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This paper is intended to serve as an updated compendium
of Rational Number Project activities. Several major project
strands are described. Each description is followed by
several references to published materials dealing with that
particuliar strand.

The descriptions provided are of necessity very brief.
Interested persons should consult the appropriate references
for more detailed information.

The Rational Number Project (RNP) was a four-year (1979-
B83) U.S5.-based research project funded by the National
Science Foundation (NSF). The project involved three
universities (Northern Illinois, Minnesota and Northwestern}
and untilized well-defined theory-based instructional and
evaluation tomponents as well as an overall plan for
validating project generated hypotheses. The project’s
intent was to describe rational number development from its
beginnings to its formal operational level in well-defined
instructiocnal settings. The major goal is the identification
of psychological and mathematical variables which impede
and/or promote the learning of rational number conepts.

The project has recently heen re—funded by the NSF
(1984-86) and is at present focusing on the role of rational

number concepts in the development of proportional reasoning
skills.

We are indebted to the following people who assisted in this
research: Nadine Bezuk, Kathleen Cramer, Mary Pat Roberts,
Robert Rycek, Constance Sherman and Juanita Squire. Special

thanks also to Mary Welty for her typing and organizational
skills.

The Research reported here was supported in part by the
National Science Foundation under Grants No. SED 79-20591,
SED 81-12443 and DFE-8470077. Any opinions, findings and

conclusions expressed do not necessarily reflect the views of
the National Science Foundation.



- 343 -

— CONTEXTUAL CONCERNS -

The task of assessing children's ability to utilize rational
number knowledge in applicational situations is difficult.
Children often are unable to transfer ideas to contexts
they have not enountered before. Rational Number Project,
addressed the issue by providing a rich foundation of
rational number concepts utilizing a broad range of
perceptual variables in a manner consistent with the ideas of

Dienes.

Concurrent with instruction, interviews which stressed
children’s functional rational number knowledge were
conducted. An evaluation of these interviews suggests the
following: Only subjects exhibiting consistent success in a
variety of applied situations can be assumed to have
developed a generalized understanding of rational number.
Children who do not have a workable concept of rational
number size cannot be expected to exhibit satisfactory
performace across a set of tasks which varies the context in
which the number concept of fraction is involved.

In one study, Sth grade children were required to select
digits from a provided list to form two fractions whose sum
was as close to 1 as possible. In a second study, the same
children were to suggest target rational numbers on a number
line. These were to be hit by an electronic "dart” flying
across a video screen. In a third study, these children were
to interpret a given set of fraction symbols as rations for
black—-ink/water mixtures and to associate them with a scale

of increasingly darker gray levels.

Findings suggest that a coordinated use aof Qrder gnd )
equivalence knowledge, combined with skill in estimating the
size of rational numbers, enabled some children to be )
successful across all three tasks. An ability to perceive
the ordered pair in a fraction symbol as a conceptqal unit
(rather than 2 individual numbers) was also found to be an

indicator for successful performance.
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FERCEFTUAL DISTRACTORS

In the work of the Rational Mumber froject, it has been
aobserved that certain components of a manipulative aid or
pictorial display that are essential to illustrate one
basic concept frequently impair the child's ability to use
the aid for another concept. In particular, various types of
perceptual cues can negatively influence children’'s thinking.
In some cases, these perceptual cues act as distractors and
overwhelm children’s logical thought processes.

In the instructional component of the Rational Number
Froject, we found that children tend to assume that physical
conditions within which problems are presented are relevant
to and consistent with the task. This tendency is probably
an artifact of their learning from a textbook- or worksheet-
dominated instructional program that places little emphasis
on manipulative materials. Within such a program, problem
conditions are necessarily static in nature, providing little
oppartunity for children to manipulate problem conditions.
Students expect that mathematical problems conditions
(context) conform to the intended task and, therefore, are
not in need of restructuring or rethinking. Children learn
that one simply takes what is given, and proceeds directly to
the solution.

Perceptual distractors represent one class of
instructional conditions that make some types of problems
more difficult for children to solve. Enowledge of their
impact will be helpful in the design of more effective
instructional sequences for children. It seems reasonable to
suggest that initial examples might be given wherein the
potential impact of perceptual distractors is minimized, but
that later examples should deliberately provoke children to
resolve conflicts that arise in association with perceptual
distractors.

Al though performance with rational numbers is affected
by the presence of distractors, children can be taught to
overcome their influence. Furthermore, the strategies
generated by children to overcome these distractors lead to
more stable rational number concepts.
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ORDER AND ERUIVALENCE

Understanding the order and equivalence of fractions
reguired an understanding of the compensatory relation
between the size and number of egual parts in a partitioned
unit. A small percentage of children are able to exhibit an
understanding of this relation after only brief instruction.
Other children grasp it after additional lessons. For still
others, the relation remains elusive even after they have had
ample opportunities to learn and practice.

Instruction aimed at developing an understanding of the
compensatory relation will require more instructional time
than has been given in most curricula, in addition to a
careful spiraling of the concept through several grade
levels. We recommend that fractions be introduced in the
third grade. The introduction should be limited to
establishing elementary meanings for fractions, with a heavy
emphasis on unit fractions. As the compensatory relation is
being learned, its application to the problem of ordering
unit fractions can begin. Such experience would provide a
good foundation for establishing a quantitative concept of
rational! number. At the end of the third grade or at the
beginning of the fourth, instruction would incorporate the
concept of nonunit fractions, which would be developed
through the iteration of unit fractions, The concept of
order would be extended to fractions with the same numerators
and then to fractions with different numerators and
denominators.

Dur observations suggest that children whose rational
number concepts are insecure tend to have a continuing
interference from their knowledge of whole numbers. This
interference needs careful consideration by researchers,
curriculum developers, and teachers. It would clearly be
inadequate simply to inform children when the schemata thgy
have developed for dealing with whole numbers are appropriate
and when they are not; children need to learn haow to make

such determinations on their own.
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STRATEGIES

Many children develop cor invent strateqgies for
dealing with fraction order and equivalence tasks which
likely have origins in whole number arithmetic or even more
elementary experiences. It was observed that the idea of
strategy is fairly fluid among many children. It appears,
however , that children’ s strategies are frequently local
strategies. That is, the strategy employed is often a
function of the specific task, and does not necessarily
persist through or transfer to different situations. This
was found between children and within particular individuals.
Variation in the numerical characteristics of a problem
frequently will generate different solution strategies even
within a single individual. It was illustrated above that
the same child within a short period of time might employ two
vastly different algorithms for similar gquestions, one
algorithm referring to the physical aspect of a number of
pieces, the other being based upon number relationships and
thus dealing at a higher level of abstraction. This supports
a hypothesis of interaction between solution strategies and
the numerical characteristics of the task situation.

It is interesting to note that children employ
strategies which have not been taught directly. The residual
and transitive strategies are examples of this. Residual:
3/6 < 7/B because they both have one piece left over (to make
a whole) and since 1/6 is greater than 1/8, S/6 (1-1/6) must
be less. Transitive: 4/9 < S/8B because 4/9 < 1/2 and 5/8 >
1/2). Such strategies seem to be natural extensions of those
previously used.

It was also observed that a self-generated strategy was
less likely in tasks with fractions less than 1. It may be
hypothesized that this is because a proper fraction such as
3/5 can be dealt with more easily by imagining its “bigness"”
as part of a physical unit, than would be the case for 12/5.

Children often invent strategies (many of which are
incorrect) when they are asked to compare two (not
equivalent) fractions which neither have like numerators nor
like denominators.. For example, 3/5% and 5/8 are difficult to
order by any means other than an abstract approach such as

converting to a decimal, using a common denominator, or using
a cross multiplication.

BIBL IOGRAFHY

Post, T.R. and Behr, M.J.(1985) "Research-based (bservations
about Children’s Learning of Rational Number Concepts”
Focus on Learning Problems in Mathematics, Farmington
Mass. {(in press).



- 347 -

Three different percent problems are represented in the
statement x is PZ of y. FProblems of the type to find x given
y are more difficult for junior high school children than

ones of the type to find y given x. The former are analogous
to problems which are emphasized in elementary school
fraction instruction: Find 378 of . The latter is

analogous to a problem type which gets little or no attention
in elementay school instruction: If this

is 3/4, find the whole. The differential difficulty between
the two percent problem types for junior high school children
may result from the differential emphasis which we give in
elementary school to the two analogous fraction problem
types.

I¥ instruction did emphasize both of these fraction
problem types in the elementary schaol, children might
acquire a better concept of fraction than is currently the
case. These two fraction problem types exemplify Piaget’'s
concept of reversibility; the operations of finding a
fractional part of a unit and of finding the unit of which a
given fraction is part are inverse aperations. Ability to do
one of the operations but not the other suggests an
incomplete understanding of the concept of fraction.

We gave problems of the type "If x is m/n of y, find y"“
in various forms:

(a) % was either a continuous region or a discrete set,

(b) x contained or did not contain a perceptual distractor,

() x was either a unit fraction, a non unit fraction less
than one, or a fraction greater than one.

(d) * y was equal to one (the unit) or greater than 1.

The data from grade S children indicate use of 4_
different strategies for solution. Two strategies wh:ch
usually lead to a correct solution were simi!ar; the ch1lq
first partitioned the given fractional part into n equi-sized

pieces and then referred to each piece as (a) one nfth urv(b)
one part. After this the child found the whole by iterating

this piece while counting and saying, {a) 1/n—th, Zn—ths,
-+ay N/n-~ths or (b) 1 part, 2 parts, ..., N parts.

Most unsuccessful solution attempts involved one of twa

strategies:

(a) The child treated the given fractional part as Fhe unit
fraction 1/n and iterated this n timeg or (b) The ch;ldth ]
treated the fractional part as the unit and showed m/n- o
it.

Behr, M., Post, T., tesh, R., and Haschsmuth, I.
Understanding Rational Numbgrs: The Unit
Concept. Paper in preparation.
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ESTIMATION

Whether or not a child understands the concept of size
of a fraction is an indicator of the depth of the child’'s
understanding of the fraction concept. Many children do not
have this understanding; an indicator of this are the
achievement results from an NAEP item which asked 13- and 17-
year olds to choose from among 1,2, 19, and 21 an estimate
for 12/13 + 7/8., Freguent choices of 19 and 21 suggest that
many children lack understanding for the size of fractions.

We take the position that estimation skill is closely
related to the concept of number size. The understanding of
the size of numbers——whole numbers, fractions, decimals—is
essential to the ability to make estimates. We also believe
that instruction in and practice with estimation will help
children develop an understanding of number size.

We investigated children’'s ability to estimate rational
numbers in the context of a "construct-a-sum®" task, Children
were asked to choose whole numbers from among 1, 3, 4, 5, 6,
7, to form two fractions whose sums would be as close to, but
not equal to, 1 as possible.

Grade 5 children exhibited essentially 5 strategies in
dealing with this task. One strategy involved the use of a
reference number such as 172, /4, or 1. In another
strategy children did a mental manipulation of a correct
addition algorithm, including mental computation of
equivalent fractions. Each of these two successful
strategies involved good understanding of fraction
equivalence. Two unsuccessful strategies represented
difficulty with the use of a reference point or inaccurdte
mental manipulation of a correct algorithm or mental
manipulation of an incorrect algorithm. A third successful
strategy was based on very inaccurate estimates of fraction

size. Unsuccessful performance reflected poor understanding
of fraction equivalence.

References:

Behr, M., Post, T., & Wachsmuth, I. (1983). Children’'s
concept and estimation of rational numbers. In H.
(Ed.), Estimation: 19846 Yearbook of th

Schoen

Behr, M., Waschmuth, I., & Post, T. (1985). Construct a
sum: A measure of children’s understanding of fraction
size. Journal for Research in Mathematic

16, 120-131. 7 T TTUUUUTTTEE BT OmEEEEASES



- 349 -

Several articles from the Rational Number and
Proportional reasoning Projects have described roles that
representations, and translations among representations, play
in mathematical learning and problem solving. 1In the book ,
The Acguistion of Mathematics Concepts and Processes, Behr,
Lesh, Post, % Silver (1983} focus on the following five
distinct representation systems: (1) experience-based
"scripts" - in which knowledge is organized around “real
world"” events which serve as general contexts for
interpreting and solving problems, (2) manipulative models —
like Cuisenaire rods, arithmetic blocks, fraction bars,
number lines, etc. in which the “elements” in the system have
little meaning per se, but the “built in" relationships and
operations fit many everyday situations, {(3) pictures or
diagrams — static figural models which, like manipulatable
models, can be internalized as "images," (4) spoken languages
— including specialized sub-langusges related to domains like
logic, etc., (35) written symbols which can involve
specialized sentences and phrases (X + 3 = 7, a (b + c) = ab
+ ac as well as normal English sentences and phrases.

The item below taken from a proportional reascning
examiniation (Lesh, Behr, % Post, 19853) illustrates a
"written symbol to picture® translation.

31. Waat plcture shovs iuuur

e. I don't know

in our chapter in a book about ng_fﬁ_______ﬂ_ in
Mathematics Learning Problem Solving, edited by Janvier
(1555;: we discuss the fact that part of That gducatprs Tean"
when they say that a student "understands® an idea like "1/3
is that: (a) s/he can recognize the idea embed?ed in a
variety of qualitatively different rePresenFat§Qna} systems,
(b) s/he can flexibly manipulate the idea within given _
representational systems, and (c) s/he can translete the idea
accurately from one system to another. We also distuss ways

that these translation abilities are re{!ecteq in prablem
solving capabilities. For example, consider item 29 (b91°"1v
adapted for our research from a recent "National Assessment

examination.

s to girls in a class is 3 to B, How

29. The ratio of boay e were 7 boys?

many girls were in the class if ther

a. 17 b. 14 c. 24 d. not given e. I don’'t know
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Educators familiar with results from recent “"National
Assessments” may not be surprised that U.S. students’
success rates for problem 29 were only: 114 for 4th graders,
13%Z for GSth graders, 30% for &th graders, 294 for 7th
graders, 51% for Bth graders. Success rates on the seemingly
simpler problem 21, however, even lower: 4% for 4th gr aders,
B% for 5S5th graders, 19%Z for &ath graders, 21% for 7th graders,
247 graders for 8th graders. On the translation item 31,
only 1 in 4 students answered correctlys 43% selected answer
choice (a); 4% selected (b); 15% selected (c); 344 selected
(d); 2% selected (e); and 2% did not give a response.

One major conclusion from this research 18 apparent from
the preceding examples; not only do most 4th-Bth graders have
seriously deficient understandings in the context of "word
problems” and “"pencil and paper computations,” many have
equally deficient understandings about the models and
language(s) needed to represent (describe and illustrate) and
manipulate these ideas. To remed:iate these deficiencies, our
research has focused heavily on the role that translations
and transformations play in the acquisition and use of
elementary mathematical ideas (Lesh, 198%5).

The RN & PR projects conducted in conjunction with
Lesh’'s Applied Mathematical Problem Solving (AMFS) project,
have shown that students’ sclutions to problems like #2929
(above) typically involve the use of spoken language
{together with accompanying translations anad
transformations), in addition to Ppure written symbol
manipulations (i.e.. transformations). On the other hand
these studies also how that repeated drill on problems like
#29 does not necessarily provide the type of instruction
related to developing an understanding of the underlying
translations.

Lesh, Landau, & Hamiltion (1984) , suggested that
purportedly realistic word problems often differ
significantly from their real world ctounter-parts in
difficulty level, the processes most often used in solutions,
and in the types of errors that occur. Real problems often
goccur in a form that inherently involves more than one
representational system. Furthermore, during solution
processes, student s frequently changed the representation of
an aspect of their situation form one form to another; or at
any given stage, two or more representational systems, were
used, each illuminating some aspects of the situation while
deemphazing or distorting others,

Other links between problem solving capabilities and
conceptual understandings are discussed in Using Mathematics
in Everyday Situations (Lesh, 1985). For example, one
chapter deals with a proportiocnal reasoning problem in which
the phases that students typically passed through during 40
minute solution attempts exactly paralleled stages that the
RN & PR projects observed over periods of several years in
the development of the underlying concepts reguired to do the
problem. The "local conceptual development"” character of
AMFS problem solving sessions meancs that we are able to apply
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to AMPS -style applied problem solving many of theoretical
perspectives developed by the RN & PR projects, and vice
versa.

Finally, relationships between problem solving,
conceptual understandings, and representation system
capabilities are being explored in some of the instructional
materials currently under development at the World Institute
for Computer Assisted Teaching (WICAT). A modified and
enhanced version of the "symbol manipulator/equation solver"
(SAM) that was developed for WICAT's IBM Algebra and Calculus
courses SAM is being enhanced with the ability to produce
"dynamic models or pictures” illustrating a range of typical
"proportional reasoning and/or units arithmetic" problem
types, and with the ability to operate on measurement levels
in addition to numbers and variables. Using such utilities,
students can focus on graphic representations of the
processes they use to arrive at solutions.
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