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The category of good modules

over a quasi-hereditary algebra
has almost split sequences

Claus Michael Ringel

Abstract. Let A be a quasi-hereditary algebra. The aim of this paper is to show that the category of
all A-modules with good filtrations is functorially finite in A-mod thus it has (relative) almost split sequences.
This follows from a general result dealing with arbitrary artin algebras For quasi-hereditary algebras, we will
consider the relation between four rather interesting subcategories, one of them being the category of modules
with good filtrations, and we will exhibit one particular module which is both a tilting and a cotilting module.

It turns out that the quasi-hereditary algebras always come in pairs.
Part I

Let A be an artin algebra, and A-mod the category of (finitely generated left) A-
modules. [Maps will be written on the opposite site of the scalars, thus the composition
- of two maps « : M, — Mg,ﬁ M; — M3 in A—mod is denoted by aB.]

1. The main theorem

[We recall some definitions from [AS]. Let X be a full subcategory of A-mod. Let M
be an A-module. A right X—approzimation of M is a map v : X — M with X € & such
that for any map 7' : X' — M with X' € X there exists a map £ : X' — X satisfying
' = €v. A left X—approzimation of M is a map f: M — X with X € & such that for
any map B : M — X' with X' € X there exists a map £ : X — X' satisfying 8’ = p¢.
The subcategory X is closed under direct summands provided for every module X € X,
any direct summand of X belongs to X, and X is closed under eziensions provided for
every exact sequence 0 — X; — M — X, — 0 with X3, X; € X, also M € A] A
_ full subcategory X is said to be functorially finite in A-mod provided every A-module M

has both a right X-approximation and a left X-approximation. In contrast to [AS], we
do not assume that X is closed under direct summands . _

~ Let © = {©(1),...,0(n)} be a finite set of A-modules with E:ctA(G(]), @(z)) = 0 for
] > i. We denote by F (G)) the full subcategory of A-mod of direct summands of modules
having a filtration with factors in ©. [Thus, M belongs to F(©) if and only if M has
submodules 0 = Mo C M; C ... g Mt = M such that M,/M,_, is isomorphic to a
“modulein ©®] R
Theorem 1.  The .subcategory F(O) is functorzally finite in A- mod

The reader should observe that in this way we obtain a large variety of functonally
finite subcategories of A-mod whxch usually will not be closed under submodules or factor
modules ' '

" Auslander and Smalg([AS], theorem to 2. 4) have ‘shown that a functorially finite
subcategory which is closed under extensxons and du'ect summands has (relative) almost
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split sequences. Let X(©) be the full subcategory of A-mod of all modules which are
direct summands of modules in F(©). Then X(0) is closed under extensions and direct
summands, and with F(©) also X(0) is functorially finite in A-mod. Therefore we obtain
the following consequence:

Corollary 1. The category X(©) has almost split .seq'dence.s.

[We recall the definitions from [AS], see also [R]. Let A be a full subcategory of
A-mod closed under direct summands. Let X bein X. A map v:Y — X is said to be
a sink map for X (or to be right almost split) provided « is not a split epimorphism, and
given a map 7' : Y’ — X which is not a split epimorphism, there exists 7 : ¥' — Y
with 7' = 1. A map f: X — Y is said to be a source map for X (or to be left almost
split) provided 8 is not a split monomorphism,, and given a map B’ : X — Y’ which is
not a split monomorphism, there exists 7 : Y — Y’ with g’ = Bn. A (relative) almost

B v ]
split sequence in X is an exact sequence 0 — X — Y — Z — 0 in A-mod with X,Y, Z

in X such that B is a source map, and v a sink map. An object X € A’ is said to be
Ezt-injective in X provided Ezty(M,X) = 0 for all M € &; an object Z € & is said
to be Ezt—projective in X provided Eztl(Z,M) = 0 for all M € X. We say that X' has
(relative) almost split sequences provided the following three conditions are satisfied: first,
every indecomposable object X € X has a sink map and a source map; second, if X is
indecomposable in X’ and not Ezt-injective in X, then there exists an almost split sequence
0— X — Y — Z — 0in X, and third, if Z is indecomposable in X and not Ezt-
projective in X, then there exists an almost split sequence 0 — X —— Y — Z — 0 in
X

[Once the X(©)-approximations of the A-modules are known, it is rather easy to
construct the sink maps and the source maps in X(©). Namely, given an indecomposable
module X in X(0), let 3 : U — X be its sink map in A-mod, and ¢ : X — V its source
map in A-mod; let v : X' — U be a right X-approximation of U and f: V — X" a
left X'-approximation of V. Then a right minimal version of 4% : X' — X is a sink map
for X in X(©), a left minimal version of 8 : X — X" is a source map for X in X(0).]

Remarks concerning the definition of F(0) and X(0©): The reader should be aware
that categories of modules with prescribed filtrations usually will not be closed under

direct summands even if © consists of indecomposable modules. A typical example is
kkk

given by A = [o k 0] , where k is a field, ©(2) the simple projective A-module, O(1) its
00k

injective hull; here the indecomposable modules of length 2 belong to A'(©), but not to

F(©) . — On the other hand, an A-module M belongs to F(©) if and only if M has a

filtration 0 = Mp41 € M, C ... C M} = M with M;/M;,; isomorphic to a direct sum

of copies of ©(z), for all 1 < i < n. This is an immediate consequence of our assumption

Ezt,(0(5), 0(:)) = 0 for j > i.

2. Proof of the main theorem.

We start with an arbitrary full subcategory X of A-mod, and we denote by Y the full
subcategory of A-mod of all modules Y satisfying Ezt}(X,Y) =0 for all X € X.
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Lemma 1. LetO—»Y—-*X—.-’oM——)Obcezact,withXGXandYey.
Then v is a right X -approzimation of M.

[This is a converse of Wakamatsu’s lemma as stated in [AR].]

[Proof. Let o' : X' — M be a map with X' € X. SinceY € ), the sequence induced
from the given one by 4’ splits, thus we obtain £ : X' — X with o' = {7.]

Lemma 2. Assume that X is closed under eztensions, and that for every A-
module N there ezists an ezact sequence 0 — N — YV — XV — 0 with XN e X
and YN € Y. Then every A-module M has a right X-approzimation.

Proof: Let M be an A-module. First, we assume that there is an epimorphism
r:X — M with X € X; let K = Ker n. The exact sequence 0 — K — YX —
XX — 0 gives rise to a commutative diagram with exact rows and columns

0 0
0 K » YE y XK + 0
0 X Z y XK 0
T Y
M —m M
0 0

Since X, XX belong to X and X is closed under extensions, Z € X. Since YK €Y, we
use lemma 1 for the exact sequence which appears as middle column and conclude that
~:Z — M is a right X—approximation.

In general, let M’ be the submodule of M generated by the images of maps X' — M
with X' € X. There is a finite set of maps m; : X; — M, with X; € X such that the
images of m; generate M'. Since X is closed under direct sums, X = @X; belongs to &,
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and there is an epimorphism 7 : X — M’. The previous considerations yield a right
X-approximation 4’ : Z — M'. We denote by u : M’ — M the inclusion map; clearly,
v'p is a right X-approximation of M.

Now, let X = F(0). Then Y = Y(©) may be characterized alternatively as the full
subcategory of A-mod of all modules Y satisfying Ezt4(0(:),Y) =0for 1 <: < n.

Lemma 3. Let1 <t <n. let N be an A-module with Ezt4,(©(j), N) = 0 for all
j > t. Then there ezxists an ezact sequence 0 — N — N' —» Q — 0 with Q a direct
sum of copies of ©(t) and Eztl(O(j),N') =0 for all j > t.
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Proof: Let

e=(0—>N——+N'-—+Q—>O)

be a universal extension of N from above by copies of ©(t) [this means the following:
take exact sequences €, = (0 — N — T, — O(t) — 0) so that the corresponding
equivalence classes [e;],... ,[em] generate Eztl (©(t), N) as left End4(©(t))-module, and
let € be “the” exact sequence so that the s-th inclusion of O(%) into @ = ()™ induces
the sequence €,]. Thus, the connecting homomorphism

6 : Hom4(©(t), Q) — Ezth4(O(t), N)

induced by ¢ is surjective. We show that Eztl(O(¢), N') = 0 for j > t. We consider the
exact sequence

Hom(0(3), Q) — Exty(8(j), N) — Ezth(0(j), N') — Ezth(0(j), Q).

Since j > t, the last term Eztl(0(j), ©(t)™) vanishes. For j > ¢, we know by induction
that Ezty(O(j), N) = 0. For j = t, the first map is just §, thus surjective. Therefore, for
all j > ¢, we have Ezt}(0(j), N') = 0.

Lemma 4. Let1 <t < n. Let N be an A-module with Ezt4(O(j),N) = 0
for all j > t. Then there ezists an ezact sequence 0 — N — Y — X — 0 with

X € F({©6(1),...,0(¢t)}) and Y € Y(O).
Proof: By reverse induction, we construct monomorphisms

N=Nys N -4 . 2N =y
with Q; = coker y; a direct sum of copies of (i), and Ezt4,(0(j), N;) = 0forall j > i. Let
p=p¢...p1: N — Y, and X = Cok pu. Then Y belongs to Y(0), and X has a filtration
with factors Q; [without loss of generality, we can assume that all y; are inclusion maps;
the filtration of X = Y/N is given by the submodules N;/N, with 1 < i < ¢t + 1, and
(Ni/N)/(Ni41/N) = Ni/Niy1 = Q; for 1 < i < 1], thus X € F({0(1),...,0)}).

Of particular interest is the case ¢ = n which may be formulated as follows:

Lemma 4’.  For every A-module N, there ezists an ezact sequence 0 — N —s
Y — X — 0 with X € F(O) and Y € Y(O).

The proof of the main theorem is now straight—forward. Lemma 3 asserts that the
assumptions of lemma 4’ are satisfied for X = F(©) and Y = J(0), thus every A-module
has a right F(©)-approximation. Since the construction of F (©) is self-dual, we may use
duality in order to obtain also left F(O)-approximations. This finishes the proof.

We should remark that our proof, in particular lemma 2, is inspired by a recent paper
of Auslander and Reiten [AR]. :




We may reformulate lemma 4’ as follows. [Recall that a full subcategory Z of A-mod
closed under direct summands is said to be contravariently finite in A-mod provided every
A-module has a right Z-approximation, and to be covariantly finite in A-mod provided
every A-module has a left Z-aproximation.]

Proposition 1.  The subcategory Y(0O) is covariantly finite in A-mod.

Proof: Let 0 — N 24 Y — X — 0 be exact, with X € 7(0) and Y € Y(0).
Since Ezty(X,Y') = 0 for all Y’ € Y(©), we can use the dual of lemma 1 in order to
conclude that B is a left J(©)-approximation.

Proposition 1*.  The full subcategory W(O) of all A-modules W with Extl (W, 0(i)) =
0 for 1 <1 < n, is contravariantly finite in A-mod.

[We remark that the proposition and its dual can also be obtained as direct conse-
quences of the assertion of our main theorem, see section 1 of [AR]].

Note that, by definition, the modules in F(0) N J(O) are the Ext-projective objects
of F(©), the modules in F(0©) N W(O) are the Ext-injective objects of F(©).

Remark. If we weaken the assumptionson O, then the subcategory F(©) no longer
has to be functorially finite in A-mod. For example, let A = [ ] be the Kronecker

0k
algebra, k a field. Let S be an indecomposable A-module of length 2. For © = {S},
the category F(0O) of modules having filtrations with factors S, is neither covariantly, nor
contravariantly finite in A-mod. For © = {P, S}, with P the simple projective A-module,
F(O) is a covariantly finite (and resolving) subcategory, but not contravariantly finite in

A-mod.
3. Application

Let E(1),... ,E(n) be the simple A-modules; note that we fix a particular ordering.
For 1 <7 < m, let P(i) be the projective cover of E(z), and ((z) the injective envelop of
E(z). We denote by U(z) the sum of all images of maps P(j) — P(¢) with j > ¢, and
A(2) = P(i)/U(i). Also, let V(2) be the intersection of all kernels of maps Q() — Q(J)
with 7 > . Then, we have

Eath(AGLAG) =0 for i
and

Exzty(V(j),V()) =0 for j<i,
thus, we can apply theorem 1 both to A = {A(1),... ,A(n)}and to V = {V(1),...,V(n)}.

, An alternative description of F (A) and F(V) is as follows. Let J; be the image of all
maps P(j) — 4A with j <1, thus

A=hL DI D...DJdp D Jpyq =0.
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A module M belongs to F(A) if and only if J;M/J;11 M is projective as an A/J; ;-
module, for 1 £ ¢ < n. And similarly, M belongs to F(V) if and only if J;M/J;+1 M is
injective as an A/J;y1—-module, for 1 < i < n. It follows that F(A) and F(V) both are
closed under direct summands, thus F(A) = X(A), and F(V) = X(V).

Theorem 2.  The subcategories F(A) and F(V) are functorially finite subcategories
which are closed under eztensions and direct summands. In particular, both F(A) and
F(V) have (relative) almost split sequences.

We should remark that for j < i, we have

Hom(P(3),V(j)) =0, and Hom(A(j),Q(3)),

since E() does not occur as composition factor of V(j) or A(j). Consequently, we have

Hom4(A(i), V(7)) #0 if and only if i =j.
For later reference, we also note the following:

Lemma 5. Let M be an A-module. If Homa(A(7), M) = 0 for all 1 < i < n, then
M =0.If Homa(M,V(i)) =0 for all1 < i <n, then M = 0.

Proof: Assume Homa(A(:), M) = 0 for all 1 £ i < n. Since Hom 4(A(n), M) =0,
it follows that M is annihilated by J,, thus an A/J,-module. By induction, M = 0. The
second assertion follows by duality.

Part II. Quasi-hereditary algebras

[We recall some definitions from [S], see also [PS], [DR1]. As before, let 4 be an
artin algebra, and we fix some ordering of the simple A-modules E(1),...,E(n), thus the
modules A() and V/(2) are defined. The algebra A is said to be quasi-hereditary provided
first, 44 belongs to F(A), and second, E(i) occurs with multiplicity one in A(2), (or,
equivalently, End4(A(?)) is a division ring) for every 1 < i < n,. If we want to stress that
we have fixed the ordering E(1),... , E(n), we say that we deal with the quasi-hereditary
algebra (A, E).]

We assume from now on that A, or better (4, E), is quasi-hereditary. The modules in
A are said to be the standand (or Verma, or Weyl) modules, those in V will be called the
costandard (or induced) modules. [We prefer the notation A(:), V(%) introduced in [DR3]
in contrast to the notation V(%), A(?) of Cline-Parshall-Scott [CPS1, CPS2], since A(z)
always has simple top, V(i) simple socle: so the shape of the letters visualizes the shape
of the modules.]

The modules in F(A) will be said to be good (or to have a good filtration, or a Weyl
filtration), those in F(V) will be said to be cogood.

[The usual definition of a quasi-hereditary algebra uses induction. First, one intro-
duces the notion of a heredity ideal, this is an idempotent ideal J satisfying JNJ = 0,

6




where N is the radical of A, which is projective when considered as a left A~module, and
one calls A quasi-hereditary provided there exists a heredity ideal J in A such that A/J
is quasi-hereditary. With the notation introduced above, we always will work with the
heredity ideal J = J, = AeA, where e is an idempotent of A such that A(n) is isomorphic
to Ae; note that A/J is qua.m—heredltary with respect to E(1),...,E(n — 1), so that we
can use induction.]

4. The good modules and the cogood modules

As we have seen, the subcategory F(A) of good A-modules and the subcategory F(V)
of cogood modules are functorially finite in A-mod.

In their recent paper [AR], Auslander and Reiten have drawn attention to subcat-
egories which are both contravariantly finite and resolving. Now, the category F(A) of
good modules is functorially finite, thus contravariantly finite. It is also resolving as we
want to add. [Recall that a full subcategory X of A-mod is said to be resolving if X’ is
closed under extensions, closed under kernel of surjective maps, and contains the projective
A-modules.]

Theorem 3. Let A be quasi-hereditary. The category F(A) of good A-modules is
a resolving subcategory of A-mod.

Proof: Clearly F(A) is closed under extensions and contains the projective A-
modules. It remains to show that F(A) is closed under kernels of surjective maps. Let
0 — M; — M, — M; — 0 be exact, with M, M3 in F(A). Let J = AeA be the
heredity ideal of A where e is an idempotent of A with Ae isomorphic to A(n). We denote
by pi: Ae 62 eM; — M; the multiplication map. Its image is JM;. Since M3, M3 are

eAe

good, the maps p3,u3 are monomorphism ([DR2], lemma 2). We consider the following

commutative diagram

0 —— Ade®eM; —— Ae@®eMy; ——— Ae@®eMz; — 0

l [} l B2 l#a

0 ——~ M — M, — M; — 0,
where the upper sequence is obtained from the lower by multiplying with e and tensoring
with Ae over eAe. Since eAe is a semisimple ring, the upper sequence is exact. Since p3 is
a monomorphxsm the same is true for u;, thus JM; & Ae®eM, isa prOJectlve A-module.
Since p3 is 2 monomorphism, the cokernel sequence

0— Ml/JMl —_— Mg/JMg - M3/JM3 — 0

is exact. Now, M;/JM; and M;/JM; are good A/J-modules, by induction M, /JM; is
a good A/J-module. Altogether we see that M,; is a good A-module.

We want to discuss some consequences.

Corollary 2. The Ext-projective object in.f'(A) are just the projective modules.
Corollary 3. Let X € F(A),Y € Y(A). Then Ext,(X,Y)=0 for alli > 1.

7
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[Proof. Let 0 — X' — P — X —— 0 be exact, with P projective. Then for i > 2
Ezt)(X,Y) & Ezt'7}(X',Y), and Eztl}(X',Y) = 0 by induction, since with X and P
also X € F(A). ]

Let us formulate the corresponding result for F(V).

Theorem 3*.  Let A be quasi—hereditargj. The category F(V) is e coresolving
subategory of A-mod.

[We recall that a full subcategory A of A—mod is said to be coresolving if it is closed.
under extensions, cokernels of injective maps, and contains all injective A-modules.]

We now consider the relationship between F(A) and F(V).
Theorem 4. Let A be quasi-hereditary. Then Y(A) = F(V).

Proof:  First, we recall that EztL(A(z), V(5)) = O for all 7,5 (see [CPS1]): Since
A(n) is a projective, and V(n) is an injective A-module, we may assume 1 < ¢,j < n. But
for 1 <14,j < n, we have Ezt} (A(:), V(j)) = E:ctk/J(A(i), V(j)), the latter being zero by
induction. This implies that F(V) C Y(A).

For the converse, let Y € Y(A). Let Y’ be the maximal A/J-submodule of Y, thus
Y" =Y/Y' can be embedded into a direct sum of copies of V(n). It follows that there is
an exact sequence 0 — Y — Z — Z' — 0 where Z is a direct sum of copies of V(n)
and Z' is an A/J-module. The inclusion Y — Z yields a monomorphism

Hom 4(A(2), Y"‘) —s Hom A(A(3), 2) ,

and Homa(A(d),Z) = 0 for 1 < ¢ < n, since Z is a direct sum of V(n), therefore
Hom4(A(3),Y") =0 for 1 < i < n. The exact sequence 0 — Y’ — ¥ — Y"" — 0

yields an exact sequence

Hom 4(A(3),Y") — Ezty(A(5),Y) — Exth(A(),Y) ;

the last term is zero for all 7, since Y € Y(A), the first term is zero for 1 < i < n, thus
EztL (A(2),Y') = 0 for 1 < i < n. By induction, it follows that the A/J-module Y’ has a
filtration with factors in {V(1),...,V(n —1)}. In particular, ¥* € F(A), thus Y’ € Y(A)
by the first part of the proof. .

We want to apply the first part of lemma 5 in oder to show that Z’' = 0. Since 2’ is
an A/J-module, Homs(A(n), 2') = 0. For i < n, we have Ezt(A(i),Y") = 0 according
to corollary 3. The exact sequence 0 — Y’ — Y/ — Y — 0 yields an exact sequence

Ezty(A(3),Y) — Exth(AG),Y") — Eztd(AG),Y") ;

the first term is zero, since Y € Y(A), and we have just observed that the last term is zero
for ¢ < n. Thus Ezt!(A(:),Y"”) = 0 for i < n. From the exact sequence 0 — Y —
Z — 2' — 0, we obtain an exact sequence |
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Hom 4(A(32), Z) — Hom a(A(3), 2') — Ezty (A(),Y") .

Since both end terms vanish for 7 < n, the same is true for the middle term. We see that
Hom4(A(i),Z') =0 for all 1 < i < n, and therefore Z' = 0. This shows that Y/Y’' = Z is
a direct sum of copies of V(n), thus Y € F(V). This finishes the proof.

Theorem 4*.  Let A be a quasi-hereditary. Then F(A) = W(V).

This is the dual assertion. Taking into account theorem 4, this just asserts that a
module X belongs to F(A) if and only if Ezt,(X,Y) =0 for all Y € Y(A). [We observe
that this also follows directly from theorem 3 using proposition 3.3 of [AR]].

Let us summarize: If 4 is quasi-hereditary, the two sets A and V of modules yield
four interesting full subcategories, namely

W(A), F(A)=W(V), I(A)=F(V), JA4).

The first three are contravariantly finite in A-mod, the last three are covariantly finite
in A-mod, F(A) is a resolving subcategory, (V) is a coresolving subcategory. The pair
F(A) and F(V) seems to be a rather pretty example for the bijection between the resolving
contravariantly finite subcategories and the coresolving covariantly finite subcategories, as
studied by Auslander and Reiten [AR]. The categories F(A) and F(V) have almost split
sequences, the Erit-projective objects in F(A) are the projective A-modules, the Ext-
injective objects in F(V) are the injective A-modules, finally, the modules in F(A)NF(V)
are just the Ext-injective objects in F(A) and also precisely the Ext-projective objects
in (V). We will deal with F(A) N F(V) below.

Here are the recipes for obtaining the various approximations. Let M be an A-
module. In order to obtain a right F(A)-approximation of M, we use the dual of lemma
3 for F(V): it gives an exact sequence 0 — M" — M’ — M — 0 where M" € F(A)
and M’ € W(V) = F(A), the map M’ — M is the right F(A)-approximation of M; note
that M’ is obtained from M by a universal extension from below, using the modules in V.
Similarly, we obtain a left F(V)-approximation of M by using lemma 3 for F(A), here we
extend M from above by the modules in A. In order to obtain a left (A)-approximation
of M, we have to use the construction described in the proof of lemma 2, for a right F(V)-
approximation of M, we use the dual construction. Observe that lemma 3 applied to F(V)
yields the right J(V)-approximation of M, and its dual applied to F(A) yields the left
W(A)~approximation of M.

5. The characteristic module

Let w = F(A)NF(V), thus w is the full subcategory of all A-modules which have both
a filtration with factors in A and a filtration with factors in V. Note that w depends on
the ordering of the simple A-modules, thus we should write w(E) instead of w. Auslander
and Reiten show (on the basis of previous investigations of Auslander and Buchweitz) that
theorem 4 has the following consequence:




Theorem 5.  There is a (uniquely defined) basic module T withw =add T and T
is both a tilting and e cotilting module.

[We recall the definitions. Given a module M, we denote by add M the category of all
direct sums of direct summands of M. The module M is said to be basic provided M has no
direct summand of the form N @ N, with non-zero N. A (generalized) tilting module T is
a module with finite projective dimension, Ezt}(T,T) = 0, for all i > 1, and such that for
any projective module P, there exists an exact sequence0 — P — Ty — T} — ... —
Ty — 0 with all T; € add T Similarly, a (generalized) cotilting module T is a module with
finite injective dimension, Ezt},(T,T) = 0, for all i > 1, and such that for any injective
module I, there exists an exact sequence 0 — T, — ... — T} — T vy I — 0
with all T; € add T.] '

Proof: We use the notations of [AR] with X = F(A). According to proposition 1.9.
of [AR] we have X C A,,, in particular all projective modules are in X,,. Since A has finite
global dimension, &, = A-mod. It follows from theorem 5.3 of [AR] that w = add T,
with T a cotilting module. By duality, T is also a tilting module.

Corollary 4.  The tilting-cotilting module T with w = add T determines F(A), F(V)
as follows:

F(A)={X | Ezty(X,T)=0 forall i>1},
F(V)=A{Y | Exty(T,Y) =0 forall i>1}.

As a consequence, T determines A and V.

Proof: Theorem 5.2 of [AR], and its dual assert the stated description of F(A) and
Y(A) = F(V).

We obtain the set A from F(A) as follows. Recall that A(7) = P(:)/U(i). We can
describe U(7) as the sum of the kernels of non-zero surjective maps ¢ : P(i) — X with
X € F(A). [For, let ¢ : P(i) — X be a non-zero surjective map with X € F(A).
Since 0 # X € F(A), there is a submodule X' C X with X/X' € A. Since P(z) maps
onto X/X', it follows that X/X' & A(:). But then Hom4(P(3),X/X')=0for all j > ¢,
therefore U(:) C Ker o, where 7 : X — X /X' is the canonical projection. But this is
possible only for U(i) = Ker ¢, since P(i)/U(i) and X/X' have the same length. Thus
U(i) = Ker pm 2 Ker .] Similarly, we obtain V from F(V).

. Corollary 5. There are precisely n isomorphism classes of indecomposable modules
I Ww.

Proof: A basic tilting module is the direct sum of n indecomposable modules [H].

It remains to describe the indecomposable mddules in w.
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Proposition 2.  The basic module T with add T = w can be decomposed T' = B ()
f=1

into indecomposable modules T(%) such that there are ezact sequences

0 — A(z) -f(—q» T(z) — X(i) — 0,
0 — Y(i) —> T() —5 (i) — 0,

where B(3) is a left F(V)-approzimation, and X (3) belongs to F({A()|j < i}), and where
¥(2) is a right F(A)-approzimation and Y (i) belongs to F({V()lj < i}).

Proof: We consider some fixed A(7). Lemma 3’ gives an exact sequence 0 —»
AG) L Y — X — 0 with X € FUAG)j < i}), and ¥ € Y(A) = F(V), since
EztL (A(F), A(:)) = 0 for j > i. In particular, the simple module E(i) appears with multi-
plicity 1in Y. Let Y = élY, with Y, indecomposable. We can assume that E(z) appears
as a composition factor of Y3, thus Hom4(A(7),Y,) = 0 for 2 < s < t, and therefore
we may assume that ¥ = Y is indecomposable. Since F(A) is closed under extensions,
Y € F(A), thus Y € w. It follows that T'(Z) := Y is a direct summand of T. The various
T(z), 1 £ i < n, are pairwise non-isomorphic, since T(z) has a composition factor E(),
all other composition factors being of the form E(j), with j < . Thus T is isomorphic to

G’é T'(z). Using duality, and the characterization of T'(i) by its composition factors, we also
=1
obtain the second assertion.

[Let us add direct proofs of theorem 5 and its first corollary.
Lemma. Let gl.dim A =d. Then, for X € F(A), there ezists an ezact sequence

00— X Ty —T) ... =Ty —0
with T; € w forall 0 <7 < d.

Proof: Let X_; = X. Using inductively lemma 2, we obtain exact sequences ¢; =
(0 — Xy — T, — X; — 0) with X; € F(A), T; € Y(A). Since F(A) is closed
under extensions, and also X_; € F(A), we see that T; € F(A) N Y(A) = w. Applying
Hom4(Xg4,—) to €;, we obtain an exact sequence

Ext)(X4,T;) — Ext)(Xa,X;) — Ezti (X4, Xi_1) — Bzt (X4, T).

Here, the end terms vanish, since X4 € F(A), T; € Y(A). It follows that ErtL (Xg,X4-1) =
E:ct:"'l(Xd,X -1) = 0, therefore 4 splits. Thus X;_; € w. Fitting together the sequences
€; with 0 <7 < d — 1, we obtain the desired exact sequence, where Ty = X4_;.

d
For the proof of theorem 5, we apply this lemma for X = 44, and form T/ = & T..

1=0
Then T" is a tilting module. Deleting multiple summands from 7", we obtain a basic tilting
module T € w. If M is a module in w, also T' @ M satisfies the axioms of a tilting module,
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thus M € add T, therefore w = add T. Using duality, we see that T is also a cotilting
module.

In order to show that F(V) = {Y | Ezt!,(T,Y) = 0 forall: > 1}, let M be a
module with Eth(T, M) = 0 for all ¢ > 1. Lemma 2 yields an exact sequence 0 —
M—Y — X — 0withY € Y(A) and X € F(A). The lemma above gives an
exact sequence 0 — X — Ty — T} — ... — T, — O with all T; € w = add T.
Since Ext}y(T,M) = 0 for all i > 1, we conclude that Exti,(X,M) = 0 for all i > 1.
(We use induction. The case m = 0 is trivial. If m > 1, there is an exact sequence
0 — X — Ty — X' — 0 with Ext,(X',M) =0 for all i > 1, and it yields an exact
sequence 0 = Eztly(To, M) — Eztiy(X,M) — Exzti}}(X',M) = 0, for all i > 1.) It
follows that the sequence 0 — M — Y — X — 0 splits, thus M € Y(A) = F(V).
By duality, we also have F(A) = {X | Ezt},(X,T) =0 for all 1 > 1}.]

6. The endomorphism ring of the characteristic module.

Let 4T = élT(i) be the characteristic module, and A’ = End(4T). We denote by F
the functor F' = Hom4(T, —) : A-mod — A’'-mod.

Theorem 6.  The ring A' is quasi-hereditary with A’ = {FV(i);1 < i < n} the set
of standard modules. The functor F yields an equivalence between F(V) and the category
F(A") of good A'-modules.

Remark. Since the standard A'-modules F'V(3) satisfy the relations

Ezt'(FV(j), FV(i)) =0 for j <i,

it seems appropriate to use the following numbering: let A'(:) = FV(n —i + 1), for
1 =t <n, and E'(7) = topA'(3). In this way, the indices of the simple A'-modules are in
accordance with the rule specified for A at the beginning of part II.

Proof of theorem 6. Since 4T is a tilting module and A’ = End(4T), we know (see
[M] or [H]) that F is a full exact embedding of F(V)={Y | Ext!(T,Y) =0 for all > 1}
onto an extension closed subcategory of A’-mod containing the projective A'-modules.
[Here, ezact means that any sequence 0 — Y’ — Y — Y"” — 0 which is exact
in A-mod, with Y',Y,Y" € F(V) goes under F to an exact sequence in A'-mod.] For
1<i<n,leti =n—i+1. Let A'(3) = FV(i'), and A' = {A'(1),... ,A'(n)}. Clearly, the
image of (V) under F is the set of A'-modules having filtrations with factors in A’, and
it is closed under direct summands, thus it is just F (A'). Let us determine the structure
of the A'-modules A’(i). We denote by P'(i) = FT(i') the indecomposable projective A'-
modules, and E'(i) = top P'(i) denotes the corresponding simple A’-module. We claim
that Hom4/(P(5), A(2)) = 0 for j > ¢; for, we have Hom 4(T(5'),V(i'")) = 0 for j' < ¢,
since E(i') does not occur as composition factor of T(j'), whereas soc V(') = E(i'). On
the other hand, proposition 2 yields an exact sequence .

0 —Y(') —TE)—V@E)—0 :
with Y (i') € F({V(5’) | ;' < i'}). All three terms Y(i’),T(ii),V(i’) belong to F(V), thus

under F' we obtain an exact sequence
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0 -——-> FY(z ) — P'(i) — A'(z) — 0,

where FY (') belongs to f({A'(J) | 7 > i}). As a first consequence, top A'(:) = E'().
Since FY (i') has a filtration with factors A'(5),j > i, and topA’( ]) E'(3), it follows that
the top composition factors of F'Y(i') are of the form E'(7), with 7 > 7. As a consequence,
A’ (z) is the largest factor module of P'(7) with composition factors of the form E'(5), where
j < i, thus it is the indecomposable projective A’ /In—i—module with top E'(¢), where I,
denotes the ideal of A’ of all endomorphisms of 4T which factor through a module in
add(Ty @ ... ® T;). Since End4(A'(i)) = End4(V(d')) is a division ring, it follows that
E'(2) occurs only once as a composition factor of A'(z). Finally, we use that any projective
A’-module belongs to the image of (V) under F, thus it has a filtration with factors in A’.
Altogether, we see that A’ is quasi-hereditary with sta.nda.rd modules A'(1),...,4A (n).

Starting with the qua51—hered1ta:y algebra (A, E), we ha.ve constructed a (uniquely
defined) quasi-hereditary algebra (A', E'), where A’ is the endomorphism ring of the char-
acteristic module T of (A, E), and we may iterate this procedure: we may consider the
characteristic module T" of (A', E'), and its endomorphism ring A", or better, (A", E").

Lemma 7. We have FQ(:)=T'(i') forall1<i<n.

Proof: The module FQ(z) is Ezt-injective in F(A'), thus FQ(z) = T'(r), for some
r. But we know that Hom 4(T'(¢), Q(i)) # 0, and Homa(T(j), Q(¢)) = 0 for j < i. Thus
Hom4:(P'(i"), T'(r)) # 0, and Hom 4(P'(j'),T'(r)) = 0 for j < i, and therefore r =1'.

Theorem 7. Assume that A is basic. Then we may zdentzfy the quasi-hereditary
ring (A" E'") with (A, E).

Proof: Let Q = ®Q(i), then A = Ends(Q) = Enda(FQ) = End4(T') = A", and,
under this isomorphism, E" corresponds to E. :
Corollary 6. The categories F(A) and F(V') are equivalent.

Proof: We apply theorem 6 in order to see that F(V’) is equivalent to F(A"), thus
to F(A).
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Appendix

Quasi-hereditary algebras have been introduced by Parshall and Scott ([S], [PS]) in
order to deal with the structure of suitable derived categories using recollements and tilting
functors. On the basis of the results above, we are going to provide an explicit description
of the quasi-hereditary algebras in terms of tilting modules.

" ' Let' A be an artin algebra with simple modules E(1),..., E(n). Given an A-module
M, we denote by dim M € Z" its dimension vector, thus (dim M); is the Jordan-Hélder
multiplicity of E(z) in M. Let P(:) be the projective cover of E(z), and J; the sum of all
images of maps P(j) — aA, with j < i. Note that the A/J;-modules are precisely the
A-modules M with (dim M); =0 for all j > 1.

. Theorem. The artin afgcb'm‘ ‘A s "qhdsiv—hcrcditary with respect to the ordering
E(1),..., E(n) if and only if there ezist indecomposable A-modules T(7), 1 < i < n, such

that (dim T(:))i = 1 and .é}lT(]') iéidytilting'A/J,-.*.l—module, for1<i<n.

"Proof: If(A,E)is 'quasi—hereditary; iet i’be its characteristic module. It is a tilting
A-module and Proposition 2 asserts that T = .EB]T(Z.), where (dim T'(z)); = 1 for all z.
. ) . 1=

Note that A/J;41 is quasi-hereditary with respect to E(1),...,E(:) and '®1T(]) is its

characteristic module. :
i LT : : : n . . .
* Conversely, assume there is a tilting module T = @ T(¢) with indecomposable mod-

: - . . . . =1
ules T(i) such that (dim T(3)); = 1 and (dim T(:)), = O for i < n. We claim that
J =J,is a heredity ideal. Since T is’ ;t"‘tilting module, 4A is cogenerated by T, thus
P(n) and 4J both are cogenerated by T. Since Hom a(P(n),T(i)) = 0 for i < n, it fol-
lows that P(n) is cogenerated by T(n). Similarly, 4J is cogenerated by T(n), since 4J
is generated by P(n). We are going to show that any non-zero map P(n) — T(n) is
a monomorphism. Let D; = Enda(E(%)), and D} = Enda(T(:))/rad Enda(T(z)). Now,
(dim T'(3)); = 1 means that Hom 4(P(i), T()) is a one-dimensional D;-vectorspace. Since

it is a D;—D!~bimodule, we see that ‘dimy D! < dim; D;. However, the k-algebras l_—_[lDi

and I’}[D}f are isomorphic, since these algebras can be recovered from the derived cat-
DL =1t »

egories D®(A) 2 DY(End(4T)), see [H]. Thus dimyD; = dimyD}, for all i. It follows
that Hom4(P(3), T(%)) is a one-dimensional 'Dj-vectorspace. Let ¢ : P(n) — T(n) be
a non-zero map and U its image. Since P(n) is cogenerated by T(n), and ¢ generates
Homa(P(n), T(n)) as an End4(T(n))-module, we see that ¢ is a monomorphl.sm, thus
U = P(n). As a consequence, the Jordan-Hélder multiplicity of E(n) in P(n) is 1. We
also know, that 4.J is cogenerated by T'(n), let ¢ : 4J — T(n)™ be an ffrnbeddmg. Since
PUAT generated by P(n), we see that the image of ¢ lies in U™, thus A...7 is both‘ ger'lerated
and cogenerated by P(n). It follows easily [DR2] that therefore 4J is a projective left
A-module. Thus J is a heredity ideal of A. _

Assume now, in addition that ® T(j) is a tilting A/ Ji41-module for all ;. Then we use
j=1

induction and conclude that A/J is quasi-hereditary, with respect to EQ),...,E(n—-1).
This finishes the proof.
29.11.89




