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The atudy explored students' interpretations of represent-
atione of fractions on number lines and the effeet of
ingtruction on those interpretations. Subjecta were
Ffive fourth-graders, and instruction was a fo

unit on the use of number Lines. A 16-item, multiple-
choice pre- and posttest was used along with videotaped
intervieve. Performance improved except when atudents
had to aseociate a reduced fraction symbol with an
equivalent, unreduced fraction representation on a
mmber line. The difficulty at "unpartitioning” a
representation suggests that care needs to be given to
developing a concept of equivalent fractions. Further,
translations among various models of fractions might
foster better performance.

This study (a) explored ways that students might interpret, or misinter-
pret, the representation of fractions on number lines and (b) determined
possible influences of instruction on those interpretations. The number
line, which embodies the measure subconstruct of rational numbers (Kieren,
1976), was chosen for study because it is a pervasive model of number
representations throughout school mathematics instruction.

As a model for representing fractions, the number line differs from other
mdels; e.g., sets, regions; in several important ways. First, a length
represents the unit, but more important the measure construct suggests
both iteration of the unit as well as simultaneous subdivisions of all
iterated units. That is, the number line can conceptually be treated

as a ruler. For example, 1f one wants to measure with a ruler-to the
nearest one-seventh of a unit, all units would be subdivided into sevenths.

» ON a number line there is no visual separation between consecutive
units. That is, the model is totally continuous. Both sets and regions
as models possess visual discreteness. When regions are used, for example,
space is typically left between copies of the unit.

Second
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Third, the number line requires the use of symbols to convey part of the
intended meaning. For example, point A in Figure 1la has no numerical
meaning until at least two reference points are labeled. Two possible
meanings are given in Figures 1b and lc. Figures 1d and ie, however, do
convey meaning without any accompanying symbols, though their interpreta-
tion requires some standard conventions about the nature of a unit.
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Figure 1 . Representations of Fractions

The use of symbols to label points on a number line may focus a student's
attention on those symbols rather than on the pictorial embodiment of the
fractions. This focusing may in turn cue symbolic processes as the
predominate mode of manipulation of information. Too, the necessary

but not directly used marks on a number line may act as perceptual dis-
tractors (Behr, Post, Lesh, & Silver, 1982).

These differences between the number line and other models suggest that

students may interpret number line representations only with some diffi-
culty. Too, instruction may have to be carefully keyed to the critical

attributes of number line representations in order to be effective.

METHODS

Subjects

Subjects were five fourth-graders in an elementary school in northern
I114nois; three boys and two girls. They were selected, through teacher
evaluations, to represent a cross-section of facility with arithmetic
concepts and were also subjects in an 18-week teaching experiment (Behr,
Lesh, & Post, Note 1).

Instruction
Instruction was a four-day lesson concerning association of fraction con-

cepts, relations, and operations with points, comparisons, and transfor-
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mations on a number line. Specific objectives were as follows:

1) To associate whole numbers, fractions, and mixed numbers with
points on the number line.

2) To use the number line to help connect "improper" fraction
names to "mixed number" names.

3) To use number lines to determine which of two fractions is less
or whether they are equivalent.

4) To use number lines to generate equivalent fractions.

The lesson on number line representations was présented near the end of
the larger teaching experiment. The fraction test of Novillis (1980)
was given immediately prior to and immediately after the instruction.

Test

Novillis's 16-item, multiple choice test can be partitioned into two
8-item subscales in several ways: (a) fraction given with representation
to be chosen versus representation given with fraction to be chosen,

(b) number 1ine shows 0 to 1 versus number line shows 0 to 2, and (c)
representation on number line shows unreduced fraction versus representa-
tion shows reduced fraction. For each item there were five choices, one
of which was "Not Given"; this choice was never the correct choice. In
all cases, the fraction symbol in the correct fraction/representation

pair was reduced even if the representation was for an unreduced equiva-
lent fraction.

RESULTS

Scores on the six various possible subscales are given in Table 1.

For five of the six subscales, performance uniformly increased or remained
constant from pretest to posttest. The sole exception was when the
representation was unreduced and the fraction symbol was reduced. As

a follow-up of this subscale, scores were separated according to the
other categories of items (Table 2). With the exception of Student 1,
students were unable to choose a reduced fraction name when an unreduced
equivalent form was represented on a number line,

To help determine what processes the students might be using, incorrect
responses on the unreduced representation subscale were examined. On
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Table 1: Subtest Scores?

Number of Times

Student Posttest-Pretest
Subtest 1 2 3 4 5 >0 =0 <0
fraction given 4(8) 4(4) 2(8) 1{4) 2(8) 4 1 0
representation given 4(8) 2(4) 2(2) 1(3) 0(3) 4 1 0
number 1ine 0-1 8(8) 5(5) 2(3) 2(4) 1(4) 3 2 0
number Tine 0-2 0(8) 1(3) 2(3) o(3) (3} 5 0 0
reduced representation 4(8) 5(7) 3(6) 1(6) 0(7) 5 0 0

unreduced representation 4(8) (1) ¥we) 101) 2(0) T 2 2

a
x(y) means x = pretest score, y = posttest score, Each subtest had a
maximum possible score of 8.

Table 2: Refined Scores for Unreduced Representation Subscale®

Subcategory Student
1 2 3 4 5

fraction gtven with

0 to 1 number 1ine 2(2) 1(1) 1{0} 1{0) 1(0)

0 to 2 number line 0(2) 0(0) 0(0) 0(1) 1(0)
representation given with

G to 1 number Tine 2(2) 0(0) 0(0) 0{0) 0(0)

0 to 2 number line 0(2) 0(0) 0(0) 0(0) 0(0)

aX(y) means x = pretest score, y = posttest score. Each subcategory had

a maximum possible score of 2.
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the pretest, 10 of the 31 incorrect responses were "Not Given"; two

were blanks. On the posttest, however, 28 of the 30 incorrect responses
were "Not Given"; none were blanks.

Additional information was available from videotaped interviews, In
three interview tasks, students were to find equivalent fractions,

5 E;l 8 [:] and 8. [:]

I 12°'8°3° &~ 13 - Student 1 solved these problems symbolical-
ly and used the number Tine only to verify the solutions. Student 4

used counting strategies but solved all three correctly. Student 2
combined number line and symbolic algorithms and solved only the first

and third tasks involving larger denominators. Students 3 and 5 used
addition and subtraction strategies and solved the last two tasks
correctly, but possibly only because of the 2:1 ratio of the demoninators.

DISCUSSION

In many ways the instruction seems to have been quite effective. Ex-
cept for Student 1, there was no improvement when the number line
representation was of an unreduced, but equivalent, fraction. In
particular, when the representation was given and the reduced fraction
was to be selected, only Student 1 gave any correct responses.

Only Student 1 spontaneously used symbolic algorithms to generate equi-
valent fractions in the interview tasks. Clear access to those algorithms
may indicate a well developed concept of equivalent fractions which

allows spontaneous reducing of fractions.as well as recognition of
unreduced fractions. Students who did not have access to those algorithms
may not have recognized when a fraction was not reduced, '

In the instruction on equivalent fractions two approaches were used:
(a) given two fraction symbols, determine if they name equivalent
fractions and (b) use a set of number lines already divided into halves,
thirds, fourths, etc. (essentially, they were  fraction bars) to
write fractions equivalent to a given fraction. There were no examples
of writing a fraction symbol for a given representation and then re-
writing the symbol in an equivalent form, though there were some ex-
amples of changing the representation to match a given fraction; e.g.,
drawing a representation for % and then changing the representation to
%. The students apparently did not see the reversibility of the
associations and were not able to transfer the process.
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OBSERVATIONS AND IMPLICATIONS

Students difficulty at adding partitioning points to generate higher
term fractions or mentally “"removing" partitioning points to generate
lower term fractions is not unique to the number line model (Behr, Post,
Lesh, & Silver, 1982; Payne, 1976). Moreover, the greater difficulty
children have generating lower term fractions by "unpartitioning” per-
vades children’'s dealings with both continuous and discrete models.

A similar phenomenon is observed with symbolic equivalent-fractions-
tasks: Generating higher-term fractions seems to be easier for the
children than generating lower-term fractions. A the symbolic level, this
difference in difficulty may be due to children's greater facility

with multiplication than division.

With manipulative-aid tasks, however, the children seem to rely
heavily on the visual representation of a fraction; flexibility in

the perception of equivalent fractions independent of the given re-
presentations is not yet achieved. Children not only seem distracted
by “extra® lines, but also seem to question "the rules of the game."
That is, some children have been observed to add partitioning lines
but when faced with the "removal" of Tines these same children hesitate
and may query the teacher or interviewer about whether it is "alright
to take out lines." Other children, however, have been found totally
unable to perceive lower-term fractions in the presence of extra lines.
More generally, this partitioning/unpartitioning phenomenon seems to

pervade many children's work with most models for rational numbers.

A major hypothesis of the research project, of which this study is one
part, is that it is translations between and within modes of represent-
ation which facilitates learning (Behr, Post, & Lesh, Note 1}. As
noted earlier the instruction provided models of translations of

three types: (a) symbol - number Tine, (b} symbol + number line

+ number line, and (¢) number line » symbol + symbol. Inclusion of
translations such as symbol + number line » number line - symbol might
have helped children make symbol + symbol translations in generating
equivalent fractions (see Figure 2).
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Translations between different kinds of models might also have been

helpful. That is, children might have used a region model to generate
equivalent fractions; e.g., %—= g; and then translated their work to the
number line to accomplish a comparable soTution. Seeing the relationship

between models might have facilitated their ability to use the number
line,

Finally, knowledge of equivalent fractions seems to be important to the
full utilization of number 1ine representations. Knowledge that is
developed only through symbolic algorithms may be isolated and not
called upon in the context of manipulative tasks. More reasonably,
work with the number line during instruction on equivalent fractions
would probably be called for. For example, partitioning units of a
number line first into halves, then fourths, etc., would illustrate

the notion that to every point on the line there is associated many
equivalent fractions. Before using the number line (e.g., tc model addition
and subtraction, especially of unlike fractions) more skill with equi-
valent fractions in the context of the number line is essential. Auto-
matic generation of equivalent fraction representations, through further
partitioning or unpartitioning of the number line "in the mind's eye",
could facilitate fiexibility in perception. Such flexibility seems to
enhance students' performance.

Reference Note
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