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' Hall algebras revisited
- ‘f'olads' Michagif niaga;s-: o

Abstract For any ﬁmte-dxmensnonal algebra overa ﬁmte ﬁeld the correspond— .
ing Hall algebra has been introduced in order'to handle the’ possxble filtrations of
modules with' fixed factors. For the path algebra of a Dynkin diagram with a fixed
orientation, it has been shown that the Hall algebra satisfies relations which are simi- " .
lar to the Drinfeld-Jimbo relations defining quantum groups, but they depend on the
chosen orientation. The purpose ¢ ‘of this note is to adjust the multiplication of a - Hall -
algebra in order to obtain the Drinfeld-Jimbo relations themselves. The additional.
factor introduced in our change of multiplication involves the Euler charactenstlc in
this way we ehmmate the dependence on the onentatxon -

leen a ﬁmte~d1mensxona.l connected heredxta.ry algebra A of ﬁmte represen~
tation type, say with Dynkin diagram A;:the 1ndecomposable A‘modules corre: © 7

spond bijectively. to the positive roots of the s1rnple complex Lie-algebra g of type
A. Thus, the Grothendieck group G(A, C) of the category of finitely generated
A-modules relatlve to split exact sequences’ a.nd w1th coefﬁcxents in C may be
identified with n., where g=n_60hodn, isa tnangular decomposxtxon of g.
Hall algebras have been introduced in order to recover the Lie multxphcatxon on
G(A, C) using the representation theory of A. The Hall algebra. 'H(A 'Clq]) is rather
similar to the Drinfeld-Jimbo quantization U,(n.) of the universal envelopmg al-
gebra U(n,.), however it depends on the orientation on A’ given by A. Our aim is
to change the multlphcatlon slightly in order to remove this dependence We will
explain the change of multiplication dealing with the 1ntegral Hall algebra 'H(A)
where A s any ﬁmte—dunensmnal heredxtary k- algebra. w1th center k, w1th k-a

1. Change of multlpllcatlon for graded rmgs

Let R= @ 4G R be a graded rmg, say ‘with’ multlphcatlon where G is an
abelian group (wrltten add1t1vely) Let c be an invertible central element of R of .
degree 0, and let a: GXG — Zbe a bllmear form.: On the underly:ng graded group
of R, we define a new mu.lt1phcat10n * =% as follows Given non‘zero elements

re Ry, s€ Rh, let
T * s= ca(g’h)r s

the ring obtained in this way will be denoted by R[a d- It is easy to check that R[a c] s

is again an assocmtxve rmg, thh the same unit element as R. Usmg induction,
one shows : '



Lemma 1. Letr; € Ry, for 1 <i<n. Then

PLAkTg X ek T =€ *T2 ... T,

where @ = 3, . o(gi,95)-

We denote by r** = r * - - - x r-the #*® power of an element r in Rjq .

2. Hall algebras

Let A be a finite-dimensional hereditary k-algebra, with center k, and let -
E,,...,E, be the simple A-modules. by
Let Ko(A) be the Grothendieck group of all finite-dimensional -A-modules ‘
relative to all exact sequences. For any A-module M the correspondmg element
in Ko(A) will be denoted by dlmM thus Ko(A) may be identified with the free
abeha.n group with basis dlmEl, .es dlmE Let € be the Euler charactenstlc on
{o(A), thus given A-modules M],Mg, AR b :

e(dim M;,dim Mz) = Z dxmk Extt(Ml, Mz)
T t>0. :

= dim Hom(Ml,Mg) dxmk Ext (Ml,Mg)i

Let us assume that k is a.ﬁmte ﬁeld let v= \/|T Let 'H 'H(A)@Z[v vl it
is a Ko(A)-graded ring. We consider the ring 'H* 'H[e v VVe will exhibit a direct
description of H* below. Given an A-module M we denote its 1somorphxsm class
by [M] and the corresponding element in ’H(A) and in H by u[p)- Let u; = ug;]-

The Hall algebra H* may be defined dxrectly as_follows: leen A-modules
N1, N2, M, let Ff . be the number of submodules M’ of M such that"M/M' is
isomorphic to N, whereas M’ is isomorphic to: N2 ‘Let:H* be the free Z[v,v1])-
module with basis (u[M])[ M} indexed by the set of 1somorphlsm classes of finite
A-modules. We define on H* a multlphcatlon * by the followmg rule

Uy * Uy = Us(d'm " ’d"“i ) > N n, v

Forany i, let f; = dxmkEnd(E,) Fxx some pair @ 75 J, with Extl(E,,EJ) = 0.

aij — z d’m Ext!(E;, E; )End(E L |
. ‘:dlmEnd(E ) Ext (E]’ E )

thus f;a;; = fjaji. Let ¢; —;vzf '
Recall the Drinfeld-Jimbo relatlons : _
(@ X,Y) = 2( 1)t [ ] L xty xn,
t=0
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they ha.ve been introduced in order to deﬁne the quantxzatlons of the- umversal =
envelopmg a.lgebra.s of the’ sem131mple complex L1e algebra.s and more general of o

the Kac-Moody Lie a.lgebras

Prop051tlon In H*; we have |

Pr-e (qi’“f’"f) =°‘""’ - Py, u5u) = 0.

Proof We consxder a pau' i 75 3, wlth Ext (E,,E ) 0 Let“
o = e(dlmE.,dlmE )

= fi, &ij = 0 513‘— ftau "'fJaJ'

Let m = 1 —a;;j. We have to° conmder products of the form ultxu; G ¥ ug (m t) a.ndf ce

c L Lemma 1 shows that

where

' “’“() Hnd f<<)()> |

As a consequence

thus

z( ), (,),,u -

- =;'*F""’,>;";<—1>‘ |7 L, /(’)‘"“’” ’




and according to [R3] we kniow that the latter sum vanishes.
" “Similarly, let m"'= 1= aji. Observe that =" " e o

b, m'—t t.

«(m'~1) . *t =t
uj(m *up kU =voup Tuiug,
m' ' , m' ' ’
b= (2)sjj+(m —t)eji +tei; = fi(— 9 +im v—t),‘
therefore % SO PR S S

e Yt ) 1 ‘ , m!—t) | . B e

- N g ym! N e M ) S e e Y
pm(giyugd) = ()™ ) (.”Vl)t[ t ] g T ui U ruiuj

T T e L P g e T

¢ 5 i . e . py Cl

t=0""

. ‘ ";::‘,1 ml m. . m' Ty ‘.'-
2 DS e [ Pt
. t=0 ‘ L T

and again the latter sum vanishes ’a:célc;rding to [R3]. This :’c‘c}fhpletés’ the proof.

In'a similar way, we may g:hangefthé ‘hiuifiﬁliéafibh:for.‘the géneric Hall alge:;
bras, and for the Loewy and composition algebras as defined in [R2,3,4]. ‘

3. The Buler characteristic for a quiver

Let @ = (Qo,@1,s,t) be a quiver, with Qo the set of vertices, ; the set of
arrows; these arrows are of the form.a : s(a) — t(a). If we allow the existence :
of cyclic paths, the path algebra kQ will not be finite-dimensional, however the
Hall algebra H(kQ) still is defined provided we assume that there are only finitely -
many arrows between any pair of wvertices, see [R2]. .We consider H(kQ) as a -
graded G-ring, where G = Z9. Note that dim furnishes a surjective map from
the Grothendieck group Ko(kQ) of all finite-dimensional kQ-modules modulo exact
sequences onto G, but this map is bijective only in case there are no cyclic paths.

We consider the bilinear. form R

e(a:,y) = Z TiYi — Z Zs(a)Yt(a)s - .

Ty

for z,y € G, it satisfies , :
e(dim My, dim My) = dimy Hom(My, My ) = dim Ext! (M; , Ma),
for finite-dimensional kQ-modules M1 ,Mz,see[Rl] Thé quadratic form obtained

from the Euler characteristic ¢ may be described also in terms of algebraic geome-
try: leenml, m2 € N, let M(m,, m2) be the set of (m1xmg3)-matrices with entries
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in k, and G1(m, ) the group of invertible (m;xm, )-matrices. Ford € N, the affine
space M(d) = Doco, M(d,(qa), di(a)) may be considered as the set of representa-
tions M with dim M = d using fixed vector spaces; the group G(d) = [];cq, Gl(d:)
operates on M(d) so that the orbits are just the isomorphism classes. Then

e(d,d) = dim G(d) — dimz M(d).

One particular quiver should be mentioned explicitly, the quiver with one
vertex and one arrow: its path algebra is the polynomial ring k[T in one variable,
thus its Hall algebra H(%([T]) is the tensor product of classical Hall algebras (one
for each maximal ideal of k[T]) as studied by Steinitz and Ph. Hall. In this case,
the bilinear form ¢ is the zero form, thus in forming M*, the multiplication is not
changed at all.

4. Other bilinear forms

The deviation of the multiplication in the Hall -algebra H as compared to
U,(n4) was considered by Lusztig in [L1] when he worked with Hall algebras in
order to exhibit canonical bases for U,(n4+). The process of changing multiplication
is implizitly used by Lusztig in [L2], see in particular 10.2. He stresses the cocycle
condition, but does not indicate the nature of the bilinear form. In fact, the
bilinear form he works with differs from the Euler characteristic € by diagonal
entries. However, bilinear forms «, 8 which differ only by diagonal entries lead to
isomorphic rings R{q,¢}, Ri,, as We are going to show.

~ Lemma 2. Let G be a free abelian group with basis ey,...,en. Let o, B be
bilinear forms on G with values in Z such that a(ei,e;) = B(ei,e;) for all i # ;.
Let R be a G-graded ring, and let ¢ € Ry be an invertible central element. Then
the map : Rio,q) — Rip,c) defined forr € Ry, g =}, giei, by

n(r) = fr, with 6(g) = Z (gz.) (B(ei, &) — ale;, ?i)),

18 an 1somorphism of rings.
Let us stress that the restriction of 7 to R., is the identity, for all z.

Proof. Clearly, n is additive, thus, let us consider »r € Ry, s € R, where
g=73;9i€i, h =3, hie;. We have

(r*s) =M r x5 = cSlgth+algh)y o
[ o

1) 37(s) = KO ¢ g = SHHBBGD,

C3)-@-()-

The equality




implies that T , k
g +B) ~ 8(g) ~ 6(h) £J_ gihula(es, &) = Bleyei))

= a(g,h) — Blg,h)

since we assume that a(e;, e;j) — B(ei,e;) =0 for i # Jooo
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