton model, a0 is proportional to A~ = 
Au + Ad + As, the sum of  the quark spin contributions 
to the nucleon spin. Our result corresponds to 

A~ =0 .22-4 -0 .104-0 .10  (6) 

and 

As = --0.12 + 0.04 -4- 0.04. (7) 

We thus find that only a small fraction of  the nucleon 
spin is due to the helicity of  the quarks, and that the 
strange sea is negatively polarized. 

Our results are in good agreement with the pre- 
vious measurements of  E80/E130 and the EMC. 
A test o f  consistency of  the experimental asymme- 
tries AP(x) from all experiments yields g 2 = 14.6 
for 15 degrees of  freedom. To compare ~ ,  values 
we apply to the EMC asymmetries the same F p 
parametrization that we use in the present work. 
An evaluation of  the integral over the x range com- 
mon to both experiments, at Qg = 10GeV 2, yields 

fo°o 7 ~ (x)dx = 0.124 + 0.013 + 0.019 for the EMC 

and f0°071 g~l (x)dx = 0.118 -t- 0.010 -4- 0.009 for our 
data. In the range 0 < x < 0.01, the extrapola- 
tion o f  the EMC data gives 0.003-4-0.003, while 
our two lowest x points and our extrapolation give 

fo °°1 ,,P ( x )dx = 0.017 -t- 0.006. ,51 
For a common evaluation of  F p from all existing 

data, we combine our results on A p (x) with those of  
E80/E130 and EMC. The extrapolations are recalcu- 
lated from the combined asymmetries following the 
methods described above. The treatment of  the sys- 
tematic errors takes into account that some of  them 

are correlated between the different experiments. This 
yields 

F p ( 10 GeV e) = 0.142 + 0.008 4- 0.011 

(All proton data), (8) 

which is two standard deviations below the Ellis-Jaffe 
prediction. From this result, we obtain AE = 0.27 + 
0.08 + 0.10 and A s =  - -0 .10-4-0 .03+0.04 .  

We now turn to a test of  the Bjorken sum rule [2] ,  
using all available proton, neutron and deuteron data. 
We do this test at Q2 = 5 GeV z in order to avoid a large 
Q2 evolution of  the SLAC-E142 neutron data, which 
have an average Q2 = 2GeV 2. A fit to F~ (Eq. 8), 
F~ [8] and F d [7] ,  reevaluated at 5 GeV 2 under the 
assumption that the asymmetries A1 are independent 
of  Q2, yields 

F p - F ~  =0.163- t -0 .017 (Q2 = 5GeV2) ,  (9) 

where statistical and systematic errors are combined 
in quadrature. When one uses the available deuteron 
and proton data to replace the extrapolation on the 
neutron data, as discussed in Ref. [ 12], one obtains 
F]' = -0 .069  q- 0.025 and 

FP - F]' = 0.204 + 0.029 (Q2 = 5 GeV/) ,  (10) 

with a larger error due to the limited statistics in the 
deuteron experiment. The theoretical prediction, in- 
eluding perturbative QCD corrections up to third order 
in as [29],  gives 

F p - F~ = 0.185 4- 0.004 (Theory) 
(Q2 = 5 GeV2), ( 11 ) 

which is in agreement with the above experimental re- 
sults. Higher-twist effects are expected to contribute 
especially at low Q2 [ 30,31 ], and have been estimated 
[ 11,31 ] to change F p - F~ by about 2%, but the cal- 
culations are model dependent. We have therefore not 
taken these contributions into account. 

In summary, we have presented a new measurement 
of  the proton spin dependent structure function g~l- The 
measured asymmetries are in agreement with those 
of  the earlier E80/E130 and EMC experiments, but 
systematic errors have been significantly reduced and 
the kinematic region has been extended down to x = 
0.003. 
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The  first m o m e n t  o f  the spin dependent  structure 

funct ion  g~, evaluated f rom our  own data, is two stan- 

dard devia t ions  be low the predic t ion  o f  the E l l i s - Ja f fe  

sum rule. In the quark  parton model ,  this result  im-  

pl ies  that the contr ibut ion  o f  the quark spins to the 

pro ton  spin is 0.22-4- 0.14. The  Bjorken  sum rule is 

now conf i rmed,  at the one  standard deviat ion level,  to 

wi th in  10% o f  its theoret ical  value. 
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