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Abstract. A covariant generalization of the one- 
dimensional cascade model for quark fragmentation 
functions is presented, so as to include the transverse 
momentum behaviour and the possibility to produce 
different particles at different vertices along the 
chain. In the scaling limit the exact solution is given, 
if the primordial function is of the type az ~- 1. T(Pr). 
For the more general case of factorizing primordial 
functions an analytic expression for the seagull 
effect is derived, which turns out to be independent 
of the function T (Pr). 

1. Introduction 

The existence of jets of hadrons in e + e- reactions 
gets more and more convincing experimental support 
[1]. 
Preliminary measurements in the energy region of 
8-9.4 GeV at DESY indeed show that many of 
the events have a clear two-jet structure [2]. It is 
commonly believed that these jets are of the same 
type as those observed in other high energy processes 
initiated either by leptons or hadrons and furthermore 
that these jets are produced by the decay or breakup of 
quarks. 
The emission of mesons from the quark is assumed 
to proceed stepwise in fundamental subprocesses 
of the type quark ~ meson + quark. Such cascade 
models are usually described in terms of integral 
equations in the variable z, the momentum fraction 
of the initial quark, for the multiplicity, the quark 

h fragmentation functions Dq(z), double decay distri- 
butions etc. Explicit solutions of these equations 
for primordial functions (input vertex functions 
for the fundamental subprocess) of the power type 
or constant + power type have been given by the 
authors of [-3-6]. They also nicely demonstrate 
the development of a plateau connected with the 
1/z dependence near z = 0 of the fragmentation 

functions for all vertex functions. Other problems 
such as the various conservation laws or the inclusion 
of baryons in such models have also been studied 
in [7-9]. 
However, the important question of the transverse 
momentum of particles produced in a quark jet 
has up to now been either ignored or it was treated 
in an unsatisfactory way. Field and Feynman [5] 
allowed in their Monte Carlo calculation for a 
transverse momentum of the quark decay products, 
but this was not done in the framework of a three 
dimensional cascade model ~, with the consequence 
that there was no seagull effect for the directly 
produced particles. Only the introduction of decaying 
resonances (in [5] vectormesons) led to a dependence 
on z of the average transverse momentum of the 
pseudoscalar mesons. 
The plan of our paper is as follows. Section 2 contains 
the details of a generalized covariant cascade model 
for quark fragmentation functions of mesons and 
any number of quark flavours. In section 3 we consider 
the scaling limit of the model and give the solution 
for primordial functions of the type az ~- 1. T(PT). 
For all factorizing primordial functions we derive 
an analytic expression for the seagull effect. Numerical 
examples of the transverse momentum implications 
for different models are calculated in section 4, 
which is followed by a summary and conclusions. 

2. The Generalized Cascade Model 

In the treatment of N different quark flavours we 
shall follow partly the work of Sukhatme [6]. Consider 
the fundamental subprocess 

q~(p) --* M~] (k) + qj(p'), (1) 

i Models of that type have been formulated in a somewhat different 
physical context in [10, 11]. 
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where the indices denote the favours, p and p' the 
quark four momenta, k the meson four momentum 
and M~] is the meson built from q~j. Of course 
we have 

p = p ' +  k. (2) 

Neglecting the spins, the. (ijMi;)-vertex.j . is described 
fully by the so called prlmordml function Fij(p,p) 2. 
Let us assume for simplicity that 

Fij(P, p') = P~jF(p, p'), (3) 

where P~j is the total probability of obtaining an 
(ijMij)-vertex in a breakup of a quark of flavour i. 
Therefore we must have 

N 

nij = 1. (4) 
j = l  

In addition Sukhatme assumes that the N • N pro- 
bability matrix P is symmetric, which we think is 
reasonable, but it is not necessary for the following 
considerations. The primordial function is normalized 
such that 

f atp' Po F (p, p') = Po, (5) 

where ctp'=dap'/p'o . From this normalization it 
is clear that the invariant probability density is 
p'oF/p o. Working with F simplifes the following 

G(n) , equations for the meson distributions. Let ~3 (p, p) 
denote the inclusive distribution for a quark qj of four 
momentum p' which originates from the n'th vertex 
of a cascade which started with a quark q~ of four 
momentum p, then 

G(n) , _ i 3 (P ,P ) - [ . dP l " "dPn-1  Z FiK~(P, Pl) 
K1 , . . . , K n  - i 

�9 FK~r2 ( P l ,  P 2 ) . - .  F K . -  ,j  (t)n- 1 ,  P) (6) 

=(Pn)i j~dpl . . .dpn_aF(p,  p l ) . . .F(pn_l ,p ' )  (7) 

and Gly )(p, p') can be written as 

GI'] ) (P, P') = (P")i# G~"} (t 9, P'), (8) 

with 

G~~ p')  = ~(p  - p ' )  = po 3 ~ ( p  - p ' ) ,  (9) 

G(~)(p,p ') = F(p,p'). (10) 

Obviously G(")(p, p') obeys the recursive relations 

G(n)(p,p ') = ~ctp" G (n- 1)(p,p")F(p",p'), (11) 

G(n)(p,p,) = [dp,,F(p,p,,)G~n - llfp,,,p,). (12) 

The total inclusive quark distribution is given by 

Gi3(p,p') = ~ (Pn)ijG(n)(p,p'). (13) 
n = 0  

As p'G/p o is the invariant quantity due to Eq. (5) 

2 Throughout the paper we shall denote the four momentum 
dependent functions with capital letters, the Fourier transformed 
and/or one dimensional quantities with small letters. 
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we have 

Gij(p, p,) _ Po d3 a (14) 
a d3p ' 

Suppose the probability matrix can be diagonalized, 
which is true for real symmetric matrices and also 
for the kind of matrix Field and Feynman [5] use, 
since their matrix is a projection operator, then 
we can write 

p = B P D B -  1, (15) 

where Po is the diagonal matrix, containing in its 
main diagonal the eigenvalues ~ of P. 
As a consequence Eq. (13) can be written as 

N 

Gij(p,p' ) = 3ij~(p - p') + ~ BimBmjl ).m G~m(p,p'), 
,,= 1 (16)  

with the generating function 

G~(p,p') = ~ 2n-lG(n)(p,p'), (17) 
n = l  

which implies 

1 0 "-1 GZ(p,p,) ~ 
G(")(P'P')=(n 1)~ ~)~,-1 =o" (18) 

Multiplying Eqs. (11) and (12) by 2n-1 and summing 
leads to the equivalent equations 

GZ(p,p ') = F(p,p') + 2[dp"Ga(p,p")F(p",p'),  (19) 

G~(p,p ') = F(p,p') + 2Sdp"F(p,p")G'~(p",p'). (20) 

It is now easy to derive from the quark distribution 
at the (n -1 ) th  vertex the inclusive distribution 
D(")zj; t w, (" .~Jt'~ for mesons Mi)(k ) coming from the n'th 
vertex of a chain, which was started by a quark q~ (p) 

, (n- 1) , , , -ij;l)(')z (p,k) = [dp G u (p,p)Fij(p,  p - k), (21) 

or 

D(nl tn k'~ n-  i j ,zw, , =  P,~(P 1)uD~nl(P,k), (22) 

with D ~ (p, k) =- (. dip' G ~-  1) (p, p,) F (p', p' - k). 
In the same manner as we did in the case of the 
quark distributions we arrive now at the total inclu- 
sive meson distribution 

D~,~(p,k)=P~j ~ B~mB~,~lD~(p,k) - p ~  d3a (23) 
m=t O" d3k ' 

where 

DZ(p, k) = ~ 2 n- 1D(n)(p, k). (24) 
n = l  

F o r  this generating function one finds 

DX(p,k) = F(p,p - k) + 2 ~ dp' GZ(p,p')F(p',p ' - k). 
(25) 

There exists also an integral equation for D ~ 

DZ(p,k) = F(p,p - k) + 2~dp'F(p,p')D~(p ', k), (26) 
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however, because of the greater symmetry of Eqs. (19) 
and (20) [G ~ is the resolvant kernel of Eqs. (19) and 
(26)] it is more convenient to solve these and use 
then Eq. (25) to calculate D z. 

3. The Scaling Limit 

In going over to the scaling limit we neglect all 
masses and consider the momenta transverse to 
some given direction (which we take at the end to be 
the direction of three momentum of the cascade 
initiating quark) to be small compared to the energies 
of the corresponding particles. We then assume that 

F(p,p') =- F ;PT - Pr O(Po - fro). (27) 

With 
, . , d z ~ 2  , 

z = Po/Po ,alp = T-a  pr (28) 

Eq. (5) becomes 

~dzdZprF(z;pr) = l. (29) 

In fact, the choice, Eq. (27), of the transverse momen- 
tum dependence of F guarantees the conservation 
of transverse momentum as well: 

~ d 2 p r p ' r F ( z  ;P~ - prz) 

d Z 2 - t~ 
= J T  d Pr(Pr + Prz)F(z;P~) 

2 t t  . t t  = ~dzd Prr(Z,pr)pT = Pr, (30) 

where we have used Eq. (29) and F(z ;pr) = F(z; - Pr), 
which any reasonable primordial function should 
fulfill. In the same manner longitudinal momentum 
is conserved up to some higher corrections in Pr/P'o. 
The form, Eq. (27), of F in the scaling limit means, 
that the transverse momentum is taken with respect 
to the preceding momentum p and not the original 
longitudinal direction (up to higher corrections in 
Pr/Po). This can be seen in Figure 1. It is often pre- 
sumed that introducing Pr in a cascade model would 
lead to a random walk variation in the final (p2 r )  of 
the mesons ( ~  ( n ) ) .  This is not true in our case, 
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but would have been if we e.g. had chosen p ~ -  Pr 
instead of p ~ -  zpr in Eq. (27). Another reason for 
choosing this variable is that the invariant 

1 
(p  _ p,)2 = _ _ ( p ~  _ ZpT)2 in the scaling limit (masses 
neglected), z 
With Eq. (27) G ;~ and D x turn out to be of the same 
form 

@Po ._, Po~ 
P') = . p o '  - p 0 ) '  

(31) 

D~(p'P') = D~{P~ ;p'r - Pr P~oP~ (32) 

Defining the Fourier transforms 

f (z, p) = i d 2 p r  e ip~'~ F(z ;PT)' 
g~(z, p) = ~. d2pre ipr'p G~(Z;pT), 
dX(z, P) = [ d2preiP~'p Da(Z;pT), 

one obtains from eqs. (19), (20), (25) and (26) 

g~(z ,p) - - - f ( z ,p )+2!~-g  ~,~p f ,p , 

(33) 

(34) 

~d( / ~ z  \ J z  ) 

�9 f ( 1 - ~ , - p ) ,  (36) 

d~'(z,p) =f(1  - z, - p) + 2 dZ(~,p)f , ~p . 

(37) 

For p = 0 the last four equations reduce to those 
for the one dimensional case, since the point p = 0 
corresponds to integration over PT" Equation (37) 
for 2 = 1 is then the usually treated cascade equation. 
Of course, Eqs. (34) and (35) are equivalent and 
among eqs. (35), (36) and (37) only two are indepen- 
dent. The one dimensional equations are of course 
also obtained, when we assume that the primordial 
function F(z;pr ) is proportional to 6(pr). 

LONGITUDINAL DIRECTI ON 

Fig. 1. Illustration of the argument of 
the scaling limit primordial function, 
Equation (27) 
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3.1. The One Dimensional Case 

For the following it is of interest to examine the 
one dimensional equations3 

gZ(z) = f ( z )  + 2 gZ(Of(z/~), (38) 
g 

1 ( z )  (39) dZ(z)=f(1 - z )+  ~ ~ 

dZ(z) = f ( 1  - z) + 2 dh(Of(z/r (40) 
z 

in more detail. Some of the results have been obtained 
for 2 = 1 already by other authors [3-6] .  
The general solution of Eq. (38) can most easily 
be obtained by taking either the Mellin transform 
of Eq. (38) or by defining 

x =  - l n z ,  (41) 

f (x)  = f  (z), 
Oh(x) = gZ(z) (42) 

and Laplace transforming Eq. (381, resulting in 
the solution 

Ok(x) = L-1 (1 Z~(f)}'L(f) ~ (43t 

where L and L- ~ denote the Laplace and inverse 
Laplace transforms, respectively. Having found gX 
in this way, d h is immediately obtained by insertion 
of 9a into Eq. (39). That this method to calculate 
d x is easier is clear from the fact, that if one tries 
to solve Eq. (40) via Laplace or Mellin transforms 
one also needs to know the transform off(1  - z). 
Defining the moments 

1 

h, = ~ d z z ~ h (z), (44) 
0 

1 

h~ = ~dzYh(1 - z), 
0 

one finds, multiplying (38) and (39) by z ~ and integrat- 
ing 

z f ,  (45) 

d~= f~- =k=0 (46) 

Since f(z)  is the probability that the quark q' has 
the fraction of momentum z of the quark q we have 
f (z) > 0 and of course from Eq. (29) 
1 

~dzf(z) = l,  (47) 
0 

3 If unambiguous,  we use the abbreviation d(z)  = d(z,  p = 0), etc. 
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which implies 

f~ Xfo = 1 for 7 X 0. (48) 

The first two moments are then 

1 . ~ l - f 1  
d~ = ]  _ 2'd~ - i Z ~ - f .  (49) 

For power behaved primordial functions 

f (z) = otz ~- ~ (50) 

we have 
F(e + 1)r(7 + 1) 

r ( . + 7 + l )  ' (511 

h _ ~ (52) 
g7 ~ ( 1 - 2 ) + ? '  

d~ = F(e  + 1)F(7 + 1) 1 (53) 
F(~ § 7) ~(1 - A) + 7" 

The complete solution in the power case is, as one 
can easily check 

Oh(Z) = ~z(~ -~)~- 1, (54) 

and so 
~n 

g(")(z) = ( n "  1)! ( - In z)"- ~ z ~- t (55) 

The meson distribution is then found by inserting 
gX (z) into Eq. (39) 

1 

d (z) = - - 
~t> l  z 

d~(z) = z -~. (56) 
c t = l  

For 2 = 1 this gives the well-known result 

d l ( Z )  ~--- ~ ( 1  - -  Z) a - 1  (57) 

We have also determined the solutions for the more 
general case of a primordial function consisting 
of a sum of two powers. The results are given in the 
appendix. 
Sukhatme [6] emphasized the importance of the 
behaviour of d ~") (z) for z ~ 1 because this determines 
near z =  1 the ratio of fragmentation functions 
for mesons, which can be produced in the first 
breakup and those which cannot (ratio of favoured 
to unfavoured decays). One can prove that 

g(")(z) /(1)" i i _ z ) , _ l ,  
( , -  1 ) ! '  

tO)  
d(")(z) ~ F ( b ~ n - -  1) f (1)"-  1 (1 -- z)"- i f (1  - z), 

(58) 

where 6 is taken from the behaviour of f(z)  near 
z = 0  

f (z) ~ z ~ 1 ln" z, (59) 
z-~O 
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which any physically reasonable primordial function 
will fulfill. So indeed, in cascade models, one will 
always have an additional factor ( 1 - z )  for the 
distributions of mesons coming from successive 
vertices. 

3.2. Primordial Functions of the Type az ~- 1. T(PT ) 

There is one case, fortunately a useful one, where 
we can solve Eqs. (34-37) exactly, that is when the 
primordial function is of the type 

f ( z  ;PT) ---- ~z~- 1 r(PT), (60) 

with, by Eq. (29) 

JdZPT T(PT) = 1. (61) 

The ansatz Eq. (60) is the straightforward three 
dimensional generalization of the one dimensional 
case Eq. (50). Denoting as before the Fourier transform 

t (p) = ~ d 2 PT eip~ ~  (PT) ; t (0) = 1, (62) 

one obtains from Eq. (34) 

g~(z,p) = ~z~- i t(p) expI ~2 ! ~-  t(p~) l .  (63) 

Inserting this into Eq. (36) gives 

d x (z, p) 

�9 e x p I ~ 2 i d ~ t ( z p ) ] ~ ,  (64) 
L r ,t V! / J 3  

1 
1 ) t ( -  - z)  

d.~(z ,p) -_J .exp[a2i~t (~O)  1 i f ~ > l  (65, 

[ l d ~  . 
t ( - p ) e x p  2j~- t (~0)  ~fc~= 

Observe, that for 0 = 0, we obtain the one dimen- 
sional solution, Eq. (56), as we should. 
To obtain Da(z;pr) we transform back; e > l ,  
t(p) = t( - 0) = t(p) assumed, leads to 

OX(z;Pr) = 2 ~  ~ dppJ~ (66) 
0 

3.3. Factorizin9 Primordial Functions and the Seagull 
Effect 

Consider the more general case of a factorizing 
primordial function 

r(z  ;PT) = f ( z )  T(PT) (67) 

with the normalizations (47) and (61). As this is the 
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general case of physical interest, we would like at 
least to have a good approximation of D2(z;pr) 
in this case. To this end we insert F from Eq. (67) 
in Eq. (34) and (37) and eliminate f (z)  from these 
equations, resulting into 

d~(z ,  0 )  = t (  - v ) d ~ ( z ,  O) 

+ 2 ! ~ [ t ( { 0 ) - 1 ] d * ( z , p ) g Z ( { , O ) ,  (68) 

which for small p evidently reads (as t(O)= 1): 

d ~(z, 0) = t( - v) d*(z, 0) 
p--*O 

+ 2 ! ~ - [ t ( ~ P ) -  1]dZ(z,0)g ~ ,0 . (69) 

So we see, that for small p we can express dZ(z,p) 
in terms of the solution at p = 0, which is given by 
the one dimensional equations. 
Being only interested in functions T(Pw) with the 
properties 

2 2 (70) T(Pr) = T(Pr);0 < jd pTPrT(Pw) = p~ < OO 

we can assume that 

t(p) = t(p) = 1 - p2p2 /4. (71) 
p~O 

Inserting the last equation into Eq. (69) we obtain 
for the ratio of the variances in Pr of DZ(z;pr) and 
F (z ;Pr) 

r*(z) _- <__P~ )~ 1 + ~ =  

i.e. we observe the seagull effect (z dependence of 
(p~)~) and its independence of the form of T(pr). 
This z dependence can be calculated exactly from 
Eq. (72) by solving the one dimensional equations. 
One can easily check that 

rZ(1) = 1, (73) 

and 

r zl (1) = - ,~f (1)/6, (74) 

where 6 is defined by Eq. (59). 
As an example, we give the result for primordial 
functions of the type (60) 

1 
~.  ! dx(1 - x)=- 2 x ~{z- 1)(x2 - z 2) 

rZ(z)=l+ 2 1 ;~>=1, 
jdx(1  - x ) ~ -  2 x ~ -  l~ 
z 

(75) 
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which for integer e leads to 

? ( z )  = 

- ~2 (0~- -  2 )  ( - 1 )  ~ - 

K=0\ K ~ 2 -  1 ) + K + 3  
z ~ -  a)+~+3) c~2"(1- _ z 2  . 

 ot, ) ~ ( 2 -  1 ) + K +  1 

�9 (1 - z  ~(~- 1~+~:+ 1) 

for ~ = 2, 3.. .  (76) 

1 +~(1  - z2); for e =  1 

1 - z" 
with the understanding - -  ~ - In z. For 2 < 0 

g e-~O 

( > 0)rX(z) is a concave (convex) curve in z. To obtain 
a good approximation for DZ(z;pr) in the more 
general case of a factorizing primordial function 
we now simply change the width of the transverse 
part T(Pr) to the required width given by Eq. (72) 

rX(z ) (77) 

In doing this we are sure that D~(z;pr) has the right 
width in Pr and is exact when integrated over Pr- 
We shall test this approximation for two examples of 
T(Pr) in the next section. 

4. Nume r i c a l  E x a m p l e s  

The most commonly used transverse momentum 
dependences are gaussian and exponential 

exp( -__  P2 /~r) , (78) 
T~(PT) = rcp~ 

T~(Pr) = 3 exp( - P r ~ ) _ _  , (79) 

implying 

t G (p) = exp ( - p2 p2/4), (80) 

tE(p) = (1 + p2p2/6)-3/2. (81) 

Following Field and Feynman [5] we have chosen 

f (z) = 3 z 2, (82) 

i.e. ct--3, for the z dependence of the primordial 
function. Equations (65) and (66) have then been 
evaluated for several 2(2 = 1, - 1/3, 2/5) and p2 = 0.25. 
In Figure 2(3) we show the comparison of these 
calculations with the results of the approximation 
formula, Eq. (77), for 2 = 1; z = 0.25, 0.5, 0.75 and 
gaussian (exponential) T-functions. The 2-values - 1/3 
and 2/5 lead to curves, which cannot be distinguished 
from their corresponding approximations. 
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10 -2 

Z=l 
logD (z j~ T ) 

o \ , ,  ,0 . .>.  \ .  
\ \ 

-1 
10 \ \ \ \ \ "  

\ \ 

10_ 3 \ 0.75 
p.r[o~v ] 

0.0 015 1:0 1.~5 ' 

0.25 

0.50 

Fig. 2. Logar i thm ofD ~ = 1 (z ;Pr) as a function ofPr  ; the primordial 
function was 3z 2" T~(pr). The solid lines are the exact results, the 
broken lines the approximation (77), the numbers  indicate the 

z-values, p~ = 0.25 

In Figure 4 we present the seagull functions for 
these values of 2, as taken from Eq. (76). At first 
sight the effect does not seem to be very important, 
however, the combination of different 2-values in 
special models can enhance the effect considerably. 
To show this, we have considered the models proposed 
by Niedermayer [3] and Sukhatme [6]. 
Niedermayer takes only the u and d flavours; his 
probability matrix is 

(1 /3  2 /3)  
PN = \2 /3  1/3J (83) 

with eigenvalues 2~ = 1, 22 = - 1/3, from which we 
calculate [using Eq. (23)] 

D~ -+ ---3!( Da= 1 + D a = - 1/3). (84) 

In Sukhatme's model the s flavour is also included; 
the probability matrix is 

(i i) Ps-3- 1 2 (85) 
1 
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I N..tog D~"-' I(z, ~ )  

k 

,0 ~ 

14 

101 

0.25 

0.50 

0.75 

10-a[ , p+ [GeV], 

0 .0  015 1.0 1.5 

Fig. 3. Logarithm of D Z = l ( z ; p r )  as a function of Pr; the pri- 
mordial function was 3z2'T~(Pr). The notation is the same as 
in Figure 2 
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and has the eigenvalues 21 = 1, 2~ = 0, 2 3 = 2/5. 
Taking only the directly produced rc ~ into account, 
i.e. no t/, 1/' decay, we find 

D~-+ l l l (2DZ= 1 + 3DZ=O + D9~=2/5). (86) 
u - - 1 5  

The average p~ belonging to any combination of 
DZi 

D = ~ fl, D ~' (87) 
i 

is given by 

< > = ' (88) , 

i 

thus the total (p2> is the averaged (p~)~ '  with 
weights fiidZ'(z). From formula (88) and the weights 
given according to Eqs. (84) and (86) we calculated 
ru-(z ) [as before with the ansatz (82)]. The result 
is shown in Figure 5. We observe, that the two models 
show a similar behaviour. In both cases the produc- 
tion of the unfavoured meson (7:-) exhibits a strong 
seagull effect. At z = 1 the ratio r~- even reaches 
the value 2. In fact, it can be shown (Appendix), 
that for factorizing primordial functions all unfavou- 
red decays will lead to 

unfavoured rq (z = 1) = 2. (89) 

Thus the seagull effect will be an important pheno- 
menon in all these models. 

We are indebted to R. Baier and J. Cleymans for helpful discussions. 

1.5 
rJ'{z) 

1.0 - - -  

0.5 

0 .0  ~ J 
0.0 0 .I 

2,5  
- 1 / 3  

:2 I I ; i 
0 0.3 0.l, O. 0.6 

Z 

0.7 0 8 0.9 1.0 

Fig. 4. Ratio r z(z) = ( p 2  r ) ~(z)/pzr for i = 1, 2/5 and 
- 1 / 3 , f ( z )  = 3z  z ; the numbers indicate the 2-values 
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r u (z) 

I I I 
o., o.2 o; o.4 o; o; 017 o18 

Z 

019 
_1 Fig. 5. Ratio r, (z) calculated for the models [3] 
1.0 (solid lines) and [6] (broken lines) 

5. Summary and Conclusions 

We presented a covariant generalization of the one 
dimensional cascade model for quark fragmentation 
into a jet of mesons. By introducing generating 
functions we were able to treat any number of quark 
flavours. In the scaling limit, the full solution for 
primordial functions of the type ~ z ~ - l T ( p r )  was 
found. For all factorizing primordial functions it 
was shown that there is a seagull effect and we derived 
an expression, from which it can be calculated, 
once the one dimensional solution is known. It 
turned out, that the seagull is independent of the 
form of the transverse momentum part of the factori- 
zing primordial function. At z = 1 the ratio ( p ~ ) / p ~  
is 2 for unfavoured and 1 for favoured decays of any 
quark, independent of the probability matrix used. 
For  the soluable model we demonstrated how well 
our approximation for D~(z;pr) works and we 
believe the approximation will do as well for more 
complicated longitudinal factors in the primordial 
function. Therefore, we propose the following recipe 
to include transverse momentum into one dimen- 
sional models: 
i) determine the eigenvalues and eigenvectors of 
your probability matrix; 
ii) solve the one dimensional equation (38) for 9~(z); 
iii) calculate d~(z),r~(z) from (39) and (72); 
iv) take the approximation (77) and compose all 
quark functions from Eq. (23); 
v) if you have decaying mesons, fold their D's with 
the decay distribution and add the result to the 
corresponding D's from direct production. 

Appendix 

A. The  Two  Power Case 

f ( z )  = cq Pl z~'- 1 + ~2~2z~ - 1, with/~1 +/32 = 1. 
(A.1) 

By applying the method described in the text one 
readily finds 

9Z(z) = A + zV . - 1 + A - z  v-  - 1, (A.2) 

where V+ are the roots of 

V 2 - v [ ~ l  + c~2 - , ~ ( ~ 1 / ~  + c~2/~2)] + (1 - ,~)cq ~2 = 0 

(A.3) 

and 

A + = - 0~10~ 2 + (0(1/~ 1 + g2 /~2 )  V +  
V + _ V_ ~ (A.4) 

To obtain d~(z) we now insert 9~(z) into Eq. (39) 
and partially integrate (only valid if cq > 1), giving 

i 

a~(z ) = ,tA + cq ~ (~1 - 1)Sd~(~ - z ) " - 2  U + - "  

1 
2A+ (Xzfi2 (12 - -  1)~d~(~ - z)~2-2 ~ v+-'2 

-~ ~2  - -  V +  z 
1 

2A-  cq/? i (~1 - 1)~d~(~ - z ) " - 2 ~  v-  -~' 
-~ c q - V  = 

1 
2A-  ~2fl2 (c~ 2 - 1)Id~(~ - z ) ~ - 2 ~  v - - ' ~  (A.5) 

4 ~ 2 _ V  - 

This formula can also be used, if one of the ~'s is 
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equal to 1, as 
1 

lira (a - 1)Sd~(~ - z y - 2 q ( 0  = q(z). (a.6) 
~ 1  z 

For integer e's the integrals in (A.5) are all elementary. 

B. (p2 ) for z = 1 in the Favoured and Unfavoured 
Case 

By Eq. (88) 

~,fiid~'(z)r~'(z) 
( p 2 )  = pr2 ~ where (B.1) 

fl, d*'(z)  ' 
i 

fli :P 0 in favoured case 

fli = 0 in unfavoured case. 
i 

So we need the behaviour of d ~' and r ~' for z 1" 1. From 
Eq. (38) we see that 

g~(1) = f ( 1 )  (B.2) 

and so by Eq. (39) 
1 

dZ(z) = f ( l  - z) + 2 f (1) ~ d~ f  (1 - ~). (B.3) 
ztl  z 

Inserting this into Eq. (72) one obtains r~(z) for zi" 1 
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1 

~d( f (1  - ~) da(z ) (B.4) 
r~(z)~ 11 + 2f(1)  z f (1  - z) - f ( 1  - z)" 

So Eq. (B.1) now reads for zl" 1 

( p 2 ) - ~ E f l i { r 2 ' ( g ) )  2 = ~2P-~ ifZfl i  = 0 
 ifE  #o. 

(B.5) 
So we see that 

~2  p2 in the unfavoured case 
(p2)(z = 1) = ( ~  in the favoured case. (B.6) 
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Note Added in Proof. The following comment to Eq. (2) is appro- 
priate. 
We take all quarks to be on mass-shell with equal masses. As a 
consequence the mesons are off-shell, which, however, is no 
problem in the scaling limit, where masses are neglected. A possible 
interpretation is that (analogous to Bremsstrahlung) the exchange 
of a soft quantum with the (confining) field brings the meson 
on-shell. 


