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Abstract. We investigate the approach to scaling for 
non-perturbative quark fragmentation in the frame- 
work of the uncorrelated jet model. It is found that 
subasymptotic kinematic scale breaking is com- 
parable in size to scaling violations from hard gluon 
emission a la QCD. Experimental data available at 
present do allow for such non-perturbative scale 
breaking effects. 

1. Introduction 

Considerable effort has been spent recently to test the 
experimental validity of Quantum Chromodynamics 
(QCD) [1]. In the phenomenological applications of 
QCD, one discriminates between soft and hard 
processes. So far, only hard processes can be predicted 
by the theory, using perturbation methods. The 
evaluation of soft processes on the other hand is 
plagued by infrared divergences and a large coupling 
constant, prohibiting a perturbative treatment [2]. 
In practice therefore, non-perturbative effects, 
wherever they matter, are treated in an ad hoc manner. 
In the case of quark fragmentation into hadrons, e.g., 
one generally thinks in terms of a quark cascade 
picture to describe the low PT non-perturbative part 
of hadron distributions [3]. In general one follows 
Feynman and Field [3], who proposed a model of 
this type with built-in scaling. In this framework 
scaling violations are then considered to be due to 
hard gluon emission as obtained from Altarelli- 
Parisi like equations [4, 5]. 

It is obvious that the relevance of any such test of 
QCD rests heavily on the validity of one's prejudices 
about soft physics. If we accept the idea of asymptotic 
scaling in the non-perturbative quark fragmentation 
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into (low Pr) hadrons, is it really reasonable to assume 
early scaling from the very beginning ? In the case of 
current fragmentation studies in semiinclusive neu- 
trino scattering at SPS energies [6], for example, 
where the available Q2 range is 1 G e V < Q 2 <  
100 GeV 2, this turns out to be a crucial question for 
any QCD oriented analysis. Naively, one would 
expect that non-perturbative scaling is only reached, 
when longitudinal and transverse (with respect to 
original quark momentum) directions in the final 
state hadron configuration are clearly distinguished 
in the sense that (Ptl) >~ (PT)" This condition is 
not even fulfilled for the kinematically favoured case 
of e + e- annihilation into hadrons, where Q2 values 
as high as 900 GeV 2 are nowadays accessible: first 
data taken at Q2 = 289 GeV 2 by the TASSO detector 
at PETRA yield an average longitudinal (with respect 
to the jet axis) momentum of secondaries, which is 
still of the same order of magnitude as the average 
transverse momentum, (pll)  ~ 2.7 (pT) = 920 MeV 
[7]. Indeed, subasymptotic scale breaking for the non- 
perturbative quark fragmentation in e + e- annihila- 
tion was predicted long ago to occur up to Q2 values 
of around 400 GeV / from an uncorrelated jet model 
study [8], that was based on input parameters from 
pp collisions available at that time. 

In view of the general interest to extract informa- 
tion about leading order [6,9-12] (and even next 
to leading orde~ [13]!) QCD effects out of frag- 
men.tation studies we think it is necessary to study 
in more detailthan before the problem of the size of 
subasymptotlc scaling violations to be expected 
from the non-perturbative contribution: To be precise, 
we want to consider e + e- annihilation into pions, 
using a model with full kinematics but little dynamics. 
The uncorrelated jet model (UJM) [14], which is 
nothing else but a transversely limited phase space 
model, seems to be most appropriate for this purpose, 
since one would expect any realistic scaling model 
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Fig. 1. x / ~ - d e p e n d e n c e  of the natural  logarithm of moments  
from non-perturbative quark fragmentation with respect to the 

scaling variable x = 2 p 0 / x / ~ ,  see Eqs. (9, 10). The various n-values 
are listed. The horizontal lines indicate the asymptotic scaling 
limits of these moments  

to show such subasymptotic kinematical scale break- 
ing effects. 

In Sect. II we shortly remind the reader about the 
essentials of the uncorrelated jet model. Section III 
describes and discusses the results. The conclusions 
are given in Sect. IV. 

2. The Uncorrelated Jet Model 

We imagine the quark pair produced in e + e- anni- 
hilation to radiate pions 1 with limited transverse 
momentum according to the uncorrelated jet model 
[8]. The fully exclusive distribution for the produc- 
tion of N particles of four-momenta Pi in that model 
is given by 

~N!  \j~=l p i - q  , ~p~o f(piT)' (1) 

where q is the total four-momentum of the e + e--  
system and PT is the momentum transverse to the jet 

1 It is clear that  inclusion of heavier particles [15] would increase 
the nonasymptot ic  effects 

Fig. 2 Same as Fig. 1, but  with respect to the variable 

xll = 2pll/,~Q 2. The dashed curves represent the Q C D  predic- 

tions for nonsinglet  moments ,  calculated with A 2 =  .5 GeV 2 [5]. 
Their Q2-dependence is characteristic for the amoun t  of scale 
breaking in Q C D  

axis. For simplicity we assumed the pions to be 
chargeless. The funct ionf  (PT) describes the transverse 
momentum cutoff and is normalized such that 

ao 
~ f(pT)PTdPT = 1. (2) 
0 

The total phase-space volume is then given by 
oo vN N d 3 - / N 

/ Plo \ j =  i 

- N=2 N'T ON (q)' (3) 

and the normalized single-particle distribution in the 
c.m. system is 

2p 0 d3 a v f ( P T ) -  
O'to t d3p 

with Q = (x/s,0);  
For asymptotic 
behaves as 

s 
( N >  ~ vln 

o f O  - p) 
O ( Q )  ' 

Q2~--S. 
energies the 

(4) 

average multiplicity 

(5) 
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and the inclusive single particle distribution reaches 
its scaling limit 

1 d2o " ~ 
ato t dxdp~ f(Pw)(l - -  x)*-t =- D~(x'PT)' (6) 

where x = 2Po /~ .  The convergence to the scaling 
limit is, however, rather slow. 

For  finite energies (w/-s > 10 GeV), a very accurate 
approximation for the normalized single particle 
spectrum was given by De Groot  [16] 

1 d2a 
O'tot dxdp 2 '~ D o~ (x, PT)" 
�9 (1 -- x)- ,In(z). exp [ -- p2 (1 -- x)- ~/nts)/( p2 )a h (s) ], (7) 

where (p2)A is the asymptotic average p2, i.e. 
GO 

(P2T)A = n ~ f(pT)P3w dPr. (8) 
0 

The quantity fi(s) approaches asymptotically the 
average multiplicity ( N )  and is given in Ref. 16. 
The correction factors in formula (7) show that the 
a v e r a g e  PT at finite energies will reach its asymptotic 
value only slowly. 

In our actual calculations the transverse- 
momentum cutoff for the pions was taken to be 

22 
f (Pr )  = ~- e x p ( -  )~Pr)- 

The model depends only on the two parameters v 
and 2. Their values were fixed by requiring 
( P r )  = 336 MeV and ( N )  = 16.8 at x//~ = 17 GeV: 

2 = 4.5 GeV-  t, v = 4.65. 

The phase-space volumes were then evaluated with 
the Fourier transform method [17] for x//s= 2 . 5 -  
30 GeV and checked against formula (7) in the region 
x/~ > 10 GeV. 

3. Results and Discussion 

Within the framework of QCD, scaling violations of 
fragmentation functions are expressed by the Q2_ 
evolution of their moments [5] 

1 
M.(Q 2) = Sdxx" 1D(x, O2). (9) 

0 
In our model, the fragmentation function is given by 

D(x, Q2)_ 1 da 
O'tot ~XX(X, Q2) .  (10) 

At finite energies, the choice of the scaling variable x 
is not unique�9 Instead of choosing x = 2 p o / ~ ,  one 
might use xp= 2p/x/~s or xll = 2Pll/x/~. We have 
plotted in Figs. 1 and 2 the natural logarithm of the 
first nontrivial moments for the variables x and Xii , 

respectively, and their asymptotic limits, which are 
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Fig. 3. Average transverse momentum of secondaries versus V / ~  
from the UJM, Experimental points are from PLUTO [18] and 
TASSO [7] 
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Fig. 4. ( s in26)E  from the UJM (solid line) and QCD (dashed 
line) with A 2 = .5 GeV 2 and N F varying from 4 to 5. The experi- 
mental points from PLUTO [20] refer to charged particles only 
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Fig. 5. Average thrust, plotted as ( 1 - T )  versus x /Q 2. Plotted 
are the UJM (Eq. (14), solid curve) and QCD predictions [21] 
(dashed curve). Experimental points are from PLUTO [20], 
TASSO [7], and the N a J  detector at DESY [20] 

obtained from Eq. (6). All moments show a substantial 
Qa-dependence between Qa = (2.5 GeV) 2 and 
900 GeV 2. To get an idea about the scale breaking 
predicted by QCD, we show the Qa-evolution of the 
moments of the non-singlet fragmentation function 
[5]. They were fixed at Q2 = (2.5 GeV) 2 to coincide 
with our model. The QCD variation turns out to be of 
the same order as our non-perturbative estimate! 
We convinced ourselves that the inclusion of singlet 
terms does not qualitatively change this situation. 
In view of the very late scaling found for the non- 
perturbative model, it therefore seems very hard to 
test perturbative QCD via moment analyses within 
this Q2 region [6]. 

The slow approach to asymptotia of the UJM 
can be seen as well in the pr-distribution of second- 
aries. Figure 3 shows (Pr)  as a function of x/Q 2. 
We observe that the asymptotic limit 

2 
( P T ) ~  ----~ = 444 MeV (11) 

is by far not reached at ~ 2 =  30 GeV, while the 
region below 10 GeV exhibits clearly the opening of 
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Fig. 6. Comparison of the shape of the (arbitrarily normalized) 
UJM prediction with charged hadron distributions observed 
around 5 GeV. The variable x v is defined by xp = 2 p / @ ,  Data 
as quoted in Ref. 7 

phase-space. In the region between 10 and 30 GeV, 
on the other hand, which corresponds roughly to 
ISR energies (if leading particle effects are subtracted), 
the value of (PT) lies in the range 335 ___ 20 MeV. 
As far as the experimental points [7, 18] in Fig. 3 
are concerned, it should be remembered that the 
observed events at x /Q2< 5 GeV are very close to 
isotropy and that the sphericity minimization 
procedure used to determine (Pr)  experimentally 
tends to underestimate the average Pr. 

A popular quantity [11] to determine the QCD 
jet profile is the energy-weighted mean 

2 ~ 3  f f  1 L_ c.3 P~ a (12) 
(sin 2 c5) E --- x ~  2 ~ ja p pzPo dap �9 

As can be seen in Fig. 4, the non-perturbative model 
dominates the perturbative QCD effects 

24 
( sin 2 6 )E, OCD ~- (33 -- 2Nf)ln Q2/A2 (13) 

with A 2= 0.5 GeV 2. The same conclusion has been 
reached by Steiner [19], who assumed a specific 
form of angular scaling for the energy flow distri- 
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Fig. 7. One  particle spectrum, 1/NdN/dx v from the U J M  at 
17 GeV. Data  points refer to charged particles measured at TASSO 
[7]. x v as in Fig. 6 
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Fig. 8. Transverse distribution, 1/NdN/dp 2, versus p2 r a t x / ~  = 

t7 GeV (- - - )  and 75  GeV ( ). Data  points refer to charged 
secondaries measured at 17 GeV(o) and 7.7 GeV(x) by P L U T O  [20] 

bution. The data points from the PLUTO group [20] 
contained in Fig. 4 refer to charged tracks only. They 
are in reasonable agreement with our curve. 

The chance to observe QCD effects from average 
thrust is even worse (see Fig. 5). To a good approxi- 
mation ( T )  can be easily calculated from inclusive 
observables 

< T> ~ <IPH ]><g) (14) 

The QCD prediction for ( 1 - T)  in Fig. 5 was taken 
from Ref. 21. In contrast to the optimistic expectation 
expressed in this reference, we have no hope that 
measurements of ( T )  will reveal QCD effects 
below 30 GeV. 

So far we have only considered mean values. One 
might think that our trivial two-parameter model is 
too simple to explain the inclusive distributions as 
well and therefore should not be seriously discussed. 

However, as can be seen from Figs. 6, 7 and 8, both 
the xp- and pZ-distributions are in embarrassing 
agreement with experiment. 

4. Conclusions 

We conclude that perturbative QCD and subasympto- 
tic non-perturbative scale breaking effects at present 
storage ring energies are expected to be of the same 
order of magnitude and similar structure. Hence it 
will be difficult to separate them from each other. 
However, the precision of available secondary hadron 
spectra measured from e + e- annihilation is not at all 
sufficient to detect any scaling violation. 

Furthermore, it was demonstrated that QCD 
infrared-safe global quantities like ( 1 -  T)  and 
(sinZ6)E, contrary to earlier hopes [10,11], at 
presently accessible storage ring energies are not 
sensitive enough to extract information about hard 
gluon bremsstrahlung. 
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It is obvious that such non-perturbative scale 
breaking effects of at least similar size are present in 
quark fragmentation from deep inelastic colfisions 
at SPS and FNAL and will substantially affect the 
proposed tests of factorization breaking from next 
to leading order corrections [13]. 

We do not claim that the uncorrelated jet model is 
the ultimate wisdom to understand jet physics but it 
is certainly sensible and legitimate to use it in order 
to sharpen ones eyes for the dynamics of non- 
perturbative jet development. A prejudice for cascade 
models with precocious scaling on the other hand 
might be very misleading. 

The hope remains that more detailed and more 
accurate data will provide us with unambiguous 
signals in favour of QCD. 
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