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A brief and transparent way to introduce Bose statistics into the statistical bootstrap of Hagedorn and
Frautschi is presented. The resulting bootstrap equation is solved by a cluster expansion for the grand
canonical partition function. The shift of the ultimate temperature due to Bose statistics is determined
through an iteration process. We discuss two-particle spectra of the decaying fireball (with given mass) as

obtained from its grand microcanonical level density.

I. INTRODUCTION

The statistical description of multiparticle pro-
duction in hadron-hadron collisions has a long
history, starting with Fermi’s proposal® to view
the secondaries as an ideal gas of stable hadrons
in a volume characterized by the Compton wave-
length of a pion. Hagedorn introduced interaction
into this picture by considering an ideal gas com-
posed of fireballs.? He determined the fireball
spectrum by a bootstrap condition that requires
the level density of states of this fireball gas to be
asymptotically equal to the input fireball spectrum.
Frautschi® proposed a bootstrap equation for this
spectrum in terms of phase-space integrals. An
elegant solution (by Laplace-transformation meth-
ods) of the Frautschi statistical-bootstrap equation
was given by Yellin.* While Hagedorn approxi-
mated the grand canonical partition function by the
corresponding Boltzmann-statistics expression,
Frautschi used Boltzmann statistics from the very
beginning. The bootstrap equation becomes much
more complex when quantum statistics is included.
The main predictions of the model, however, i.e.,
the existence of an ultimate temperature and the
exponential increase of the fireball mass spectrum
remain unaltered, as has been discussed in Refs.
5 and 6. Because of its complexity the quantum-
statistical bootstrap had not been treated in detail
in the literature until Chaichian, Hagedorn, and
Hayashi’ stressed the importance of quantum sta-
tistics in particle-physics applications of the ideal
gas. This motivated the present investigation on
the bootstrap equation for identical bosons.

In Sec. II of this paper we present a very trans-
parent way of obtaining the quantum-statistical
bootstrap equation, that shows explicitly the under-
lying physical assumptions. Furthermore, we dis-
cuss the role of fugacity, which is somewhat ob-
scure within the previous Boltzmann-statistics
bootstrap. In Sec. III we describe in detail the so-
lution of the bootstrap equation in the form of a
cluster expansion, as indicated briefly in a pre-
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vious letter.® In particular, we construct and eval-
uate a monotonic sequence that converges to the
ultimate temperature.

Section IV contains some applications on two-
particle distributions which show rather pro-
nounced quantum-statistics effects. The size of
Bose effects on the one-particle spectrum was
found previously to be fairly small.®

1. DERIVATION OF THE BOOTSTRAP EQUATION

Since the physics behind the quantum-statistical
bootstrap equation has never been expounded, we
start in this section with an introduction to the
bootstrap equation with Bose statistics, as it was
suggested in the literature.>® The easiest access
is in terms of the grand canonical partition function
Z,(ﬂ,z) that depends on the inverse temperature.
For an ideal Bose gas of pions with mass m, one
finds in standard textbooks

Z,(B,z)=exp I:—Z ln(l—ze"“f’g)] -1, (1)
o
i
where a; denotes the discrete one-particle states
of the system with energy €qpr and z is the fuga-
city. The exponential and the logarithm can be
expanded

2= (L T Eena) . @

Introducing the discrete Laplace transform ¢ of the
one-particle density of states

tB,m, z) = 2 e Peey (3)
(2) reads
Z4(B,2) = expl:h > —————t(kﬁ’;n’zk)] -1
t(k k
g ( Bk z*)
1 [ HRB,m, 287"
D0 @
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We may interpret this equation by observing that
the partition function Z, that describes the total
system is built up by a one-pion term, #(8,m,z),
together with its Bose corrections,

2 w=a[t(kB,m, 2*) /], plus the more-particle con-
tributions with »=> 2 and their Bose corrections.
With the usual box (of volume V) quantization and
continuous counting of states

T e a= () [ eml-stotemy "]
®)

it can easily be seen that the Bose corrections in
Eq. (4) amount to clusters of % pions, k=2, that
we call & clusters,

1]
Hkp,m, 2= B f d*Qexp(-8,@95(Q* - (km)?)

(6)

with B=(V/h%%°, 8, =(8,0).

At this stage we introduce interaction by assum-
ing the system (=fireball) to be an ideal gas, this
time not of pions, but of fireballs. This is achieved
by substituting the “pion” function ¢ by the “fire-
ball” function Z consistently in all multipion terms
on the right-hand side of Eq. (4). Thus the one-
pion term is the only one remaining unchanged.
The physical picture behind this procedure is to
allow for interaction wherever it is expected. In
particular, we expect interaction within a % clus-
ter; at this point we differ from Hagedorn.® As a
result we obtain the bootstrap equation

2Z(B,z)=t(B,m, z) +exp[z Zﬁ%—z.)]— 1.

-

) ©

BT(Q2,2)=Z: 3 h(ny,...,n)B2"QQ%m,..
=1 ny,. '"k=°

in terms of Lorentz-invariant phase-space volumes
Q' for I clusters, !=)}}_,n,, containing a total of

n pions. (In the argument of ’, there are », vari-
ables equal tom,...,n, equal to km.)

In macroscopic thermodynamics, the fugacity 2
is chosen to reproduce a given average particle
number and is thus freely adjustable within a cer-
tain range. On the other hand the number of pro-
duced particles in elementary-particle collisions
is determined by dynamics. For a given volume,
a statistical description of such processes must
necessarily lead to a specific value of the fugacity
which in this instance should be interpreted as a
coupling constant of a pion to its parent fireball.
Therefore the fireball system is not fully deter-
mined by its volume. The Boltzmann version of
the bootstrap, however, depends only on the pro-

As we shall show in Sec. III, the solution is given
in terms of a cluster expansion

Z(B’Z)= Z H’_,-i

oy Np=0

3
X Ilt":(B,jm,z =1),
(8)

h(ny, ..., n,)2"

where

n=2;jn, .

From Eq. (6), one recognizes that ¢(g8,jm,z=1) is
Btimes the Laplace transform of a single-particle
phase space, with particle mass jm. The coef-
ficient i(n,,...,n,) therefore refers to a configura-
tion of clusters, where forj=1,..., &k, there are
n,j clusters containing j pions each. Thus, % is
the total number of pions in the configuration
R

An equivalent, but much less transparent intro-
duction of the bootstrap can be given in its grand
microcanonical formulation in terms of an equa-
tion for the fireball level density 7(Q? z), where
Q is the fireball four-momentum. Since the level
density is the inverse Laplace transform of Z(8,z),

2(p,2)=B [ d°Qexp(-6,Q*)7(Q", 2)6(Q) , ()
this grand microcanonical bootstrap equation can
immediately be obtained from Eq. (7). Its solution

is then directly related to the grand canonical so-
lution Eq. (8). Thus we find

My kmy .. k) (10)

duct B’= Bxz, because /=n in Eq. (10), leaving us
essentially with one parameter. In the Bose case
the cluster contributions lead to a genuine depen-
dence on the two parameters B and z. Therefore
it is possible in principle to determine the fire-
ball volume from experimental distributions.

III. SOLUTION OF THE BOOTSTRAP

The bootstrap equation (7) can be solved on the
basis of the Boltzmann bootstrap

2y (8,2) =t(B,m,z) +exp[Y (B,2)] - 1. (11)

The solution to Eq. (11) is given by the Yellin ex-
pansion in the driving term #(8,m, 2):

Y(8,2)= Zg,t‘(ﬁ,m,Z)EZy[t(B,m,Z)] , (12
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where the g; are determined by

1
-1, +=--———<z -2$;k )
&1 8r+1 I+1 &1 > ErE1+1-2

(13)

The Bose bootstrap equation (7) can be slightly re-
written as

Zz —’-—Z(ki 2. t(Bym,z) +2 Z -———l—z(ki z)

. Z ZIT[Z: Z(kzzz'ﬁ]" . (14)

Equation (13) has the same structure as Eq. (11).
Therefore, the function };_,[Z(kB,2*)/k] can be
written as a Yellin expansion as well, with a modi-
fied driving term

5B 2 [, v 3 Z8220)
= k=2

(15)
With the abbreviation
= Z(kB, 2*
R(B,2)= —(—,fL-—) , (16)
k=2

Eq. (15) becomes

Z(B,2)=Zy[t(B,m,z) +2R(B,2)] - R(B,2) .  (17)

Combining Eqs. (16), (17), and (12) one can con-
struct an iteration process by defining a sequence
Z™ through

Z™M(p,z)= Zg;[t(ﬁ,m,ZHZR“’"’(B,Z)]'
_R(N-l)(ﬁyz) (18)

and

(N)
"= LB RO z=0.

(19)

The convergence of the sequence Z (" to the solu-
tion of Eq. (7) has been proved in Ref. 6. In the
following we shall show that the solution can be
written as an expansion of the form

o0

Z(B,2)= i; Z Rng,...,n,)

ny, """k=°
x “ t"i(iB,m,z")  (20)
=1

,n,,)r_Ii o, (21)

The expansion Eq. (20) is indeed the cluster ex-
pansion of Sec. II, as is seen from the identity

with coefficients

Ry, ..., m)=hng,...

1iB,m, 2*) = 5—2- t(B,im,z=1) . (22)

As they stand, Eqgs. (18) and (19) are not particu-
larly useful for a recursive calculation of the coef-
ficients. However, we make the important ob-
servation that the Nth iteration step leaves the
coefficients belonging to total pion numbers n< N
-1 unaltered. Furthermore, step N yields the
exact values for coefficients up to total pion num-
ber n= N from the knowledge of the coefficients
with n< N,

With the definition

t,=H(B,m,z=1) (23)
the iteration starts as follows:

ZM(B,z) =zt + 0(2?) , (24)

Z 3 (B,2) =2t +2°(5t,%+ £ 1,) + 0(2°) , (25)

where the higher-order terms have no influence on
the next step and are therefore discarded. For il-
lustration, we quote the expansion of Z(B,z) for up
to 4 particles

Z(B,z) =zt +2°(3t)" + §t,) + 2°(3 P+ bty + 351y)

|8

R TS TN S E AR ) EE)

(26)

+z%(}

ol

We managed to calculate all coefficients up to N
=17, which amounts to 1211 terms instead of 17 for
for the Boltzmann case.

The partition function Z(8,2) has a square-root
branch point at 3=y, which leads to the ultimate
temperature Ty=1/8,. As a consequence of this
singularity, the expansion Eq. (8) for Z diverges
at B=py. The location of the singularity g, is
determined by®

) R
R(By2)= 3 2B 1o 4[4+ {5y, m, 2)]
=2

2m

To solve for By, we need the function Z, which is
obtained by the iteration process defined by

Z M (8,2)=Z{t(B,m,2) + 2R (8,2)] -RN-V (g, z)
(28)

and Eq. (19). Basically this is the same iteration
process which was used to construct the expansion.
However, this time we calculate the full function
Z(B,z) numerically, starting from

Z™(B,2)=24[t(8,m, 2)] . (29)
In each step one calculates a value g by
R (B, 2)=1n2 - 3[1+ (3", m, 2)] . (30)



192 J.

The sequence {8{{’} converges monotonically to
By.° As a result we obtain Z(B,z) in the range
Buy<B<. In Fig. 1 we show for B=3.145 GeV~?
the partition functions Z(z=1), Z(z=2), Zyand
for comparison Z,(z =1) as functions of ¢(8,m, z).
The curves for the bootstrap partition functions
exhibit square-root behaviors, but for small ¢
follow fairly well the ideal-gas result Z,(z =1).
From the expansion Eq. (8) it is evident that an
increase of z will decrease the convergence radius
in #(8,m, z =1) and therefore lower the highest
temperature, all expansion coefficients being
positive. For the B value chosen the new Hagedorn
temperatures are Ty(z=1)=160 MeV, Ty(z=2)
=119.2 MeV, whereas in the Boltzmann case one
has Tyy(z =1)=169 MeV and Tyy(z =2)=130.6 MeV.
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h(ng, ..., n,)B"‘z"

IV. SIZE OF BOSE-EINSTEIN EFFECTS

While one-particle spectra are little affected by
quantum statistics within the bootstrap picture,®
one expects, of course, sizeable effects in two-
particle distributions from fireball decay. In the
following we shall present some exploratory cal-
culations for the decay of a fireball into identical
pions.

The inclusive distributions from fireball decay
can be obtained from 7(Q? z), Eq. (10), by omit-
ting an appropriate number of integrations in the
phase-space integrals 9’ (the omitted integrations
are indicated by square brackets):

R
h(n,... ,nk)B"‘z"jz_ljan,Q"‘((Q -ipY; ..., [im],...) (31)

1P e "k=0
X[Jt J:_sj’anj(nj' -6)J’)Ql—2((Q _jp—lel)z; LA | [jm]’ L ?[j’m]’ L4 )
WJT =i
+2p 67 (b -5023‘0 - Dn, @ N(Q =ip);. . . ,[im), . .. )] ) (32)
§=1
1Z
Z(z=2) Z(z=1) z,
]
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FIG. 1. Partition functions for the ideal relativistic gas Z, for z =1 (dashed curve) of the Boltzmann bootstrap Zy,
and of the Bose bootstrap Z for z=1 and z =2 (solid curves) plotted vs ¢(B, m, z). All curves are calculated with

B =3.145 GeV™2,
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The j andj’ summations run over the observed
clusters, and the powers inj andj’ originate from
the conversion of cluster to pion phase-space mea-
sure. The 6(?-function term in F, is due to the
pions coming out of one cluster.

In order to demonstrate the effects of the inter-
action induced by the bootstrap, we have evaluated
the ideal-gas expressions as well. They are ob-
tained from Egs. (31) and (32) by the replacement

k_sni
h("l""’”k)"ﬁ T, B~B . (33)
21 1!
One constraint for the determination of the param-
eters B and z in the bootstrap scheme is given by
the asymptotic temperature Ty, which is believed
to be about 160 MeV. In applications of the ideal
gas to particle physics, it is customary to choose
z=1 (“free-particle creation”).” For lack of better
knowledge about the size of this parameter, we

have decided to use this value for comparison in the

bootstrap scheme as well. This amounts to a value
of B=3.145 GeV~2 for the Bose and B=3.655 GeV~2

for the Boltzmann bootstrap (of Ty=160 MeV). The

comparison to the ideal-gas predictions was done
at @°=9 GeV?, therefore the parameter B, was
fitted to reproduce the Bose bootstrap value of the
mean decay multiplicity 7, leading to a value B,
=65 GeV~2,

In Figs. 2 to 5 we show a representative sample

-1 L L 1 1

0 025 050 075 100 125
Po [Gev]

FIG. 2. Two-particle distribution InF,, where F, is
given in units of GeV™ [see Eq. (32)], predicted by Bose
bootstrap (dashed curve), Boltzmann bootstrap (solid
curve), and the ideal gas (dot-dashed curve) plotted as
a function of p, for fixed p}=m, (@)/?=3 GeV, ¢ =180°.
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FIG. 3. (a) InF,, where F, is given in units of GeV™,
for the Boltzmann bootstrap plotted as function of the
missing mass M = [(Q —p -p’)?]1/? for fixed (%2
=3 GeV, ¢ =180°. This curve is universal in my,. (b)
Ratio P =F5B/FB%B plotted vs M for various values
of my,. my, =500 MeV (dot-dashed curve), my, =700
MeV (dashed curve) my, =900 MeV (solid curve), my,
=1100 MeV (dotted curve) and fixed (@%!/?=3 GeV,
¢ =180°.
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FIG. 4. R, =(F58/F528) [1 — exp(—p(/0.16 GeV)]
plotted vs p, for p{=m (dashed curve) and pf =355 MeV
(solid curve), and fixed (Q%!/2=3 GeV, ¢ =180°.
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of results obtained at 3-GeV fireball mass for the
inclusive two-particle distribution function that
depends essentially on three variables, e.g., on
Do, P4 and the angle ¢ between the momenta p and
p’. Figure 2 contains a comparison between the
Bose (BSB) and Boltzmann (BZB) bootstrap predic-
tions and the ideal Bose gas at 3-GeV fireball
mass. Here we have plotted the invariant cross
section F,, Eq. (32), with p,=m fixed, against the
energy p, of the other secondary. We observe

that for both particles at rest there is a factor 6
difference between BSB and BZB. In addition
there is the 6/® -function contribution that is due to
both particles emanating from one %k cluster. In
other regions of (p,p’) space, the differences be-
tween BSB and BZB are less dramatic, yet they
still amount to 100%.

The most comprehensive comparison between
BSB and BZB can be made, when we plot F, as a
function of the missing mass M=[(Q —p-p')*]"/?
and, say m,,=(p+p’)* and ¢. Since the BZB pre-
dictions depend only on M and not on m,, and ¢,
this choice of variables shows Bose effects most
clearly in the form of m,, and ¢ dependence of BSB
predictions and deviations of BSB distributions
from the universal BZB curve. This situation is
displayed in Fig. 3, which shows in its top part the
BZB distribution as function of M and the ratio be-

R; (B.P"

1.00F
0.80f y ' \,
060F
040+

0.20r

~ .

0 0.5 0.7 105 1.40
R [Gev)

FIG. 5. R = Fldealgas/puave 4y arbitrary scale [see
Eq. (34)] plotted vs p, for ¢ =0° (solid curve), ¢ =90°
(dashed curve), ¢ =180° (dot-dashed curve) for (@212
=3 GeV and p} =355 MeV. A & contribution [see Eq. (32)]
is to be added to the ¢ =0° curve at p, =355 MeV.

tween BSB and BZB for ¢ =180° and various values
of m,, in its bottom part. Again, we realize 100%
effects due to Bose statistics. We find strong de-
viations from a factorizing form of the two-par-
ticle distribution. The kinematical part of this cor-
relation is divided out by calculating the ratio BSB
to BZB. This ratio, normalized for convenience
by the respective ratio of thermodynamic expres-
sions for Bose and Boltzmann spectra
[exp(p,/kT) —1]~" and exp(~p,/kT) (with T=160
MeV) is shown in Fig. 4. The remaining correla-
tions which are due to statistics are seen in form
of a strong p, dependence.

In practical applications, it is frequently as-
sumed'® that F, can be written as

F3* (5,') = [exp(py/kT) - 1] [exp(p s/ kT) - 1]7f ,
(34)
f=1+exp[-(B-")"/0*],
with 0 =200 MeV. We tested this assumption for
the ideal Bose gas by plotting in Fig. 5 R, =
=Fdeslgss /pneive for various values of ¢ and p}
=355 MeV. For ¢ =90°, we achieved a fairly flat
R, distribution by choosing 7'=140 MeV. The re-
maining strong ¢ dependence demonstrates clearly
that the factor f in Eq. (34) does not reproduce our
correlations.
Since k clusters are important and phase space
cuts them out fairly fast at low fireball mass, we

F, (Gev™*)
9F

60

301

c%).10 0.20 0.30

p, [Gev]

FIG. 6. The structure induced by individual phase-
space integrals in low-mass fireball decay. F,(B, )
plotted vs p, at fixed (Q%!/2=1 GeV, ¢ =180°, p}
=334 MeV for Bose bootstrap (dashed curve) and Boltz-
mann bootstrap (solid curve).
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expect to see structures in lower-mass fireball de-
cay induced by individual & clusters. We performed
calculations at 1-GeV fireball mass and present
some of the resulting p, distributions for BSB and
BZB in Fig. 6. There is a very marked kink in the
p, distribution predicted by BSB near p,=191 MeV
that is related to the kinematic limit of the par-
ticular phase-space integral Q*((Q —2p—p’)?,m,m)
contributing to F,(®,p’). This structure is of
course absent in the corresponding BZB curve.

At large fireball mass such structures due to
individual 2 cluster contributions to F, occur very
close to p,=(Q%"2/2 and are therefore much less

striking. This is the region of low missing mass
M. The variable M is therefore suitable to pre-
sent the effect in magnified form, as is seen in
the bottom part of Fig. 3.

We conclude that correct counting of quantum
states indeed leads to sizable effects in two-par-
ticle spectra from statistical models.
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