Textunderstanding in LILOG -
Sorts and Reference Objects

Claus-Rainer Rollinger
Rudi Studer
Hans Uszkoreit
Ipke Wachsmuth

1BM Deutschland GmbH
Abt. LILOG 3504
Schlofistr. 70
D-7000 Stuttgart |

1. Introduction

'The main objective of the project LILOG (Linguistic and Logic Methods) is 1o develop concepts and methods
for understanding German texts and dialogs. ‘Understanding’, in this context, refers to the construction of a
semantic representation of a piece of text or of a dialog statement, that is a (partial) model of the situation
described in the text. This representation is held in a computer memory and is used by the knowledge
processing component, e.g., for extracting information to augment a knowledge base, or for answering
questions about the text, etc. As a prerequisite, appropriate means for constructing such a model must be
available in a permanent knowledge base. These means must be retrieved and applied to the actual situation by
appropriate processes.

The basic processing components of a system capable of understanding German natural language include a
parser that analyzes a defined fragment of German and a constructor which produces semantic representations
that will be interpreted by a knowledge processing component. While the interactive relationship between
syntax and semantics has been dealt with in various approaches, many problem areas central to natural
language understanding arc still to be attacked. These areas include the syntactic analysis and semantic
interpretation of temporal constructions and the adequate treatment of spatial relations.

The body of texts chosen as a focal point for LILOG is concemed with the subject area “region” (as described
in touring guides) and thus it heavily employs spatial and temporal constructions. Therefore, a prototpye of a
natural language understanding system will be developed that is especially oriented towards the syntactic
analysis and semantic interpretation pf natural language constructs describing and specifying space and time.
Furthermore, as the information conveyed by the text is usually spread across sentences, the analysis and
interpretation of sentence connectors will be of special importance.

The means needed to represent textual information combine linguistic and logic-based methods some of which
are introduced and described in the following sections of the paper. For tepresenting the different types of
knowledge needed within a natural language understanding system, a knowledge representation language,
L-LILOG, is currently being designed that is based on a many sorted first-order predicate calculus. In that
context, structuring principles for organizing knowledge bases are investigated as well. Ultimately, the concepts

and methods developed shall also serve as a basis for knowledge acquisition in the area of advanced expert
systerns.

The paper is organized as follows. Section 2 contains a brief introduction to the basic concepts and the syntax
of the Stuttgart Type Unification Formalism (STUT), which is the underlying representation language for both
linguistic and extralinguistic objects in our system. Section 3 presents a description of the knowledge
representation language L-LILOG. In particular, the concepts of sorts and of reference objects are introduced
which constitute the central means to build semantic representations for textual information. Section 4 gives
detailed descriptions of how the STUF formalism is used to realize operations on sorts and reference objects

that are to be performed in the process of constructing semantic representations and for utilizing this
information.

247

2. The Stuttgart Type Unification Formalism (STUF)

2.1 The Theoretical Concept

In contemporary formal linguistics, a new and extremely fruitful paradigm has evolved that has already Jead to
noticeable progress in the area of computational linguistics. The cover term for the new approach is
‘unification based grammar formalisms’ or simply ‘unification grammar’. All vnification grammar formalisms
employ highly complex representations for linguistic objects--such as lexical entries or syntactic
constituents--that are composed of feature-value pairs where the values may cither be atomic or again such
complex representations. These objects may constrain each other in various ways. The propagation and
application of constraints is performed by the same mechanism that serves to build new objects through
selectively merging components of old ones, i.c., the declaratively defined operation of graph unification.

This strategy was first introduced by (Kay 1983) and successfully employed in the design of grammar
development systems such as FUG (Kay- 1983) and PATR-II (Shicber et al. 1983) as well as in the theories
and implementations of grammatical frameworks such as GPSG (Gazdar et al. 1985) and LFG (Bresnan et al.
1982). Quite independently, the basic concept was developed by (Ait-Kaci 1984) who worked it out in much
more detail as the basis for his lattice-theoretic approach to computation.

The representation formalism STUF is a multi-purpose language for the declaration of complex types and for
the declarative specification of operations to be performed on these types. Whereas the formalism was first
only used for linguistic processing, it is now being implemented as an abstract data type and will be available as
such to all components of the system.

STUF builds on its predecessors. However, promising solutions and intuitive notations from several previous
systems are combined in this formalism. Other useful constructs and strategies were added. The language is
described in (Uszkoreit 1987).

2.2 The Type Hierarchy

As in previous type unification formalisms, we assume at a certain level of abstraction a lattice of types as the
underlying universe of meaningful representations. The expressions of STUF reccive their semantics by virtue
of the types that satisfy them.

The top element of the type lattice is the empty type *T*. *T* precedes all other types. Since *T* 13
intensionally empty, its semantic extension is the universe of things U plus the empty set. This may also be
expressed in terms of the information contained in a type: Since *T* does not contain any information about
its members, it does not constrain membership. The bottom element of the lattice is the failure type *F*,
which contains “too much” and therefore inconsistent information. *F* denotes the empty set.

T immediately precedes two other designated types: *U* and *S*. *U* is the type that is assigned to
undefined values of functions.? o '

Its denotation is the singleton containing just the empty set. *S* is the top element of the infinite sublattice
that contains all other types. *S* denotes the universe of things without the empty set. All types under *S*

precede *F*.

The names of ihe four designated types are the system type names of STUF. All other types may be named by
the user. This is the picture of the underlying hierarchy of types:

' The purpose of the value *U* cannot be explained here. The type *U* does not .only provide a pos'sibiiity
to specify that a type is outside the domain of the function denoted by some attribute. It also permits the

definition of fixed-arity-terms as a special case of types with variable arity.

248

In most type unification formalisms, types are either atomic or complex. Atomic types are simply atoms
whereas complex types are partial functions from a finite noncmpty sct of attributes into the set of types.
Atoms may then denote singletons or finite sets of individuals. Every attributc a, denotes a function

a, "in A’e U, A complex type t, with one attribute-value pair <a, ,t, > denotes the subdomain of a,

for all values in the denotation of t; ,ie., [to] = { x[Jy(ye JtiJ A <x. ¥y> € 2, ").?

Complex types may be represented as directed graphs (IDG) with labelled edges. Fvery edge ¢; in a type t is
labelled by an attribute a, and points to the value that a, has for t. DGs differ from trees in that they can
encode equality. Equality is represented as reentrancy; a shared value is pointed at by all attributes that share
this value. There is an important diffcrence between the type identity (EQUALity) of values and their token
identity (EQuality).

The difference arises through the role that partiality plays in the realm of type unification. Al instances of
types are inherently partial. Information can be added as long as the type remains consistent. A value shared by
token identity cannot be changed without at the same time changing the values of all other attributes that point
at the value. The only restriction that is often made to valuc sharing is the cxclusion of cyclicity. According to
this restriction, which we adopt for STUF, no node in a graph may strictly precede itself. Equipped with this
additional constraint, DGs are also referred to as directed acyclic graphs (DAG).

So far, we have uscd the term ‘precedes” when we referred to the order of our type lattice. However, the
relevant weak partial ordering relation is called subsumption, written as& . Subsumption is the reflexive,
transitive, antisymmetric closure of immediate subsumption. The comesponding strict partial order is called
proper subsumption & . There is a simple relationship between the relative rank of two types in the
subsumption hierarchy and the order of their extensions with respect to cach other in the subset lattice:

iff t; & t; then I, JJ>[t. .

The order of the four designated system types with respect to each other is stated in Figure {. The place of the
atomic types in the subsumption hierarchy, i.., the type lattice, is determined by their extension. If the
denotations of all atomic types are unit sets, then every atomic type is immediately subsumed by *S*. In this
case, all atoms immediately subsume *F*. If some atomic types denote scts with cardinalitics greater than one,
they are ordered according to their extensions.

The interesting part is the sublattice of complex types. A complex type t, subsumes a complex type t, just in
case the domain of t, is a subset of the domain of t, and for cvery attributc a, in dom(t,) 11 (ay) subsumes t,
(a;). This condition assures that a type t, can subsume a type t, if and only if the extension

? Actually, the setup in STUF differs a little from the standard definition given here, In STUF there exists no

significant diflcrence between atomic and complex types. For the sake of clarity, we shall restrict ourselves
here to the simplified story and refer the interested reader to {Uszkorcit 1987).

249

of t, is a subset of the extension of t, .

The result of unifying two types t, and t, is the highest type in the subsumption hicrarchy that is subsumed by
botht, and t; °

If the information contained in t, and t, is inconsistent, the result of their unification is *F*. Unification on
two types corresponds to applying sct intersection to their extensions. The generalization of t, and t, is the
lowest type in the lattice that subsumes both t, and t, . Type application as it is proposed in [ref] applies one
complex type as a function to another type. For the motivation, definition, and examples of this operation,
please refer to (Uszkoreit 1987).

2.3 The Language

The language of STUF has two layers: a powerful notation for the declaration and specification of types and
intuitive macro notations for special cases of types that arc often needed for certain applications. A description
of the macro notations is beyond the aim and the scope of this paper. We will restrict ourselves here to a very
brief introduction to the core constructions of the formalism.

The core of STUF is the language for type declaration. User-defined type names are assigned to the
specification of a type. The smallest building blocks of a type specification are names of atomic or complex
types or minimal types consisting of one attribute-value pair:

car := automobile

mycar := [color: red]

I type names are used to the left of the declaration symbol =", they refer to the named type itself. If they
occur on the right side of the declaration symbol, they contribute a copy of the contents of the na}mefi type to
the contents of the type to be declared. Tn the first example above, a copy of the type ‘automobile’ is urqﬁed
with the contents of the type ‘car’. If ‘car’ is declared for the first time, the contents of ‘automobile” is unified

with the type *T*. Inheritance can be expressed by using the supertypes on the ﬁght-haqd-side of the
declaration of a subtype. The supertypes are not changed since they are called on the right-hand-side.

In place of an attribute, one may specify a path from the node to the value that contains more than one
attribute:

somecar := < driver address city > : boston
This definition is equivalent to:
somecar : = [driver: [address: [city: boston]]]

There may also be several paths given for one value that are separated by "=". This is one way of encoding
value sharing:

person := [<name last > = <father name last > : string)

Type specifications may be composed into new specifications through the operations of unification, disjunction,
and type application. Unification is indicated by the empty operator symbol:

[child male]

[color: red make: ford type: sedan]

* Since unification is often defined on the inverse of our type hierarchy, this notion corresponds to the one of
lcast upper bound (LUB) in other systems.

-~

250

Disjunction is indicated by the operator “|™:

[make: [ford|toyota]]

The standard notation for functional application was adopted for type application:

[first(alist)]

Values within a type specification may be also be named:

person: = fhuman [name: [first: string middle: string last: family: = string]]}

These names are only locally scoped, their meaning assignment disappears outside of the type declaration.
Local type names may be used as an alternative way to state value sharing. The following two declarations
mean the same:

person: =| < name last > = < father name last > : string]

person: = [name: [last: family: = string} father: [name: [last: family: = string}|]

A syntactic calculus provides the equivalences needed for the reduction of the type specifications to canonical
forms that can be easily interpreted through their correspondence to sets of types in the subsumption lattice.

3. The Knowledge Representation Language L-LILOG

The knowledge representation language L-LILOG described subsequently has been designed to fulfill two
general requirements:

® The language should provide a framework for representing different kinds of domain knowledge which. have
to be handled in a natural language understanding system. L.e. concepts have to be offered for representing
domain specific as well as domain independent real world knowledge which is typicaily incomplete, vague
and/for uncertain. In addition, according to specific topics investigated in the different linguistics subprojects,
the representation of temporal and spatial knowledge is of importance as well.

® The language should be based on a sound theoretical basis which provides means (i) for formally specifying
the semantics of the language constructs as well as (ji) for formally defining the semantics of the inference
processes.

Further, gencral design requirements for knowledge representation languages (Steels 1984) and several
knowledge representation formalisms, especially KRYPTON (Brachman et al. 1983}, SRL (Ilabel 1986),

Conceptual Graphs (Sowa 1984), and Discourse Representation Theory (Guenthner et al. 1986), were screened

and analysed. Based on this analysis it was decided to design the core of L-1.11.0G according to the following
principles:

1. L-LILOG is based on a many-sorted predicate calculus.

2. Sorts in L-LILOG are partially order-sorted.

3. Knowledge packets offer means for structuring knowledge bases in a hierarchical way.
4. Within the sort hierarchy an inheritance mechanism for attributes is defined.

5. Reference objects are used to represent information available about e

: xisting world entities in an
object-centered way.

6. Attributes are used for specifying relationships between components of sort specifications.

7. A role-value notation for specifying arguments is offered to support variable arities of predicates.

251

8. L-LILOG includes different types of notational formalisms among which well-defined transformation rules
are given.

Subsequently, we describe some of these principles in more detail. Basically, a L-1.ILOG knowledge base is
defined as follows:

Knowledge-Base :: = Sort-Declaration
Reference-Object-Declaration
K nowledge-Packet-Structure
Knowledge-Elements

The 'Sort-Declaration’ component represents the main part of the LILOG concept lexicon. It contains a
specification for each concept known to the system. This information is used to define assertions which are
included in the "Knowledge-Elements’ component.

The ‘Knowledge-Elements’ component is comprised by a set of first-order formulas representing facts and rules
which express propositions about real world entities. Roughly speaking, the ‘Sort-Declaration” component and
the ‘Knowledge-Elements’ component correspond to the T-Box and A-Box components of representations in
KRYPTON-like formalisms (Brachman et al. 1983).

The ‘Reference-Object-Declaration’ component introduces internal identifiers for the real world entities
mentioned in a natural language text. Fach identifier is associated with a sort defined in the ‘Sort-Declaration’
component as well as with a set of designations which have been used in the text to refer to a particular entity.
The ‘Reference-Object-Declaration” component is based on the referential net concepts described in (Habel
1986).

The ‘Knowledge-Packet-Structure’ defines a hierarchy of knowledge packets (Wachsmuth 1987) organizing
conceptual as well as assertional knowledge in a modular way. To this end, all clements defined in the different
knowledge base components are associated with one or several knowledge packet(s) to define the context in
which these elements are available to the knowledge processing component. Access conditions are specified
which rely on dynamically selecting a specific knowledge packet with respect to which certain parts of the
knowledge base are given the status of visible and of reachable knowledge.

3.1 The Sort Concept in L-LILOG

In this section, one of the knowledge base components is presented in more detail: the ’Sort-Declaration’
component.

It was decided to use a sort concept within the predicate calculus approach in order to be able to represent and
manipulate taxonomic knowledge more appropriately, e.g., by replacing gencral deduction processes by more
specialized processes like type checking (Ait-Kaci 1984). From this, the problem arose how to integrate sorts
into the logic based approach. Since sort specifications establish one of the interfaces between the linguistic
components and the knowledge manipulation components in the system it was decided to use the STUF
formalism for specifying sorts in L-LILOG. As a conscquence, a totally homogeneous representation has been
achieved which integrates linguistic knowledge and parts of the real world knowledge.

Sort declarations are specified as follows:
Sort-Declaration = Sort-sct

Sort ::= "“SORTDEF” sort-name
*supersorts:” [sort-name +]
knowledge-packet-assignment
[sort-specification]

sort-specification ::= “(" ["properties =" attribute +]
["components= " attribute +
[“elements =" attribute+])"

252

attribute ::= attribute-name ""
|coreference-marker ":"]
domain-specification

domain-specification :: = sort-name | attribute

The ‘Sort-Declaration’ component consists of a set of sort descriptions each specifying the name of the sort
(‘sort-name”), its supersort(s), the associated knowledge packets (possibly several), and the sort specification.
The partial ordering of sorts has to be a semi-lattice and is intepreted as a set-subset relationship in the models
of L-LILOG.

Within the sort specification we distinguish between property attributes specifying properties associated with a
sort, component attributes introducing a part-of relationship, and element attributes defining a is-member-of
relationship. That is, the three well-known structuring principles for taxonomic knowledge: generalization,
aggregation, and grouping are included.

Attributes are specified by their name, optional coreference markers for defining an equality relation between
attributes, and a domain specification. Actually, an attribute is interpreted as a partial function from the sort
for which it is defined to the sort specified by its domain specification. Sort specifications may be nested to any
level.

3.2 The Concept of Reference Objects

Reference objects are introduced as unique internal represcntatives for external objects of a domain to account
for the fact that natural language provides various means to designate a given real world object. The current
version of L-LILOG accounts for multiple designations of objects by proper nouns. So far, it does not give
consideration to any other definite or any indefinite descriptions of objects. The syntax is given below.

reference-object-declaration :: = "REFERENCE OBIECTS”
reference-object +

reference-object :: = reference-object-id “e” sort-name
“DESIGNATED-BY <* [designation+] "> *

reference-object-id ::= “r"digit-string

designation ::= object-name
[knowledge-packet-assignment]

These definitions introduce two relations defined between reference objects and other constructs of L-LILOG.
The first one is the element relation “e” between reference objects and sorts. By this relation we can specify the
sort that a reference object belongs to. The second relation is the “DESIGNATED-BY” relation between
reference objects and object names. Object names are proper nouns used in the external world to designate the
real object. Instances of this relation enables the system to find out which intemnal object is referred to when a
certain proper noun is used in a discourse to designate an extcrnal object. Object names are also needed when
we want to generate a natural language sentence that speaks about a real world object.

253

4. Realization of Operations on Sorts and Reference Objects

4.1 Major Tasks to be Attacked

Having introduced the STUF formalism and the syntax of the part of L-LILOG that pertains to sorts and
reference objects we now want to point out which operations we intend to realize with respect to these
constructs. At first let us discuss the role that is played by this kind of knowledge in discourse understanding
systems.

‘There are two main components that use knowledge about objects: (1) the linguistic component analyzing
natural language sentences in order to construct expressions in the semantic representation language which
reflect the meaning of the sentences, and (2) the knowledge processing component that manages the world
model of the system, ¢.g., to answer questions or to modify the model if new information is received.

One major task for the linguistic component is to resolve anaphoric references. That means, it will want to
know from the knowledge processing component whether or not two reference objects can be the same from a
world knowledge point of view. Another important task is to determine the potential sort(s) of a given object
with one or more known attributes, in the process of constructing a semantic representation. A more
knowledge-oriented task is the deduction of implicitly given attributes for a reference object.

In the remainder of this section we describe the internal representation of the object oriented constructs of
L-LILOG as STUF types and discuss the operations for modifying these internal representations and for
extracting information out of them. For each particular piece of knowledge to be expressed in L-LILOG with
its particular syntactic constructions we give a special internal representation along with operations suited to
process this knowledge. For reasons of efficiency and economy the internal representations are
process-oriented.

4.2 Sort Declarations

Sort declarations are comprised by two different kinds of information: (1) information about the position of a
sort in the sort lattice and (2) attributes that characterize a sort beyond the attributes inherited by this sort from
its supersorts. The latter is referred to as “attribute declaration” hereafter. Attributes are interpreted as one-place
functions which map elements of the sort being defined to take values in another sort. The current version does
not allow the inheritance of attributes to be blocked so we cannot practice default reasoning at this level.

4.2.1 The Sort Lattice

Sort names correspond to natural language concepts and enable the system to categorize the objects of
discourse. For the beginning we assume a fixed lattice of sorts, knowing that this is a simplification. In the long
run the sort lattice has to become dynamic to account for the acquisition of new categories. The sort lattice is
one special STUF type expressing hierachical relations between sorts. We name this type SORT-LATTICE.
Sort names are represented as labels of edges in this type. The supersort relation in the declaration part
expresses that a sort Si is the direct supersort of a sort Sj. The path <Si Sj> stands for *Si is a supersort of
Sj”. If two sorts Si and Sj have a common subsort, then the paths join after Sk: <... Si Sk>=<.8) Sk>
yielding a STUF type like the following:

254

SORT LATTICE

?
ALL
/—‘—\
S1 S6
7 S;\ Si\
S5 85 S7 87
S7
NIL NIL

If neither an attribute nor a sort of an object is known, then this object will be assigned to the sort ALL. NIL.
is the empty sort that completes the lattice. Since the sort lattice is assumed to be static, no operations are
defined to change this structure. But we want to exploit information given in the sont lattice to answer the
following questions by using STUT operations as indicated:

= Js Si a subsort of Sj?
(subsort(51,S3); STUF: <ALL x* §j y* Si>)
® Which are the subsorts of Si?
(subsort(z,51),fail)
® Which are the supersorts of Si?
(subsort(Si,z) fail)
= Which is the most general subsort of Si and §;?
(Si=S5j} OR (subsort(S1,5j) THEN 8j) OR (subsort(Sj,5i) TIHEN §i)
OR ({most-general-common-subsort(§i,Sj,z);
STUF: <All xI* Siyl*z> = <All x2* §j y2* 2>))

Here, variables with an asterisk denote functional uncertainty in a search function.

4.2.2 Attribute Declarations

Collecting all attributes of a sort, in particular inherited ones, is the main operation nceded for attnbutes. To
this end, the total set of attribute declarations is compiled into a single STUF type, named SORTS, that
enables the system to find all attributes of a sort at once, including inherited ones. The attribute of a supersort
is shared with each of its subsorts by a corcference link. Then following the path of the supcrsort allows to
find this attribute, following the path of the subsort allows to find the same attributc among others.

255

SORTS

SORTDEF

In the above example, $2 can be a supersort of S1, because S2 and §1 share the attribute att-3. They can also
be sorts at the same hierachical level that both have the same attribute as definition. To avoid conflicts caused
by multiple inheritance of the same attribute we require the same value domain to be specified for each
occurrence of a particular attribute in a number of sort declarations. As with the sort lattice we assume the
type for the attribute declaration to be static. Exploiting information from this type, we want to answer the
following questions by using STUF opcrations as indicated:

® Which are the attributes of a sort and which value domains do they have?
{get-attributes(Si,x); STUF: type application with the path < SORTDEF Si ATT>)
® s att-i an attribute of §j?
(is-attribute(Sj.att-i); STUF: <SORTDEF §j ATT r*f att-i>)
® Which is the value domain of an attribute att-i of §;j?
(get-value-domain(Sj,att-i,x); STUF: <SORTDEF §j ATT r*f att-i x>)
8 Which subsort of Si has an attribute att-j with the value domain Sk?
(find-subsort(Si,x,att-j SK): = subsort(x,Si) AND is-attribute(x att-j),fail)
If more than onc solution is obtained the result is espressed as a disjunction.
® Which most general sorts have the attribute att-i?
(find-subsort{ALL,x,att-i,y) AND remove all sorts that arc subsorts)

4.3 Refcrence Object Declarations

The declaration of a reference object includes (1) an instantiation of the element relation which rclates a
particular reference object identificr (c.g. rl) to a particular sort name and (2) an (optional) instantiation of the
DESIGNATED-BY relation between rl and a sct of strings (e.g., proper nouns designating this reference
object). We handle each casc scparately.

4.3.1 The Flement Relation

For cach sort Si we define a STUF type with Si as its name. We take the reference object identificrs of the
reference objects that are elements of that sort and associate them as labels with those cdges that start at the
top node of Si. That way each reference object belongs explicitly to exacily onc sort Si and implicitly to all
supersorts of Si. This part of our knowledge base is not static: As more information about a reference object is
obtained (e.g., that it has a certain attribute) it can be moved down the sort lattice to a subsort. That is, we
have to replace “ri ¢ Sj"by i e Sk”, given that “subsort(Sk,Sj)" is true. To do this, <ri> is removed from the
type Sj and attached to the type Sk by unification. All reference objects of a sort, including the ones attached to
its subsorts can be obtaincd by unifying type Si with all types of its subsorts.

256

4.3.2 The DESIGNATED-BY Relation

For each reference object we can define a set of strings designating it. These designations do not have to be
definite, that is, one string may designate more than one reference object. For each reference object a type is
defined with the reference object identifier as its name. The designations are attached as names to all edges of
that type that emanate from the top node.

With respect to the types for the ‘element’ and the ‘DESIGNATED-BY’ relation, we can handle the following
commands by using STUF operations as indicated:

8 Which sort does i belong to?
(get-refo-sort(ri,x); STUF: x:= <n>)

s Which reference objects belong to Si and its subsorts?
(get-all-refos(Si,x): = subsort(x,81) AND unify(Si,x) for all x)

® What are the designations for reference object ri?
(get-designations(ri,x}; STUF: the type ri)

@ Which reference objects are designated by the designation di?
{get-refo-by-design(di,x); STUF: x:= <di>; if more than one reference object is designated by di, a set of
type names is obtained.)

® Add a designation di to a reference-object ri!

(add-design(ri,di); STUF: unify(ri, <di>))
® Add a reference object i to a sort Si!
(add-refo(ri,Si); STUF: unify(Si, <ri>Y)

® Change "ri £ Sj” into “ri ¢ Sk™

(change-clement(ri,Sj,Sk); STUF: remove(Sj, <ri>) AND unify(Sk, <ri >))

4.4 Instantiated Attributes

In Section 3.1 attributes were defined as one-place functions. To instantiate the attribute of a reference object
means to write expressions of the special kind "term =term” or of the kind “atomic formula”. Here, terms can
only be simple terms or one-place functions. Specifying the known attributes of the reference objects (either
used in the the background knowledge or in the discourse knowledge) means to formutate a special system of
equations. This system need not be complete. That means, we do not have to know all attributes of an object,
there may be reference objects we only know the sorts they belong to. We are interested in the equality of the
attribute values but not in the equality of the attributes as functions. Reference objects of a certain sort may
obtain attributes that are not defined for this sort. These additional attributes are required to be attributes of a
subsort so we can be sure that the objects with this attribute are elements of that subsort. At the current stage

we do not allow to define "free” attributes that are not inherited as we do not allow the blockage of inheritance
yet.

The system of equalities is to satisfy the following consistency conditions: (1) a reference object cannot be used
as its own attribute value and (2) if a reference object i is the attribute valuze of some other reference object rj,
then rj cannot be the value of any attribute of ri. In case the sccond restriction turns out too strong it can be
weakened by introducing inverse functions for those functions which are injective. In the internal
representation we have chosen for this system of equalities the consistency conditions are easily verified since
their violation yields cycles in the resulting type which has to be acyclic by definition.

For each atomic formula we construct as internal representation a type with the two reference object identifiers
as labels of the two edges emanating from the top node. These are followed by edges labeled with those
attribute naines the reference object identifiers are imbedded in. The resulting two paths corefer to the bottom
node of the type. Then all such types are unified. The resulting type will contain for each reference object, if at
least one of its attributes is known, exactly one edge with its reference object identifier as label. In this way alt

equations of interest are made explicit. The unification of two types fails if a cycle is produced as defined
above.

257

att-1(ri)=r2 att-2(att-1{r2))=rl r2=r4
rl/\ rz/\ /‘\
» r2 } r3 rz\'/ r4
att-1 att-1
att-2

The unification of these types results in the type EQUATIONS:
EQUATIONS

rl
2 ™

att-1 r3
att-1
att-2

Now we can prove equations, €8, att-2(att-1{att-1(r1))) = r3. To do this, we first construct the corresponding
type Gi. Then we test whether or not this type subsumes the equality type. If ~subsumes(EQUATIONS,Gi)" is
true we have proved that the equation holds. This is the most important operation on the type Gi. Other
operations are indicated below:

® Which term is the value of an attribute att-i of an object rj?
(get(att-i(rj),x); STUF: <rj att-i > = < x*>)

= Which reference object has ri as value of an attribute att-j?
(get{att-j(x),fi); STUF: <xatt-j> = < n>)

= What are the attributes of the refcrence object ri?
(get(x(ri),y); STUF: <rix*> = <y*>)

® What is the relation between ri and 1}?
(get-rel(ri,rj,z), 2 is a type; STUF: <ri x*> = <rjy*>)

= Which terms embedded in att-i have which value?
(get(att-i(x),y); STUF: <x* atti> = <y*>)

® Add an equation!
(unify(EQUATIONS,Gi) AND store the resulting type)

4.5 Complex Operations

Now we have the inventory to deal with more complex tasks such as described in Scction 4.1. The first one was
the question, issued by the linguistic component, if two terms (in the restricted sense used here) can be equal. A
more specific question is whether or not two reference objects can be equal. Starting with the second question,
we show how to answer them using the intcrnal representations introduced above together with the operations

defined on them.

To find out whether or not two refcrence objects i and rj can be cqual we have to do the following:

258

8 In the first step we test if ri and rj are explicitly known to be equal. We can do this by using the operation
“subsumes(EQUATIONS, <ri> = <rj>)". If this test fails we cannot be sure that ri and rj are unequal
because we have no closed world assumption.

® In the next step we test whether or not <> = <rj> can be unified with the type EQUATIONS. If this
test fails, too, then we know that the consistency condition is violated. In this case we have proved that ri is
unequal to rj.

® If the unification was successful we further have to check the sorts of the reference objects by using:
get-refo-sort(ri,x) AND get-refo-sort(rj,y). x and y must be compatible, otherwise ri and 1j cannot be equal.
Here, ‘compatible’ means that

+ xand y are equal: "x=y", or
* xis a subsort of y or vice versa: “subsort(x,y) OR subsort(y,x)", or

* x and y have a most general subsort unequal to NIL: “most-general-common-subsort(x,y,z) AND
z=/=NIL".

If one of these operations yields true, we not only know that ri and rj can be equal, we also know the sort
they both must belong to if we decide (from outside) that they are equal.

To equate two reference objects requires that they can be equal. If performing the “can-be” test was successful,
the sorts of both reference objects and their ultimate sort is known. The rest to be done is simple. First we
unify <ri>= <rj> with EQUATIONS and store the resulting type. Then we have to change the element
relation between these reference objects and their sorts if they are unequal. We do not change the
DESIGNATED-BY relation but continue to use both reference object identifiers in the factual knowledge
base. By doing so we can still differentiate between the designations used in one context from those used in
another context.

To answer the more general question, whether or not two terms can be equal, things are more complicated in
only one aspect. If a term contains nested functions we compute the sort of this term by computing the
embedded terms recursively, starting with the one embedded most deeply, that is, the reference object identifier.
The rest to be done is very similar.

5. Conclusion

In our paper, we have tried to sketch the basic design features of our intcgrated representation system for
different kinds of knowledge. A language that is based on a many-sorted predicate calculus has been equipped
with the additional descriptive power of a type-unification- based sort hierarchy with equality. The integration
of the two systems provides a high degree of conceptual clarity and supports a modular implementation in
which the underlying data type and its operations are shared by all components of the system.

6. References

Ait-Kaci, H. (1984). A Lattice Theoretic Approach to Computation Based on a Caleulus of Partially Ordered
Type Structures. Ph.D. Thesis, University of Pennsylvania.

Brachman, R.J., Fikes, R.E., & Levesque, H.J.(1983). KRYPTON: Integrating terminology and assertion.
Proceedings AAAI-83 (pp.31-35).

Bresnan, J. (Ed.) (1982). The Mental Representation of Grammatical Relations. Cambridge, Mass.: MIT
Press.

Gazdar, G, Klein, E., Pullum, G., & Sag, I. (1985). Generalized Phrase Structure Grammar. Cambridge,
Mass.: Harvard University Press.

259

Guenthner et al (1986). A theory for the representation of knowledge. In: IBM Joumnal of Research and
Development, Vol.30, No.1, 1986, pp 39-56.

Habel, Ch. (1986). Prinzipiecn der Referentialitit: Untersuchungen zur propositionalen Reprisentation von
Wissen. Berlin: Springer.

Kay, M. (1983). Unification Grammar (Technical Report). Palo Alto, Calif: Xcrox Palo Alto Research
Center.

Shieber, S., Uszkoreit, H., Pereira, F., Robinson, J., & Tyson, M. (1983). The Formalism and
Implementation of PATR-IL. In Grosz, B. & Stickel, M. (Eds.) Research on Interactive
Acquisition and Use of Knowledge. Menlo Park, Calif.: Al-Center, SRI International.

Sowa, J. (1984). Conceptual Structures: Information Processing in Mind and Machine. Reading, Mass.
Addison-Wesley.

Uszkoreit, H. (1987). STUF: A Description of the Stuttgart Type Unification Formalism (LILOG-Report
16). Stuttgart: IBM Deutschland.

Steels, 1. (1984). Design Requirement for Knowledge Representation Systems. In: Proc. GWAL-84, pp.
1-19.

Wachsmuth, 1. (1987). On structuring domain-specific knowledge (LI1.OG-Report 12). Stuttgart: IBM
Deutschland.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14

