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Abstract. The vacuum state of gluonic quantum 
chromodynamics on the lattice is determined up to 
fifth order in a 1IN c expansion ( N =  number of 
colours). The vacuum expectation value of the gluon 
field squared Fa,vF~ ~ is deduced. The quark-anti- 
quark and gluon-gluon potential is calculated in the 
same limit up to the 1/N~ order. 

1. Introduction 

The confidence in quantum chromodynamics (QCD) 
as a theory of strong interactions is based at present 
mainly on the good agreement of its perturbative 
("asymptotic freedom") predictions with experiments. 
Much remains to be understood, however, concerning 
genuine strong interaction aspects like the hadronic 
spectrum ("confinement"). Among the methods pro- 
posed to investigate the strong forces in QCD the 
strong coupling expansion [1, 2], the semi-classical 
methods via instantons [3 5] and the 1/N~ expansion 
[6-8]  are receiving the most attention. 

A widespread opinion among theorists is that the 
confinement phenomenon prohibiting the appearance 
of free quarks and gluons J[s due to the complicated 
non-perturbative vacuum structure of QCD. In 
addition, it is also mostly believed that confinement 
follows from the propertiies of the gluonic (pure 
Yang-Mills) sector. (Although the breaking of chiral 
symmetry requires a non-trivial quark-antiquark 
content of the vacuum, too.) The simplest manifesta- 
tion of the non-trivial gluonic vacuum structure is the 
non-zero vacuum expectation value of the gluon 
field (squared): 

< I Fo Vo I > 
= - 4 (  ~> -_ 0.48g -2 GeV ~. (1.1) 

Here Iv) is the vacuum, F.(x ) ,  v the gluon field 
strength tensor, Lv~I(x ) denotes the Lagrangian 
density of the pure Yang-Mills (gluon) field and 

9 is the coupling constant. The numerical value given 
in (1.1) has been estimated in [9] comparing the sum 
rules for charm production with experimental data 
in e + e-  annihilation. 

Many qualitative features of the hadronic spectrum 
are reasonably well described by the dual string model 
(for references see [10]). Therefore, there has to be 
some relation between QCD and strings. Indeed, 
within the strong coupling approach to QCD on the 
lattice, Wilson [1] established the linear rise of the 
quark-antiquark potential (the "area law" for Wilson 
loop). This is certainly an important effect coming 
from the "elastic" string between quarks, but otherwise 
the expansion in 1/9 ~ does not seem to be a string 
expansion. However, as it was shown by 't Hooft [4], 
the large N c limit of QCD exhibits also a diagramma- 
tic structure with topologies reminescent of the dual 
string model. Moreover, as it was shown recently by 
Bars and Green [8], if both N c --, co and 9ZNc --, oo 
then the meson propagator is the same as in a string 
model with quarks at the ends. This demonstrates the 
dynamical equivalence of strings and QCD for large 
N and 9 z N~. These conclusions are strengthened by 
recent studies of the physical (N~ = 3) theory with the 
help of certain string variables showing the close 
relationship between classical chromodynamics and 
the quantum mechanics of relativistic strings [11, t2]. 
(For further references see [13] ). 

All that shows the interest in the study of the large 
Nc limit. The drawback of the 1/N~ expansion is, 
however, as observed by de Witt and 't Hooft [14], 
that certain quantities show an anomalous non- 
analytic or even singular behaviour as a function of 
N c. These "anomalies" (together with the problem of 
baryons) may prevent the 1 I N  expansion from being 
actually a method of solution for the physical (N c = 3) 
theory. In such a case the large Nc QCD can be 
considered to be a model only. Nevertheless, funda- 
mental problems such as the quark confinement 
mechanism are likely to be independent of N .  
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Besides, 1/3 may be small enough so that the spectrum 
obtained by the 1 I N  expansion will presumably 
resemble the physical spectrum. 

In the present paper the vacuum state of the pure 
gluonic QCD on the lattice is investigated in the 
1/N c expansion keeping the bare coupling constant 9 
fixed (Sect. IV). The static potential between external 
charges is determined in the quark-antiquark and 
gluon-gluon case (Section V). First, however, the basic 
ingredients of Hamiltonian QCD on the lattice are 
summarized in order to introduce our notations and 
conventions (Sect. II). In Sect. III the properties of the 
Hilbert space of physical states necessary for our 
calculations are derived. Section VI contains the 
summary and concluding remarks. 

II. The Lattice Hamiitonian in QCD 

In this section we shortly review the basic elements of 
lattice QCD. The Hamiltonian formulation of lattice 
QCD was introduced in [21. It is defined on a cubic 
spatial lattice (with lattice constant a), leaving time 
continuous. In what follows, we shall denote lattice 
points by "middle" letters like i , j ,k,  1 . . . . .  The 
directions of the links connecting two neighbouring 
lattice points will be denoted by "late" letters r, s, t, ... 
(these can have values +_ x, _+ y, + z). A link is then 
given as ~rk - g'r - rk (see Fig. la). The short nota- 
tion for a plaquette (in fact, plaquette boundary) 
starting from the point k first in the direction r and 
then s (that is k - s - r s r k )  will be k[rs]  (Fig. lb). 
In summations over plaquettes [rs] takes on six 
different values with r, s positive. We shall assume 
periodic boundary conditions with respect to a cube 
of sides a N (N units on the lattice), therefore there are 
altogether P = 6N 3 different plaquettes. 

To every link on the lattice there is associated a 
"string operator" U [Erk] transforming like a N~ x N c 
matrix under colour SU(Ne). That is, under a local 
gauge transformation U k (in the point k) we have 

U' [  e'rk 3 = U ;  ~ U E ( r k  I U k. (2.1) 

i ~r ~ - -  [~ ' k  

- S '  

- p  

k r 

s = k[rs] 

Fig. l.a. A link on the lattice, b a plaquette 
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A carve on the lattice is a sequence of joined links. 
For instance, a closed curve starting and ending in the 
point i and consisting of n + 1 links is 

ir n i r _ 1 ." rl il ro i -= i *-- i. (2.2) 

Later on, we shall also use the notations i = i o = i, + 
and ij ==- ij+n+j, ri=--rj+,+ L. The string operator 
belonging to this curve is the product of the string 
operators belonging to the links: 

U [ i ~  i] = U[ir ,  i , ] U [ i , , r , _ l i , _ l ]  ... U[ i l ro i  1. 
(2.3) 

The trace of it (over SU(N~) indices) is the gauge 
invariant "Wilson-loop operator" (gluon loop 
operator): 

A (i ~ i) = Tr { U [i ~ i] }. (2.4) 

In particular, the string operator of the plaquette 
k [r s] is U [k [rs 1] and the corresponding gluon 
loop operator is 

A (k [rs I ) = Tr { U [k [rs] ] }. (2.5) 

The Hamilton-operator H in the A o = 0  
("temporal") gauge is the following 

H = H E - H A ; 

92 V E ~k) E (k) . HE=4aa ~ b,~ b,r' (2.6) 
k,r,b 

1 
HA- ~ Y~ A(k[rsl). 

619 k[rs] 

Here E~k.~ is the colour electric flux operator in the 
point k 'and direction r. (The unusual factor 1/4 in 
front of the electric term H E comes from our conven- 
tion to sum r over both positive and negative direc- 
tions.) b is the colour index taking o n  N 2 - I different c 
values ("early" letters like b, c, d . . . .  will be reserved 
for this). Note that following [151 we define the electric 
flux operator on lattice sites rather than on links. (The 
difference between the two choices vanishes for a -* o. 
For finite a we find our choice more natural.) 

The commutation relation between the string 
operators and the electric flux operator is [15] �9 

[U[~rk] ,  ~(i) ] = 1 6 -b,s, 2( ~ -  ~-.s) 

2 b (b= 1,2, . . . ,N~-l)  are the generalized Pauli- 
matrices (or Gel l -Mann matrices) for S U (N c) norma- 
lized in such a way that 

Tr {2b2e} = 26bc Tr {2b} = 0; 

(2.8) / 
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We shall need the value of the quadratic Casimir 
operator of SU(N~) in the fundamental (N~ dimen- 
sional) representation, which is 

N 2 -  1 2b /~b __ N c  1 (2,9) 
C2--- ~ 2 2 2 2 N "  b=l  

III. The Hilbert Space of Physical States 

In this section we shall first define, following [1, 2] 
(see also [16]), the Hilbert space of states where the 
operators introduced in the previous section act. 
After this is done we have a well defined theory and 
the rest is in principle straightforward: one has to 
find the eigenstates (and eigenvaiues) of the Hamilton 
operator. In practice this is, of course, a formidable 
task, therefore one has to find some appropriate 
approximation scheme. In the following sections the 
approximation will be to take N~ very large. What 
we need, therefore, is to calculate matrix elements of 
our operators for any value of N .  The basic relations 
necessary for this will be derived in the second part of 
this section. 

The Hilbert space of states is defined as a direct 
product of Hilbert spaces belonging to the individual 
links on the lattice. The "coordinates" of the gluon 
field are elements of the colour gauge group SU (N) 
on every link. The wave functions depend on these 
"coordinates" and the scalar product is given by the 
invariant measure d U on SU(N~) (normalized to 1): 

(0211//1) :-  S dUldU2...~I~(U1,U2, ...) 
SU(N~) 

"(//1 ( U I '  U2 . . . .  )" (3.1) 

(Here U, ,  U 2 ....  stand for the S U ( N )  elements on 
the different links.) The string operator U JErk] acts 
in this Hilbert space as multiplying the wave functions 
by the S U ( N )  element belonging to the link Erk. The 
string operator of the oppositely oriented link 
U [ E -  rk] acts multiplying by the adjoint (equal to 
the inverse of the SU(N~) element), therefore we have 

U [Erk]p~ U [ f  - r k],o, --= 6p,. (3.2) 
o) 

The "mathematical" vacuum state 10) (not equal 
to the "physical" vacuum ]v ) defined as the lowest 
energy state) has, by definition the wave function -- 1. 
The operator E~k~ of the colour electric flux annihilates 
the mathematical vacuum: 

E(k) 10) = 0. (3.3) b,r 

This relation together with the commutator in (2.7) 
defines E {k) uniquely. b,r 

Now we are in the position to calculate matrix 
elements of our operators using well known properties 
of the invariant integration on unitary groups (see 
e.g. [17, 18]). A simple example is the following: 
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=SdUU~oUo.  ~ = ~1 5 0 ~ o .  (3.4) 
N~ 

(Here the written out integration is over the SU(N~) 
belonging to the link {rk.  The integrations over the 
other links give only a trivial factor 1.) This result can 
also be derived from ( 010) = 1 and the invariance of 
the measure d U = d ( U ; ~ U  U[  ~) (for arbitrary Ut) 
implying that the matrix element in (3.4) is an invariant 
tensor: 

- -  o , , , ( 3 . 5 )  

In the same way we can deduce from (3.4) that 

1 
- N~ - 1 (6p~'6 ..... 8p2~5~,~ + 6o~,~26~o~6p~6~o~) 

1 

+ 5p~,~ g)~o~, 6o ~,  6~,o~ )" (3.6) 

More generally, one can determine recursively the 
matrix element of a larger number of string operators. 
The result can be written in the following way: 

( 0 1 U [ ~ - r k ] ~ , o  ' ... V [ ~ -  rk]~o~ 

K 
= Z Z A[PK(7~)] l-I 50,~,(o5~(,(,,,o, (3.7) 

u(!)K s i=1 

Here ~', denotes the summation over the permuta- 
7r(!)K 

tions n(1), n(2) . . . . .  n(K) of the numbers 1, 2 . . . .  , K. 
The coefficient A depends on the partition PK of the 
number K (into positive integer numbers) given by 
the cyclic structure of r~. The values of a few A's are 
(including the case K = 2 in (3.6)) : 

K = 2 :  

Al l ,  1] = ( N ~ -  1) -1 
A[2] = - [Nc (N  2 - 1)]-1;  

K = 3 :  

A [1, 1, 1 ] = (N 2 - 1) [U c (N~ - 1) (Uc 2 - 4) ]-~ 

A [ 2 ,  1 ]  = - - 1)(N  - 4 ) ]  

A[3] = 2 [Nc(N ~ - 1)(N 2 - 4)3-1;  

K = 4 :  

A [ 1 , 1 , 1 , 1 ] = ( N ~ _ 8 N 2 + 6 )  z 2 IN c ( N  - 1) 
.(N 2 -  4)(N 2 - 9 ) ]  - t  

A[2 ,1 ,1]  = - [ N ( N 2 - 1 ) ( N ~ - 9 ) ]  -~ 

A[2,2]  = ( U ~ + 6 )  N 2 2 [ ~(N~ - 1) 

.(N~ - 4)(N] - 9)]-1 
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A [3, 1] = (2N~  - 3) [ N ~ ( N {  - 1) 

. (N  2 - 4 ) (N~ - 9 ) ]  -~  

A [ 4 ]  = - 5 [ N r  2 - 1) 
2 2 

- ( N  c - 4 ) (N  c - 9 ) ] -  ~. (3.8) 

These relations hold, of course, only for N > K. 
The poles for N < K are the sources for the "anoma- 
lies" observed by de Wit and 't Hooft a4, which appear 
because of the vanishing of the antisymmetric tensors 
of rank K > N~ for SU (N~). The consequence of these 
anomalies is that the expansion in 1/N~ does not 
reproduce, in general, the results for N~ = 3 (see also 
below). 

The antisymmetric tensor of rank N is a scalar in 
SU(N ). (This coupling is important for the construc- 
tion of colour singlet baryon wave functions). This 
implies that there are non-vanishing matrix elements 
where the number of string operators in the two 
directions on a link differ by an integer multiple of N~ 
(not only equal numbers in both directions like e.g. 
in (3.7)). An example is, for N = 3 : 

 olu[ rkL .... u UE rkL3  10) 

= ~e % o) ~o - (3.9) P l p 2 P 3  1 2 3 

This is, however, not independent from relations like 
in Eq. (3.7) (equal numbers of U [{' - rk] and U [ I rk ]  ). 
We have namely, again for N = 3 : 

U [E - rk]~ = �89 ~ eo,,o~ U [~rk]p~ o,~ U [[rk]p~. . 
(3.10) 

Using relations like (3.7), (3.9) one can calculate, in 
principle, every matrix element of the Hamilton 
operator (2.6). This way is, however, in most cases 
rather cumbersome because of the large number of 
indices involved which have to be contracted, anyway. 
The physical states in the Hilbert space of states are, 
namely, gauge invariant (with respect to time- 
independent gauge transformations in the temporal 
gauge used here). Every such state can be created 
[1, 2, 16] by the action of the gauge invariant gluon 
loop operators on the mathematical vacuum. That is, 
we have to consider only states like 

A(i ~ i )A( j  * - j ) . . . A ( k  ~ k)10>. (3.111 

In such states, the colour indices of the string 
operators for links are contracted with each other, 
therefore, trace-like expressions appear, Useful tools 
for handling the group integrals of these expressions 
are given by the theory of group characters [17]. 
The character Za of the representation R is the trace 
of the representant matrices: 

Z~ (U) = Tr {R (U) }. (3.12) 

(U is the group element). A fundamental relation for 
the characters is the following [17, 18] : 

j" d U ZR ( V ) *  ZR (U)  = Z m~. (3.13) 
1 
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Here m z is the multiplicity of the irreducible re- 
presentation I in the representation R. 

In order to illustrate the use of(3.13) let us consider 
the (non-self-intersecting) curve i ~  i in (2.2). Let us 
denote the SU(N~) element belonging to the links 
i~roi, i2ra i~, . . . ,  ir i,, respectively, by U 0, U~ ... .  , U,. 
If the oppositely oriented curve is 

i ~ i = i - r i , - r _ l . . . - r l i l - r o i ,  (3,14) 
then we have 

( OlA(i  ~ i)A(i  ~ i)10} 

= ~ d U o . . . d U ,  T r ( U  o . . .  U , ) T r ( U ;  ... Uot ) 

= ~ d U o T r ( U o ) T r ( U o ) *  = 1. (3.151 

Here the invariance of the measure d U o and the 
normalization relation ~ d U =  1 were used. The 
result in (3.15) can, of course Jbe easily obtained also 
from (3.4), but in more complicated situations the use 
of (3.13) is much simpler. For instance, the well 
known methods [17, 18] of the reduction of direct 
product representations give (in the case to,2 < N 
and ~c = ,t = N ): 
(0[A(i  --, i)"A(i ~ i)~10 } = cS~K !. (3.16) 

In more general cases this relation does not hold. 
For N c = 3 we have e.g. 

( 0 [ A ( i , - -  i)3[01 = 1; (0[A(i  ~ i)A(i  ~ 04105 = 3; 

<0IA(i --, i )4A(i  ,,- 04]05 = 23; 

( O l A ( i  ~ i) 5 A(i  , -- i )s]0} = 103. (3.17) 

Comparing this to (3.16) we immediately see the 
non-analytic behaviour as a function of N c. These are 
examples of the anomalies observed by de Wit and 
't Hooft [141. 

Besides the matrix elements like in (3.16) we shall 
also need those containing gluon loop operators 
which belong to closed curves obtained by going 
around the curve i ~ i several times. Let us denote by 
A + the gluon loop operator of the closed curve going 
around the curve i +-- i e-times (in the positive direc- 
tion). The same for negative direction is A] .  In 
particular, for c~ = 1, 2 this means 

A + = A(i  ~ i); A[- = A(i  ---, i); 

A~ = A(i  ~- i ~- i); A2 = A(i  ~ i --* i). (3.18) 

In this notation we have, for instance, 

( O I A ] A + I O } = J d U o . . . d U  T r ( U  o . . . U  U o . . . U  ). 

Tr (U;  ... V;  g t ... Vto ) 

-- Sd U o Tr(U o U 0)Tr(U o Uo)*. (3.191 

Let us denote the character of the irreducible 
representation with the Young-pattern (21, 22 . . . .  , 2 )  
by Z(x 1 ~2 z )(U). Using the explicit expression [17] 
of the' claar/i~ier X(a,, x2 ..... ~,) and the rules for the 
direct,~product of representations we obtain: 
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. ( r r r r ~  -'~(n+l n 2 n 3 j ) (U) 
T . w  ,-'I . . . .  - ' - . . . . .  7 U ,  = Z (2 ) (U )  - -  Z(1 1 ) (U)  . 

)~(n-l,n-2 . . . . .  1)t ) 

(3.20) 
Hence from (3.19) and (3.13)we obtain: 

(0IA ~ A; 10) = 2. (3.21) 

The general result for 

~, i~  - K <__ N<, (3.22) 
i 

is the following 

(OI]~A?~'I-IA+Z'iO)=[I6~,~ i~'x~!. (3.23) 
i j i 

Up to now we considered[ only a single curve i *-- i. 
Of  course, in the general case the gluon loop operators 
of several different curves appear in the matrix ele- 
ments. For the product of the gluon loop operators 
of disjoint curves the matrix element is simply the 
product over the different curves. Moreover, if there 
is a link in the configuration where only a single curve 
is running (may be several times), then one can choose 
the variable of this link as U o and the ransformations 
like in (3.15), (3.19) can be pe, rformed without influenc- 
ing the other curves. As a consequence, the contribu- 
tion of this curve can be factored out. This procedure 
does not help, however, in a configuration like e.g. 
in Fig. 2. In this case the curves i ~- i and j ,-- j have a 
common segment: i~ =j~ for a < y =< fi and we are 
considering (*-- means always a sequence in increas- 
ing order and ~ in decreasing order): 

(0]A(i  +-- i)A(j+- j)A(i~ =j~ -+j~ = i +- i#~)10) 

: ~ d V o . . . d U  dVo. . .dV ~_ ,dVn. . .dV~ 

�9 Tr(U~ ... U~o) 

�9 Tr(Vo ... L - ,  u ~ . . .  us_  , 1/p ... v )  

�9 T r (U t l  ... U,  Uo. . .  U=_ 1 V,~ 1" "' Vd Vm ~ ' ' "  VJ ) 

1 
= ~ d U d V T r ( U * ) T r ( V ) T r ( U V t ) =  - - .  (3.24) 

N~ 
The last equality follows from 

Tr(U V t) = l _ T r  (U)Tr( V t) 

1 .,~'<~ - 1 

+ 5 ~ Tr(U2b)Tr(Xb V t) ; 
b = l  

ip :J l~  

i ,=j ,  

Fig.2. A non-fac tor izable  conf igura t ion  with three curves 
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~d U Tr (U)* Tr(U2b) = 0. (3.25) 

These relations are sufficient to calculate all the 
matrix elements we need in the following sections. 

IV. The Vacuum State 

In order to diagonalize the Hamiltonian H in (2.6) 
and to find the lowest energy state (physical vacuum) 
at least approximately one has to find some expansion 
scheme allowing for a perturbative calculation. In the 
present paper we consider the limit when the number 
of colours (N~) is large. 

First we have to determine the action of the 
Hamiltonian on the Hilbert space of states. The 
general form of the physical states is given by 
Eq. (3.11): they are created from the "mathematical" 
vacuum 10) by an arbitrary number of gluon loop 
operators A(i *-i) along arbitrary (closed) curves 
i *-i. The action of the colour magnetic part H A 

of the Hamiltonian is, therefore, rather simple: it adds 
gluon loops along the plaquette boundaries in the 
lattice. 

The action of the colour electric part H E follows 
from the commutation relation (2.7) and from the 
fact that according to (3.3) the colour electric flux 
operator annihilates the "mathematical" vacuum. 
Using the identity 

r E2, U] =- [E, [E, U] ]  + 2[E, U]E, (4.1) 

and the commutators 

.,, L ~,,, L--b,,, uEr'eL~] ]  : 5 c 2  UEr : ] . ;  

1 
E rE(') r~<,) u [ r r ]oe]  ] = 7c~ u [ r r ] . ~ '  L b,s~ L~b,s~ 
b,s 

F, ,-~rr('),,, [E~'), , u [r' E] u [z'r] ] ] 
b,s 

= (1 + a ,)C 2 . v [ r ' # ] U [ # r ] .  (4.2) 

one can obtain the following rule: the action of H e 
on a state with some gluon loop configuration gives 

~ a {  + Xc$(s.c. 1 4C2 Z2(o-c-) - NcO.C-)} - (4.3) 

Here C 2 is the value of the quadratic Casimir operator 
given in (2.9). 272 is the sum of the "length of arc" of the 
curves in the configuration defined for the curve i ~ i 
in (2.2) like 

1 n 

~0(1 + 6 ,). (4.4) 2 = ~ J = ,J~J + 

(o.c.) in (4.3) means the "original configuration" of 
the curves of the gluon loop operators. The second 
term in (4.3) is present only if there are points on the 
lattice belonging to more than one curve (or to one 
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curve more than once). The sum in the second term is 
over such points and over the different pairs of curves 
in every such point (if there are more than two curves). 
The "direction factor" 6 depends on the directions of 
the two curves in question before and after the point 
in question. If before the point the directions on the 
two curves are, respectively, r 1 and r z and after the 
point/1 and r'2, then we have" 

= 0,~,2 - 6r~r2 + '5r,1~ ~ -- ,~_ ~,,,.2 

+ 0.,r, -- 3_~1~,~ + 6 , ~ ,  -- (~ , ' ~ .  (4.5) 

(S.C.) in (4.3) stands for the "switched over" configura- 
' ' the two curves tion when instead of r~,r~ and r2 , r  ~ 

t t in the point are r l , r  2 and r z , r  I . This is illustrated in 
a simple case by Fig. 3. 

It is interesting to note that the "length of arc" 
(in lattice units) 2 defined in (4.4) is not simply the 
number of links on the curve. It depends also on the 
direction of the links. This is the consequence of our 
choice for associating the electric flux operator to the 
points (rather than to links). More specifically, this 
follows from the commutation relation (2.7). 

In order to have a well defined eigenvalue problem 
we have to impose also some boundary conditions. 
As usual, we take a cube of sides a N  (N links) and 
identify each face with its opposite ("periodic 
boundary conditions"). In this cube there are 
altogether 

P =  6 N 3 =  Z 1 (4.6) 
k[rsl 

different plaquette boundaries (if the two possible 
orientations are counted separately). This periodicity 
is, of course, completely unphysical and it serves 
only to define the mathematical problem properly, 
The physical quantities (like e.g. energy density etc.) 
cannot depend on P. 

It can be seen from (4.3) that the colour electric 
energy of a gluon string configuration is proportional 
to the Casimir operator C 2 . (Actually C 2 in (2.9) is the 
value of the Casimir operator in the fundamental 
representation, but using the results of the previous 
section it can be shown that for curves like in (3.18) 
running around some closed curve several times (4.3) 
reproduces the value of the Casimir operator in the 
higher representations). According to (2.9) the value 

f 
Fig. 3. An example of the "original" (a) and "switched over" 
(b) configuration in the point i with "direction factor" 6 = 1 (because 
of r~ = r2) 
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of C 2 is proportional to No, therefore in the limit 
Nc ~ co (9 fixed) the colour electric energy HE 
dominates: H E ~> H A . (The value of P in (4.6) is also 
fixed when N c ~ oo), It can be seen from (4.3) that the 
dominant part of H E proportional to Nc is very 
simple, Choosing it as the unperturbed Hamiltonian 
(H o) the rest of H can be considered for N c -~ oo 
as a perturbation (V). According to (2.6), (4.3) V con- 
sists of two pieces: the second part of the colour 
electric energy operator in (4.3) "switching over" the 
string operators which have common points and the 
colour magnetic piece producing gluon loops around 
the plaquettes. This defines the 1 / N  expansion we are 
considering here. Note that H A is proportional to 9-  z, 
therefore in the limit [6] Ncg  2 = fixed, N -~ oo H A is 
dominating. Our Nc -~ oo limit is closer to the one 
taken in [8] where both N c and 9 2 N c are assumed to 
be large. The colour electric energy H E is dominating 
also in the "strong coupling" limit [1,2 3 g ~ co 
(N c = 3). Our unperturbed Hamiltonian H o is, how- 
ever, different from H e and, in addition, the structure 
of the whole Hilbert space of states is simpler because 
of N ~ oo (see the previous section). 

The Hamiltonian dynamics of the gauge field 
formulated in terms of the string operators [15] 
becomes also simple in the N~--* oo limit. To the 
leading order (taking only H 0 instead of H) the theory 
is equivalent to the theory of free, non-interacting 
strings. The interaction given by V consists of a 
"switching over" of strings with common points and 
the creation of additional gluon loops along the 
plaquettes. 

Due to the extreme simplicity of our "unperturbed" 
Hamiltonian H o the eigenstates and eigenvalues of H o 
are trivially known. Any state with a given gluon loop 
configuration is an eigenstate of H 0 and the eigenvalue 
is proportional to the sum of "length of arc" 2. The 
lowest eigenvalue is 0 and it belongs to the "mathe- 
matical" vacuum [0) .  The physical vacuum I v ) is the 
state obtained from ]0) by taking into account the 
I / N c  perturbations. The vacuum has to be transla- 
tionally and rotationally invariant, therefore in 
order to determine Iv) it is enough to consider the 
translation- and rotation-invariant states only. The 
simplest such state is obtained from 10) by the 
application of the colour magnetic energy opera- 
tor H A �9 

[ 1 ) =  Z A ( k [ r s ] ) [ 0 ) = a o 2 H a 1 0 ) '  (4.7) 
k[rsi 

The next state would be 

12>= Y', ~, A ( k [ r s ] ) A ( k ' [ r ' s ' ] ) l O >  
k[rs] k' [r's'] 

: a 2 9 4 H ]  [0>, (4.8) 

but this is split up into several components by the 
action of the non-leading part of H~ considered as a 
perturbation. The decomposition is according to the 
number and (5-value of the common points of the two 
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plaquettes. (Note that this is again a translation- and 
rotation-invariant characterization.) Let us denote 
by [0x0) the part of the state 12) where the two 
plaquettes do not touch at all. Furthermore, let us 
define the states with twice the same plaquette (in the 
same and in the opposite orientation) like 

14 x 25 = ~ A(k[rs])A(k[rs])[O); 
k[rs] 

14x - 25 = ~, A(k[rs])A(k[sr])[O). (4.9) 
k[rs] 

In the notation ] # x v ) # gives the number of common 
points and v the corresponding value of ~ in (4.5). 
(In these states the 6-values of all the common points 
are the same.) It is easy to see that the other possible 
values of # x v are: 

#xv=2x+_O; 2x+_ 1 ; lx-+ 2; i x +  1. (4.10) 

In this notation the action ofH A on the states [ 1 ) is the 
following: 

1 ~]#xv).  (4.11) HAl 1 ) = ag~ u,~ 

The action of the operator H e on the state ] 0) ,  I 1 ) 
and [~xv) follows from (4.:3): 

H IO> = 0 ;  
92 
a 

(l~xv r 4x - 2): HEIlaXV) 

_ g2a 2C2 #v I/Jxv),+~//~xv> ; 

Hel4x - 25 

-ga  [(2C2 + ~ ) [ 4 x -  2>-  PN~105]. (4.12) 

Here in the third line the state 1# x v ) is the "switched 
over" configuration coming from [#xv). (The case 
#xv = 2x l  is illustrated in Fig. 3). The case lzxv = 
4 x -  2 is an exception because switching over two 
oppositely oriented coinciding loops gives Tr(1) = N 
times the vacuum. 

The state [#xv) is, however, not orthogonal to 
I#xv) as from (3.24) we have 

(#xv~-OxO, 4x + 2)" (#xv lpxv) -~(P 'V)P,  (4.13) 
- -  Ne 

where the numbers ~ ~u, v) are given by 

r _+0) = {(2, + 1 )=8 ;  

r + 1) = 16 ; ~(1, + 1) = 32. (4.14) 

In addition to (4.13) we have 

(~xv =~ 0x0, 4x i 2): (,uxvl~xv5 
= ( l ixv]pxv)  = ~(#, v)P. (4.15) 
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Therefore, appropriate orthonormal states for the 
perturbative expansion are: 

r0) = r05; 

I1)=+ll); 
,it' 

1 10x0)= Ioxo); 
2x/2ff 2 -  132P 

1 
14x2) = x ~ 1 4 x 2 5  ; 

14x2) = x ~ p [ 4 X 2 ) ;  

14x-  2 ) = @ { 1 4 x -  2 ) -  PI0)} ;  
' V  

(tixv :4 = OxO, 4x + 2): 

1 

x?2 ) 
(4.16) 

These are the states containing the gluon loop 
operators of at most two plaquettes which occur up 
to the fifth order in the 1IN c expansion. Going to 
higher orders requires the introduction of the three 
plaquette states. The construction of states goes in 
complete analogy to the two plaquette case. The only 
practical problem is that there is a large number of 
possibilities how the three plaquettes can touch each 
other. This results in a large number of states, therefore 
we do not consider higher orders in the present paper. 

The standard time independent perturbation 
theory [19 3 gives for the vacuum energy density e v up 
to the 5th order: 

4 /  1 l 1 
% = - 1 2 a -  ~ N - - ~ + ~  NcSg 6 

8'43 ) 
45 Nc5 g14 + . . . .  (4.17) 

Deriving this result (and the ones below) we used the 
program "Schoonship" for algebraic manipulations. 
It is important that the energy density % does not 
depend on the number of plaquettes in the volume 
of periodicity (P) as expected for physical quantities. 
It can be seen that the expansion goes, in fact, accord- 
ing to the powers of 1/N 2. This is because of the 
extra powers of 1IN c in the matrix elements of the 
"interaction operator" V. Note that the eigenvalues of 
H 0 are proportional to N ,  therefore the last two 
terms are actually already 6 tla order coming from the 
5 th order term in the perturbation series. (These terms 
can still be modified in the 6 'h order of the perturbation 



254 

theory involving matrix elements with three plaquette 
states). 

The vacuum energy density (4.17) is strictly negative 
up to the term of order 1IN 3 . The energy is measured 
here relative to the "mathematical" vacuum ]0) ,  
therefore it is not clear whether e is measurable or not. 
It would be roughly measurable as the "bag constant" 
if inside the "hadronic bags" [20] the gluonic state 
would be f0) ,  

The really measurable quantity is the vacuum 
expectation value of the gluon field squared (or 
Eagrangian density) given in (1.1). Up to 4 th order in 
the perturbation theory we have 

1 36 36 
6 + ( a g ) ~ ( v f H e + H A I  v )  a4N g 6 4,~3 

a l~cg 
(4.18) 

The quantity (a N)-  3 (H E + HA ) can almost be consi- 
dered as the Lagrangian density of the gluon field. 
The only point we have to remember is that the 
magnetic energy operator H~ contains an additional 
constant terms besides - H A [1, 2] - 

H M = P N c 
a92 H A . (4.19) 

The Lagrangian density is then 

1 
LrM (0) = ~ (H e - H M), (4.20) 

therefore (4.18-20) and (4.6)give 

6N 36 36 
( vJLrM(o) lv ) -  a4g~ ~- a4g6N~ + 4 6 ~3 ~- "" 

a g 1~I c 

18 12 4 
- a:~g 2 ~- ar + 3~a4g ~ + . . . .  (4.21) 

Here in the second line we have put N~ = 3. This 
expression will be compared to the slope of the 
qc~-potential and to the experimental value in the 
next section. 

V. The Quark-Antiquark and Gluon-Gluon 
Potential 

In order to calculate the non-relativistic potential 
between slowly moving heavy quarks one has to put 
external quark and antiquark sources in the pure 
gluonic quantum field considered up to now. The 
potential is the difference between the energy of the 
lowest states in the two cases (with and without 
external sources). 

The gauge invariant states with an external quark 
and antiquark source contain, in addition to the 
string operators of closed loops, the string operator of 
some open curve connecting the quark and antiquark 
positions. Let us denote the pos i t ionsof  the quark 
and antiquark on the lattice by k and k, respectively, 
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and the open curve connecting them by /~"-6-k 
(G stands for the arbitrary shape of the curve). The 
corresponding string operator is U[/~ ~- k]~a and 
the state with an arbitrary number of additional 
gluon loop operators is 

U[k  ~ k]~aA(i*-- i ) A ( j * - j ) . . . A ( : * - : ) ] O ) .  (5.1) 

The colour independent scalar product between two 
such states is defined by averaging over the colour 
indices of the sources, that is 

(k----, klA(: '  --* : ' ) . . .A ( i ' -+  i')A(i *- i) 
G' 

1 
. . .  A (: :)1 k T kl > = K(01A(:' :') 

. . . A ( i ' ~  i')a(Y: ~ k , k  *--- k ) A ( i ~  i ) . . . A ( : , -  : ) ]0) .  
G' G 

(5.2) 

Note that following the previous convention 
G 

means the curve G in positive direction and 
the same curve in the opposite, negati-~-e direction, 
therefore/7: ~ k,/~ ,--- k is a closed curve consisting 

G' G 
of G in positive and (after it) G' in negative direction 
(both ~ and ~--  start from k and end at /~). If 

G G' 
G =  G' then, of course A(k - 7  k,k - ~  k) = Tr(1) = 

N c . 

The action of an operator, say H, is defined as 
follows 

(~c ----, k lA ( : ' - - .  : ' ) . . .A ( i '  ~ i') 
G' 

�9 HA(i*- i)...A(: ~ :)[/7~--- k )  
G 

_-- i ~ (OIA((__+:,) . . .A( i ,__.  i,)U[~c______~k]~6 
N c ~ G' 

�9 H U l k  ~---k]p~A(i,-- i ) . . . A ( # ~  : ) ]0 ) .  (5.3) 
G 

This means that H A acts on A ( i ~  i ) . . .A (Y  ~ : )  
I/~ +-d-- " k )  also here by adding gluon loop string 
operators along the plaquettes, whereas the action H E 
can again be summarized symbolically by (4.3) where 
the curve k ~ k is now, of course, also included in G 
the configuration of curves. 

Let us put the quark and antiquark source on the 
diagonal line, say in the x - y  plane (see Fig. 4). 
According to (4.4) the curve of minimal length of arc 
between the sources is unique in this case: it is the 
diagonal curve G with 2 = L depicted in the figure. 
In the case of large N~ the state of minimal energy 
contains no gluon loops besides the string along G and 
it is therefore non-degenerate. Consequently we can 
use non-dbgenerate perturbation theory. This is an 
advantage compared to other situations when there 
are more curves with the same minim~il-length of arc, 
therefore one has to use degenerate perturbation 
theory. An example for the degenerate case is given in 
Fig. 5a where the sources are put in the x-direction. It 
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k 2 

k-k:-- {rl- 
Or'o k 1 

t k2ck 

13 [ k2L"l 

Fig. 4.The quark and antiquark source, respectively, at k and k and 
the string G of minimal length 2 = 1; connecting them 

I! 
b 

Fig. 5a and b. Curves with the same length of arc 2 on the lattice if 
a 2 is defined by (4.4) and if b )o is the number of links 

is interesting to note that if the "length of arc" is 
defined on the lattice simply by the number of links 
on the curve, then there is a unique curve of minimal 
length of arc in the x-direction but along the x-y 
diagonal there are several "shortest" curves (Fig. 5b), 
Rotation invariance requires the potential between 
external sources to be independent of the direction 
with respect to the lattice. A general proof of this 
seems to be complicated, nevertheless, we checked 
that putting the sources along the x-y -z  diagonal 
gives (for large distances) the same result as the x-y 
diagonal. 

The orthonormal states, with external sources are 
constructed in exactly the same way as in the case of 
the purely gluonic states. There is, of course, the 
additional string operator along /7 ~ k, hence the 

G 
lowest energy eigenstate of H o is [G) --[k "%- k ) .  
The states with an extra gluon loop operator along 
the plaquettes can be characterized as before by the 
number and &value of the points common to the 
plaquette and to the curve G. The states are denoted 
by ]G#xv) o r  [G#IXVl,#2xv2) where the possible 
value of #xv (or #~xv~,#2xv2) are 

#xv=2x+_O, l x + 2 ; 2 x + _ l ; l x + 2 ; l x z l .  (5.4) 

We consider only effects proportional to the distance 
L, therefore plaquettes touching the end points k and k 
are not taken into account here. The "switched over" 
configuration to ) G# x v) ,:an be denoted by I G_# x v) .  
The appropriate orthortormal configurations are 
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constructed also 

(G#xv lG#xv )  

( G ~ x v I G G # x v ) - - -  

here like in (4.16). We have, namely 

-- ( I_c xv ) = v); 

 6u, v) 
- N o '  (5.5) 

where the numbers ~ ~ ,  v) are now: 

~(2x+_O, l x + 2 ) = 2 L - 3 ;  ~ ( l x + 2 ) = 2 L -  1; 

~(2x_+ 1)= 4 L - 4 ;  ~(lx-l- 1)= 8 L - 4 .  

(5.6) 

The states I Gl~xv), [G#xv) are sufficient for the 
calculation of the energy up to the third order in the 
1IN perturbation series. (Higher orders require states 
with two additional plaquettes besides the curve G.) 
The result for the quark-antiquark potential energy 
for large distance r = aL(L >> 1) is up to this order 

= _ -r15a296N ... 

2 92 112 1 
- 3 a2 4 ra- + . . . .  (5.71 

In the second line we have put Nc = 3. The expansion 
goes also here according to the powers of 1/N 2, 
therefore the third order gives only 1/N2 terms which 
we included. (Such terms can still come from the 4 th 
order perturbation terms.) 

According to (5.7) the slope of the potential is 
(up to the 1/N~ term): 

1 29 ~ 
A2 -- 3a 2. (5.8) 

The experimental value of A is known from the 
charmonium spectrum 1-21]: 

A = 2.34 GeV- 1 (5.9) 

This and (1.1) give in (5.8) and (4.21) (the latter one 
taken to the same order in 1/N C as (5.8), i.e. the first 
two terms in the second line) for 9 and a the values 

9 ~ 1.8 %= ~ = 0.25 a ~ 0.7 Fermi. (5.10) 

These values are consistent within our approximation 
scheme as 92N c for No= 3 is reasonably large, 
therefore the omitted next order corrections are 
presumably small enough. (In fact, there exists also 
another pair of roots for (5.8) and (4.21) with a smaller 
value of 9, namely, 9 ~ 0.9 and a ~ 0.35 Fermi where 
the higher order corrections are expected to be 
larger). 

The potential energy can also be determined 
between other kinds of sources, for instance between 
sources of octet colour Cgluon sources"). In such a 
case (if the position of the gluon sources on the lattice 
is denoted by k and d) there are two strings in the 
state: one from k to {' and the other from d to k denoted 
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like { ~--  k and { ~ k. The suitably normalized 
G~ G 2 

scalar product is, instead of(5.2), the following: 

(: , k,: , k[A( / ' -* j ' ) . . .A( i ' -+ i') 
G; Gi 

�9 A(i ~ i ) . . . A ( j  ~-j)[: +----k,: , k )  
G~ G 2 

4 1 
- E ( 0 l T r  U [ : - - - ,  k e l :  k �9 

N 2 - 1 b,d= 1 ~ C 

�9 A(]' ~ j ' ) . . .  A ( i ' ~  i')A(i ~ i) .... A(j ~-j) 

�9 Tr { ~  U [ : - - + k ] ~ U [ E G ,  G~, k ] } ] 0 ) .  (5.11) 

The ground state of the system for large N~ is when 
both G t and G 2 are equal to G in Fig. 4. Therefore, if 
some plaquette touches G~ = G in some point with the 
"direction factor" 6 then at the same time it touches 
G z = G  with the "direction factor" - 6 .  The states 
with one additional gluon loop along a plaquette can 
be labelled here by ] G G # x v )  where the possible 
values of # x v  are the same as in (5.4). There are now 
two sorts of "switched over" states, namely, between 
the plaquette and either Y * - - k  or : ,k .  These 

G G 
can be denoted, respectively, by [ _G G# x v )  and 
[GG_#xv). The scalar products of these states are, 
with (5.6): 

( GG # x v  I GG p x v  ) = ~ , v ) ;  

(6C#xv[ G#xv) 

= ( G G # x v [ a G # x v ) =  1 -  r v) ; 

1 
( G G # x v ] G G g x v )  = - - - - r  

- - N ~  

( G G # x v l G G u x v )  = ( G G # x v I G G H x v  ) -  
N 
(5.12) 

The orthonormal combinations appropriate for the 
perturbative calculation can be chosen now like 

_ 

- N ~  - 1 

1 
-'1 

_ + 

. ( 5 . 1 3 )  
X c  - -  

(or with the role of _G G and G G interchanged). 
The gluon-gluon potential up to third order, 

corresponding to (5.7) in the quark-antiquark case, is 
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the following: 

g 2 N~ 224 
Vo(r ) = r-~-a2 - r 1 5 a ~ 9  Nr + "  

3 02 Z24 1 
- 2 1 a 2  4 0 5 r ~  + .... (5.14) 

It can be seen from here that up to the order 1/N~ 
the slope of the gluon-gluon potential (for N c = 3) is 
9/4 times the slope of the q q-potential. 

VI. Summary and Conclusions 

The limit considered in this paper is N c (number of 
colours)--* 0% 9 (bare coupling constant on the 
lattice) fixed. This implies that in the Hamilton opera- 
tor the colour electric energy is dominating as it is 
also the case in the "strong coupling limit" g -~ o% 
(N c = 3) [1, 2]. This expansion can be called "strong 
coupling 1/N~ expansion" in distinction to the 
expansion in the N c ~ co,Nc92=f ixed limit [6]. 
The advantage of making N c large is a considerable 
simplification in the structure of Hilbert-space of 
states. It can be shown that the physical quantities 
like in (4.17), (4.18), (5.7), (5.14) have in general the 
form 

Cij(9~ U~)-i+a u ~  j+b (6.1) 
i , j>O 

where C.. are constant coefficients and a, b are zj 

constants. These series are well converging if both 
N and g g N  c (and therefore N~ and gZNc) are  large. c 

Actually, in the quantities we calculated i,j are even, 
therefore only every second power of 1/N c appears. 
This means that a few terms give at N c = 3 already a 
good approximation if g is not too small. 

Concerning the imposed periodic boundary condi- 
tions let us remark that the size P in (4.6) of the cube 
of periodicity is an unphysical variable which has to 
disappear from any measurable quantity. This can be 
achieved in the 1IN  expansion, see e,g. (4.17), and 
then the obtained physical quantity can be continued 
back to N = 3, 

c 
We determined the vacuum energy density (4.17) 

and the vacuum expectation value of the gluon field 
squared (4.21) up to the fifth order in the 1/Nc expan- 
sion. The quark-antiquark potential (5.7) and gluon- 
gluon potential (5.14) between external sources were 
calculated up to the third order. Higher orders can be 
calculated along exactly the same lines but require 
a set of states larger than considered here. We hope 
to be able in the future to include the next more 
complicated states allowing for the calculation of 
the next two orders. 

This would be particularly interesting for the 
quark-ant iquark potential as then it would be possi- 
ble to determine g and a(g) (the lattice spacing belong- 
ing to 9) in the next order of 1IN 2 by the value of the 
slope of the qq potential and the already known higher 
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order result (4.21) for the vacuum expectation value of 
the gluon field squared. One would expect that both 
9 and a would come out smaller in the higher order 
than our present values in (5.10). 

The gluon-gluon potential determined in section V 
may be interesting for the study of hadronic final 
states in e + e- annihilation, more precisely for the 
three jet events. In a simple', model for the three jet 
final state [22, 23] the field tubes spanned out by the 
colour charges of the produced three partons have a 
starqike shape [22] if the slope of the gluon-gluon 
potential is less than twice the slope of the quark- 
antiquark potential and they form a triangle [23] if 
this ratio is larger than 2. The configuration of the 
field tubes influences the hadron distributions and 
can be looked for experimentally. The value of the 
ratio given by (5.7), (5.14) is 9/4. It would be also here 
very interesting to determine what happens in the 
next order in 1 / N  2 . Our expectation is a decrease of 
this ratio, especially for smaller 9, because of the 
increasing importance of the magnetic energy term. 

An interesting application of the vacuum structure 
obtained in the 1IN c expansion is to investigate its 
influence on the dynamics', in the string operator 
formulation of QCD [15]. The hope is that one can 
approximate the hadronic wave functions by a 
configuration consisting of a small number of strings 
immersed in the physical vacuum, In conclusion: we 
think that the simplicity of the picture of the vacumn 
emerging from the 1IN c expansion may help in the 
understanding of many of the confinement aspects 
of QCD. 
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