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The category of good modules I

over a qua31—hered1tary algebra
Claus Michael Ringel e

Let A be an artin algebra. We will consider (finitely generated left) A-modules,
maps between A-modules will be written on the rlght hand of the ar gument thus

the composition of the maps f : M; — M, : My — M3 will be. denoted by‘

fg. The category of all A-modules will be denoted by A-mod. All subca.tegones
considered will be full and closed under isomorphisms, so usually we will descrxbe
subcategories by just specifying their objects (up to 1somorphlsrn) S

Given a class © of A-modules, we denote by F(©) the class of all 4~modules
M which have a filtration M = J\/Io DM; D---2 M, =0,such that all facto1s
M;_1/M; belong to ©, and we may call these modules the G—good modules.

Let E(1),...,E(n) be the simple A-modules; note that we fix a part1cular 01-
dering for labelhng, the simples A-modules. For any i, let P(:) be the pro_]e(,—

tive cover of E(i), and denote by A(i) the maximal factor module of P(z) in v b

F(E(1),...,E(i)). Let A be the subcategory of all A(z) whele 1<i<n.

The algebra A, or better the pair (4, E) is called quasi- heredztary provided
End(A(z)) is a division ring, for any 1 <2 < n and the module AA belongs to
F(A). A .

From now on, we will assume that 4 is quasi-hereditary. VVlthout loss of gene-
rality, we also may assume that A is connected. We are going to- mvestxoate the
subcategory F(A) for a quasi-hereditary algebra. By definition, tlus subcateoox y
is closed under extensions, thus under direct sums, and it is ‘rather ea.sy to see that

F(A) is also closed under direct summands. :

We have shown in [R3] that F(A) is functorially fimte in A—mod in partlculax,
F(A) has (relative) Auslander-Reiten sequences. Also, we have shown that the
relative projective objects in F(A) are just the projective A-modules, and we have
constructed the relative injective objects in F(A). This 1nformat10n is sufficient
to establish some fundamental properties of F(A). Most of these are a.nalogues
of properties of the complete module category of an artin algebra. In case there
are only finitely many isomorphism classes of mdecomposable —l—modules whxch
belong to F(A), we say that A is F(A)-finite. ' : :

1. Basic results

We are going to review some basic facts of the subcategorv .7-' (A) of A—-mod
For the missing proofs, we refer to [R3]. - : &




First, we need an additional class of modules. Let Q(i) be the injective énvelope
of E(i), and V(i) the maximal submodule of Q(z) belongmg to .'F'(E(l) E(i)),
let V be the subcategory of the V(i) where 1'<'i < n.

1. We have E\tt(\' Y) =0 for all X € F(A),Y € F(V), and all t > 1.
Conversely, if Ext}(X, V(j)) = 0 for all j, then X € F(A), and if Ext’ (A(z) Y)=
0 for all i, then Y € F(V). ;

2. Let M be an A-module in F(E(1),.. E(z)) The're are, ezact sequencee |
0—="M—'M—M=0, ad 0o M = w’ ~M" 0,

- where "M € F(V(1),...,V(i - 1)),» -'Mvef'};(A), Yd (‘E;.Lf(V),»'and M" €
F(AQ1),...,AG -1)). iy e T e
3. For any 1 < i < n, there is.a uquie zndecomposable module T(z) in
F(A) N F(V)Nn F(EQ),...,E(%)) and not n f(E(l) E(z — 1)) There are

ezacl sequences

0—-A() = T(:) — X(z)—>0 ; and 0—->Y(z)-—>T( ) —)V(z)—»O

with X (i) € F(A(L),...,AG - 1)), andl’(z) e]—'(V(l)
Let T = @ T(3), thus f'(A) n .7-'(‘7) = addT ’

4. The Ext-projective modules’ m f(A) are. the proyectzve?" 4= modules, the
Ext-injective modules in F(A) are the .-1 modu,les m addT : o L

5. Let d be the mazimum of prOJ dlmA(z) For any A modulc M e F(A),
there ezists a T-coresolution of M of length'd’ (z e. an ezact sequence 0> M —
Ip—» - =Ty > 0wthadlT e a.ddT) and there are A-modules in f(A) with
no T-coresolution of length d — 1.

Proof: Assertion 2 yields an exact géduence 0-M-—-Ty - M —-0withT) €
F(V) and M' € F(A). Assertion 1 shows that Ext’(A(i), M') = Ext*t (AG), M)
for all ¢ > 1. Since F(A) is closed under extensions, we see that Ty also belongs
to F(A), thus to addT. Inductively, we obtain an exact sequence 0 — M —
Ty » -+ =Ty - 0with T; € addT for 1 < i < d, and Ty € F(A). Also,
Ext'(A(2), Tq) = Ext*™ (A7), M) = 0, thus Ty € F(V), accordlng to assertion 1.
A similar argument shows that proj. dim A(z) < <m for all 7, in'case e any module in
F(A) has a T-coresolution of length m.

6. F(A) has (relative) Auslander—Rezten sequences. . -

7. Let U(:) be the submodule of P(z) with P(i)/U(i) = A(z). The sink map
for P(i) in F(A) is of the form g(i) : R(:) — P(i), where R(i) has U(i) as a
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submodule, so that all composition factors of R(2)/U(i) are of the form E(j) with
J < 1, and g(2)|U(2) is the identity. .

We consider the algebra B = End(T'). the bimodule 4Tpg. and the functor -
Hom(T, —) from A-mod to B-mod. The algebra B has n simple modules. and we -
order them so that the indecomposable projective B-module Hom(T, T(n+1—1))
has the label n + 1 — i. When dealing with B-modules, we will add an index B, ‘
say we write Pg(), Ap(z), and so on.

8. The algebra B is quasi-hereditary, and Hom4(4Tp,~—) yields an equi-
valence from F(V) onto F(Ap) and it maps ezact sequences in F(V) to ezact
sequences in F(AB).

Note that k-duality shows that F(A) is the opposﬂ:e of the category of V-good
modules for A°P.

We denote by Ps; the set of modules P(j) with j > ¢. Let J; be the trace ideal -
of Ps; in A. (We recall that the trace of a set A’ of modules in a module M is the
largest submodule of M generated by modules from X’; the trace of X' in 44 is a
twosided ideal, the trace ideal of X in A.) For any A-module M, the submodule
J:M is the trace of Ps; in M. Note that an A-module N belongs to F(A) if and
only if J;_1N/J;N is a projective A/J;i-module, for all 1 < ¢ < n, thus if and only
if Ji_1N/J;N is a direct sum of copies of A(7). As an immediate consequence of
this characterization, we see that F(A) is closed under direct summands.

2. The Auslander—Reiten quiver of 7(A)

Let X,Y be 4-modules in F(A). A map f : X — Y is said to be (relative)
irreducible in F(A), provided f is neither a split monomorphism nor a split epimor- -
phism, and given any factorization f = fi f2 in Fi (A), then f; is a split monomor-
phism, or f; is a split epimorphism. We define rad;( a)(X,Y") as the set of maps
f: X — Y which are of the form f = f1 f2, with f1 € rad(X, M), f2 € rad(M,Y"),
where M is a module in F(A). We define the bimodule of (rclatwe ) zrrcduczblc
maps Irrr(2)(X,Y) = rad(X,Y)/ radz(a)(X,Y).

The Auslander Reiten quiver I'z(a) of F(A) is a valued translation quiver defi-
ned as follows: Its vertices are the isomorphism classes [X] of the indecomposable
A-modules in F(A). There is an arrow [X] — [¥] provided there exists a (rela-
tive) irreducible map X — 1" in F(A), thus, if and only if Irrra)(X,Y) # 0.
Given an arrow [X] — [Y¥] in Tx(a), we add the valuation (dxy,d'xy ), where
dxy is the length of Irrr(a)(X,Y’) as a right End(Y")-module, and dxy is the
length of Irrr(a)(X,Y), as a left End(X)-module. Finally, the translation 7 is
defined by 7[X] = [raX], for X a non—prOJectxve indecomposable A-module in
F(A), where 1A X is the left hand term in a relative Auslander-Reiten sequence '
0= 7aX - X' -5 X = 0in F(A). :




Apathzg - 2y = -+ = 2, = 2o'In a quner, with.-n >.1.is called cyclic.
A cyclic path 2g - 23 — - = 5= xo in Txa)is called sectzonal prowded
TZit+1 # Ti— for all 1 < ¢ < n, where .t,,+1 = 2.

Theorem. The translation quwer 1"}-(_5) has no loops and no sectzonal cyclic
paths. : . L

The proof of the Theorem will occupy the rest of thls sectlon I

First, let us show that there are no loops ThlS w 1]1 be an xmmedlate consequence
of the follovv ing lemma. The length of an 4—modu1e M w1ll be denoted by I(M).

Lemma. LetX,Y be mdecomposable A- module.s in f(A) wzth I(X) < (Y.
If f: X =Y s an irreducible map in .'F(A) then f|Jn I.X is m]ectwe

Proof: If f|J,—1X is not 1n3ect1ve, ‘then I&erf conta.ms an 1ndecomposable
summand U of J,-1X, and U belongs to a A-filtration of X, thus X/U € F(A).
But f factors through X/U, and this contradxcts the fact that f is 1rreduc1ble in

Next, we consider the existence of_ sect1onal cychc paths in . 1"_7.-( a)- We call
(91,---,9n) a sectional path in F(A),. prov1ded g, Xi-1-— X is an irreducible
map betiveen indecomposable modules for 1 < : < n and T _\.\,.H ¥ Xy for
0<i<n. : .

Warning: The composition gy - - -g,,- ,qf d‘”s'eétional pdth (g1 - .-.‘,"g(,’{) may be zero.
Let A have three simple modules E(1), E(2), E(3), with P(1) = E(1) = rad P(2),
and rad P(3) = E(2). Then F(A) s the class of all projective A—moddléé ‘and there
1s a sectional path (P(1) — P(2), P(’) — P(3)) in F(A) thh zero composxtlon

However, there is the following result

Proposntlon Letg; : X;—1 — .X be ma,ps such that(gl, i gn)isa sectionul
path in F(A) of length n 21, and assume the following condztzon is satisfied: 1
case at least one of the modules X; is proyectwe say X; = P(t;), also X 1s
projective, say Xo = P(to), and to > t;. Let g, : X!,_; = X, be a map such that
ngl : Xn1 @ X, — X, is a sink map for X, in f(A)'; Then g1 - -fgﬁ does
not factor through g),. In particular, g1 ---gn # 0. :

Proof: We use induction on n. Assume there exists A, such that g;---gn =
hng;. Let fnoy : Y — X,_1, and fn 1:Y — X7 _,, be maps so that [f,-1, f,, nE

Y - X1 ® X _, is the kernel of [g, ] Since g1 - gn‘— hngn, there is a map
n
hn-1:X¢ — Y, such that ha1fn-1=g1--gn-1:(and b, _ fl | = —h,).
First, assume X, = P(t,) is prOJect1ve In this case, also Xy = P(#o) is pro-
jective and tg > t,. On the other hand, the kernel ¥ of the sink map for P(tn)
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belongs to F(E(1),...,E(tn — 1)), according to Assertion 7 in Section 1. Since
to > t, — 1, it follows that Hom(P(%),Y) = 0, thus g1 ---gn-1 = 0. Forn =1,
this would mean that 1y, = 0, impossible, for n > 2, we see that g; ---gn—1 can
be factorized through the corresponding map g, _;.

Next, assume X, is not projective, thus ¥ = 7aX,, and f,—; is an irreducible
map. If n = 1, there is the factorization 1x, = g1--gn-1 = hgfo, but then fo

is a split epimorphism, imposssible. Thus n > 2. Since (g1,...,¢n) is a sectional
path in F(A), we know that X,,_» % 7aX, =Y, and therefore the sink map for
gn-1
X,-1 in F(A) is of the form fn._l for some map g _; : X '__2 — Xn—1. Let
gn—l
X o= YG}X"_2, and g},_, = [g"—l] X! _, = Xn_1,and hpy = [h,_;,0]:
n-—1

Xo — X! _,. Then In-11 . X, . @®X'_, = Xn_1 is a sink map for X,—; in
n—2 ! 1 n—-2
n—

F(A), and g1 - - gn—1 = hn—19',_;, but by induction, this is impossible, too.

Proof of Theorem: Let Xy,...,Xn-1,Xn = Xo be indecomposable modules
in F(A), and assume [Xp] — [X1] — - — [X,] is a sectional cyclic path in
I'z(a)- Note that with (g1,...,9n) also (g1,...,9n,91,--- ,gn) is a sectional cyclic
path; thus we may suppose that n > 2%, where b is an upper bound for the length
of the modules X;. In case one of the modules X; is projective, we may rotate
the indices so that X, = P(to) is projective, and that to > t; for any j with
X; = P(t;) projective. Choose an irreducible map g; : Xi—1 — X; in F(A), for
any 1 < i < m. The Proposition now asserts that the composition gy ---gn 1s
non-zero, in contrast to the Harada—Sai lemma. This completes the proof.

3. Brauer—-Thrall I

Let T be a component of T'z(a). Let Cr be the subcategory closed under direct
sums and direct summands whose indecomposable objects are the A-modules A
. with [M] in T'. The subcategories of the form Cr will be called the Auslander-Reiten
components of A-mod. Investigations of Auslander yield the following result:

Theorem. Let C be an Auslander-Reiten component of F(A), and assume
the indecomposable modules in C are of bounded length. Then C = F(A), and
F(A) is ﬁmte

In partlcular, there is the following analogue to the assertion of the first Brauer-

Thrall conJecture

Corollary. Assume the indecomposable modules in f(A) are of bounded
length. Then A is F (A)-ﬁnzte and the Auslander-Reiten quiver Fy:(A) 18 connec-
ted.




‘Proof of Theorem: There is the following general assertlon due to Auslander
[A): ; R D A

Theorem. Let B be a connected aftinr algebm‘z ?Let A.’;b:é?a; 'siibcategory of
B-mod which is functorially finite, closed under extensions and direct summands,
- and suppose X contains all projective B-modules. Let X' .be an‘Auslander- Reiten
component of X, and assume the zndecomposable modules m 1’ ‘are of bounded

length. Then X' = X and X is finite. ¢ 70 o “a ni o

Let us outline a proof of the general assertlon followmg Xamao ata (see [R1]):
Assume the indecomposable modules in X" have length at most b. Let M be an
indecomposable module in X’ and assume Hom(P( ), M) # 0. The Harada-Sai
lemma implies that there is a path in'T'x of length at most 25— 2 from P(i) to M,
here we work inductively with factorizations which are given by using the minimal
right almost split maps in X. In partlcular, P(z) belongs to X’. On the other hand,
let X be an indecomposable module in' X and assume Hom(P(z),.X) # 0. Again,
we use the Harada-Sai lemma in order to obta.m a pa,th in Ty of length at most

— 2 from P(i) to X, but now we work 1nduct1ve1y'vv1th factori izations which are
given by using the minimal left almost split maps in'X- Since we assume that B is
connected, there are sufficiently many non-zero maps betvveen the indecomposable
projective B-modules, thus all P(j) belong to X'. And any indecomposable module
in & is joined by a path of length at most 2" - ‘7 to some P(z), thus all belong to
X' and there are only finitely many -

4. The stable Auslander—ReﬁEﬁ’Qili\;éi;’-)

The stable Auslander-Reiten quzver F}-(A) is the full translation subquiver of

I'r(a) obtained by deleting all vertices of the form 75*p where p is a projective
vertex, and t € Np, or of the form 72¢ where ¢ is an mge,ctwe vertex, and t € Nj.

Recall that a vertex z of a translation quiver is said to be periodic provided there
is some ¢t > 1 such that 7tz = . Let I" be a component of the stable translation
quiver I‘g,_.) (a)- Since I''® }-( A) is locally finite, the existence of a periodic vertex in T’
implies that all vertices of T are periodic, and, in this case, I is said to be perlodu,

- Given a valued quiver Q, we may form the stable translation quiver ZQ, as in-
troduced by Riedtmann (see [HPRY]). The same reference may be used for looking
up the well-known list of Dynkin diagrams, Euclidean diagrams and the graph
Aoo- A valued quiver with underlying graph a Dynkin diagram, or a Euclidean
diagram, or Aco, will be called a Dynkin qulver a Euchdean quiver, or to be of
the form A, »

Theorem. A periodic component of F}-(A is of the form ZQ/G, where Q is
either a Dynkin quiver or a guiver of the form Ao, and G is a non-trivial group
of automorphisms of ZQ).




In particular, we have the analogue of Riedtmann’s theorem: a finite component
of T (;2 Ay 18 of the form ZQ/G with @ a Dynkin quiver, and G a non-trivial group
of automorphisms of ZQ.

The proof uses the existence of the length function on the component T', it is
a subadditive function on I'y with values in N;. In case this function is bounded,
it cannot be additive (since otherwise I' would be a component of I'r(a) itself,
in contrast to Auslander’s theorem). The combinatorial considerations of [HPR]
yield the result. :

The structure of non-periodic components has been studied by Zhang [Z]. Her
investigations yield the following result:

(s)

Theorem. A non-periodic component of I"]_.(A) is of the form 1Q where Q

is a connected valued quiver without cyclic paths.

For the proof, we use again the existence of the length function on the com-
ponent, Auslander’s theorem, and the non-existence of loops and sectional cyclic
paths. ‘ ‘ ' '

Recall that a component of I'x(a) which does not contain projective or injec-
tive vertices, is called a stable component of I'r(a). Clearly, stable components of

I r(a) are components of P(;() INY but for stable components, the length function is
additive, and not only subadditive.

Theorem. A stable component of T x(a) 13 either periodic and then of the
form ZA |G for some non-trivial automorphism group G, ot else non-periodic,
and then of the form ZQ for some connected valued quiver Q without cyclic paths,
and Q cannot be a Dynkin or a Euclidean quiver.

This is an immediate consequence of the previous results: Assume the compo-
nent I is of the form ZQ/G with @ a quiver and G a group of automorphisms.
If Q is a Dynkin quiver, then there is no additive function on I' with values in
N;. If Q is a Euclidean quiver, we consider the so called "defect” § of the restric-
tion of the length function ! to some copy of Q. If § # 0, then the additivity of
I enforces that I takes negative values, impossible. If § = 0, then [ is bounded,
but then Auslander’s theorem implies that I' contains projective vertices, again a
contradiction.

5. The multiplicities of A(?)

Given M € F(A), say with a filtration M = My 2 My 2 -+ 2 M, = 0 with
factors M,_1/M, € A, for all 1 < s < t, we denote by [M : A(¢)] the number of
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factors M,_1 /M, isomorphic to A(z); note that this number is mdependent of the
particular filtration which we have used. There are dlfferent ways for calculatmgh
[M : A(7)], as we want to show. »

Let d; = dimy End(E(:)) = dimy End(A(7)).

Proposition. Let M € F(A). Then di [M A( )] = dlmL Hom( I\I V( ))

- Proof: Consider a filtration M = 1\/10 /\/Il 2 D '\[f 0 wzth factoxs
M,_1/M, = A(i,). We use induction on ¢, the case.t = 0 bemg trivial. We apply
Hom(—, V(i)) to the exact sequence 0 — M, — M — A(i;) — 0. On the one
hand, we have dlmL Hom(A(z1), A(Z)) = d; for 1 =1;, and zero otherw1se, on the
other hand, Ext'(A(¢;), V(7)) = 0. Thls completes the proof ‘

Corollary. Let0 — M' — M — 1\/[” ——» 0 be an, ezact sequence in f(A)
Then [M : AQR)) = [M' : A@)] + [M" : A( )] for alli” "

Proof: We use the previous formula and the fact that E\t (M " V(z)) = 0.
Corollary.  The function [M] — [M : A(:)] is an a.ddztwe Junction on T'ra).

‘Recall that an 4-module N belongs to F(A) if and only if J;_iN/J;N is a
projective A/J;-module, for all 1 < ; <n, and in thlS case, . J,_IN/J N [N

AD)] - AE).

Given A-modules X, Y, and a class ./\/i of A—modules let Hom(X M, Y) be the
set of maps X — Y whlch factor through add M. (For example, Hom(X, 44,Y)
is the set of maps X — Y which factor:through a projective A-module) Note
that, for any A-module M, a map f: P(i) —» M belonos to Hom(P(i), P>i, M)
if and only if P(¢)f C J;M. (For, J;M is genexated b'y ’P>, thub the pro_)ectne
cover of J;M belongs to add Ps.;.) :

Proposition. Let M € F(A). Then

£

di[M : A(2)] = dim; Hom( P(z), .M)/ Hom(P 1), ’P>,,J\I)

- Proof: For any 7, choose a primitive idempotent e; such that P(2) = Ae;. The
evaluation map Hom(P(:), M) — M sending f to e;f has as image e; M, and it
sends Hom(P(z), Ps;, M) onto €;J; M. In this way, we see that :

a—— dim; Hom(P(:), .M)/ Hom(P(z)

counts the Jordan-Hélder multiplicity of E(z) in J\/I / J,A/I thus the muItlphCJty of
A(7) in a direct decomposition of J;_1 M / JiM. :

We also introduce 7¢; as the set of modules T( J) with j < 4.
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Proposition.  For any M € F(A). the composztzon of maps yields a non-
degenerate bilinear map on

(Hom(P(7), M)/ Hom(P(i), Psi, Al)) x (Hom(M,T(z))/ Hom(M, T<,-,T(i)))
with values in Hom(P(z), T(7)).

Proof: First, we have to show that Hom(P(i), P>i, T(i)) = 0. But, for j >
i, we know that [T'(Z) : E(j)] = 0, therefore Hom(P(j),T(:)) = 0. Similarly,
Hom(P(z),7«i,T(i)) = 0, since for j < i, we have Hom(P(:),T(j)) = 0. This
shows that the composition of maps yields a bilinear form as stated.

It remains to be seen that this bilinear form is non-degenerate. Let f : P(:) —
M be a map which does not belong to Hom(P(i),P>i, M). Let g : M — M /J;AM
be the canonical projection. The image of the map fg : P(i) — M/J;iM is
isomorphic to A(z), and the cokernel @ of fg belongs to F(A). Let fg = fif2
be a factorization of f with f; : P(:) — A(z), and fo : A(3) — M/J;M. Let
u : A(i) — T(3) be the canonical embedding. Since Ext'(Q,T(i)) = 0, it follows
that there is h : M/J;M — T(z) such that foh = u. Altogether we see that
fgh = fifah = fiu #0.

Conversely, assume that f' : M — T(7) does not belong to Hom(M, T¢;, T(?)).
There is a surjective map ¢’ : T(i) — V(i) with kernel V(:) € F(V(1),...,V(: —
1)). We claim that f' does not map into V(i). So assume f' maps into V(z).
There is an exact sequence 0 —' V(i) =/ V(i) — V() — 0, with "V (z) €
F(V(1),...,V(i = 1)), and 'V'(z) € F(A). Since 'V (i) belongs both to F(A) and
to F(V), it is in add T, and, in fact in 7«;. On the other hand, we know that
Ext!(M,"V(i)) = 0, since M € F(A), and "V (i) € F(V). This implies that
the map f' : M — V(i) can be lifted to 'V'(¢), thus f' factors through 7;, in

_contrast to our assumption. It follows that f'g’ # 0, thus we see that the image

of f' : M — T(i) has E(¢) as a composition factor. Therefore, there is a map
P(i) — M whose composition with f' is non-zero. This completes the proof.

In order to understand the behaviour of the function [M] — [M : A(Z)] on
[ r(a), it remains to consider the sink maps in F(A) for the projective modules
P(?), and the source maps in F(A) for the relative injective modules T'(z).

Proposition. - Let R(j) — P(j) be the sink map in F(A) for P(j). Then
[P(j): A@)] =0 for i <j
[PG): A =1, [R(G):AG)]=0,
[P(7) : A@)] = [R(5) : AG)] for i> .
Similarly, for the source map T(j) — S(j) for T(j3) in F(A), we have
[T() : AG)) = [SG): A@)] for i<
[TG): A =1, [SG):AU)]=0,
[TG): A@)] =0 for i>j.
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Proof: Let U(j) be the submodule of:P(j) with P(5)/U(j) = A(J). Then
U(§) € F(AG+1),...,A(n)), thus [P(j) : A(i)] = 0 for i < j,and [P(j) : A(j)] =
1. Also, [P(_)) A = [U@G) : A(D)] for i > j: As we know, the sink map for P(j)
in f'(A) is of the form ¢(j) : R(j) = P(7) Where R(]) has U (_]) as a submodulc,
and all composition factors of R(j)/U(j) are of the form ‘E(t) with t < j. Thus
[R(G) : A@)] = [U() : A@)] + [R(J)/U(J) A(Z)] and’ [R(J)/U (J): A(2)] = 0 for
t 2

Tile second assertion will be derlved from ‘the ﬁrst one using duahty a.nd the
equivalence F' = Hom(T,-) : F(V) = f(AB) Given a module M in .F(V), let
[M : V(i)] be the multiplicity of V(3) in a V-filtration of M Consider the source
map S'(j) — T(j) for T(j) in F(V). We have FT(j) = Pp(n +1 = j); FS"(]) =
Rp(n+1—j)and FV(i) = A(n+1 - z) For an arbitrary module Me F(V);
we have [M : V(@) = [FM : ._\(n + 1 —1)], so we can’ transform the assertxons
¢oncerning Pg(n +1 — §) and Rp(n+1=j) to correspondmg assertxons for T(5)
and R'(j). Using k-duality we know that’ F (A) is the opposxte of the ‘catégory
of V-good modules for A°P, and under this duality, the relative injective objects
of F(A) correspond to the 1elat1ve prOJectlve obJects in the category of V-good
modules for A°P.

6. Multiple arrows in the Auslander-—Relten qulver _
Let A be a finite-dimensional k- aloebra where k 1s an algeb1 alcally closed field.

Warning: Even if A is }-(L\)—ﬁmtc, there may ezist’ mdccomposable A-modules
Xo; X1 € F(A) such that chml, Irr;-(A)(Xo,_Xl) 22 VVe e\hlblt the followmg
examples 5 :

First, assume that rad(P(s) P(])) = O for 7 > 7 Inrthls case; we ha've Al) =
P(%) for all 7, thus the moduiles in F (A)are the projective A-modules, and cleaily
dim; Irrpzq A)(.XO,A ) may be arbltrarﬂy large ‘Of course, in this case all objects
of F(A) are both relative pro jective and’rélative injective in F(A).

A less trivial example is given as follows: Let A be a quasi-hereditary algebra
with two simple modules E(1), E(’) such tha,t

dimy Hom(E(1), B(2)) = 1 and** dimy Hom(E(2), (1)) =

Then the indecomposable modules in F (A) are E(1),P(1),P(2) and the vector
space rad(E’ (1), P(2)) = Hom(E(1), P( 2)), is d-drmensxonal whereas we observe
that radf(A)(E(l) P(2)) =0, thus dlmk Irrg.-(A)(E(l) P(’)) =

Theorem. Let k be an algebrazcally closed field. Let' A be F(A)-finite. Let
Xo, X be indecomposable A-modules in F(A), with dimyg Irrgr(A)(Xg,Xl) > 2.
Then Xo = T(j), dnd X; = P(i) for some Jj <.

Proof: We are going to define modules X; for certain > 0 inductively as fol-
lows: Assume X; and Xiy1 are already defined, and X; is not relative injective in
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F(A), then Xypp =75 A)X;. Note that the modules obtained in this way are inde-
composable, belong to F(A) and dimg Irrz(a)(Xi, Xig1) = dimyg Irrr(a)(Xo, X1).

We claim that there is some # > 0 such that the modules Xy,..., X4 are
defined and X, is relative injective in F(A). Otherwise, we have an infinite se-
quence X;,i > 0. Let I(X;) < I(Xi41), for some i. There is a relative almost split
sequence 0 — X; — Y; — Xiy» — 0 and X7, is a direct summand of Y;, thus
I(Xi41) < (Xiy2). Deleting, if necessary, finitely many of these modules, we can
assume that I(X;) € {(X41) for all i > 0. Let f; : Xi — Xiy1 be an irreducible
map. The Lemma asserts that f;|JX; is injective. We can assume that JX;#0
for some 7, otherwise we replace 4 by 4/J. Since with JX; # 0, also J X431 # 0,
we can assume that JX; # 0 for all ¢ > 0, deleting, if necessary, finitely many of
the modules. It follows that the composition fo fi...fi is non-zero for all i > 0, a
contradiction to the Harada—Sai lemma.

Duality shows that we can assume, in addition, that X is projective. (For, the
equivalence of the category F(V) of V-good modules with a category of A-good
modules for some other quasi-hereditary algebra shows that the same assertion is
true for F(V), and k-duality shows that F(A) is the opposite of the category of
V-good modules for A°P. It just remains to renumber the modules X))

Let X; = P(i). Note that X2 is a direct summand of R(%), say R(:) = Xo®XoD
R', and we can write g(i) = [g1, g2,9'] with g1,92 : Xo — P(i) and ¢’ : R' — P(z).
For a € k, consider the maps go = g1 + ag2 : Xo — P(i). We will use the
following fact: if a,8 € k are given such that goh — g is not irreducible, for
some automorphism & of P(i), then « = B. For, since g = goh — g5 : Xo — P(7)
is not irreducible in F(A), the residue class of ¢ = g1(h — 1) + g2(@h — B1) in
Irr£(a)(Xo, P(2)) is zero. But this implies that 2 — 1 € rad End P(:) and a = 3.

We claim that the composition factors of Xg are of the form E(j) with j < ..
For the proof, assume that Xy has a composition factor E(j) with j 2 i. Then,
a A-good filtration of Xy has some factor of the form A(j) with j > ¢, since X
is a direct summand of R(z). Thus X, has a submodule X’ isomorphic to some
A(j),§ > %, such that Xo/X' € F(A). Let u : X' — X, be the embedding. Note
that X' @& X' is contained in U(i) € R(?), and U(:)/(X' ® X') € F(A). Fora € k,
let uo = Ugaq, clearly, this is an injective map. We denote by Qq the cokernel of
Ua, 50 that Q is indecomposable and in F(A). We claim that for a # 8 € k, the
modules Q, and Q3 are not isomorphic. Assume they are. Since P(:) is projective,
we find an automorphism k of P(7) such that u,h = h'ug for some automorphisin
h' of X'. However, End(X’) = End(A(j)) = k, thus A’ is scalar multiplication by
some non-zero element of k, and we can assume h’ = 1. It follows that ¢ = gah—g3
is not irreducible, since ug = 0, so that g factors over the cokernel Xo/X’ of u. As a
consequence, a = (. The existence of this one~parameter family of indecomposable
modules Q, in F(A) contradicts the assumption that F(A) is of finite type.

Next, we claim that Exfl(A(j),Xg) =0 for j < 7. Assume not, let v: Xo = Y
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be a non-split embeddmg with cokernel ¥/ Xy 1somorph1c to A( 7). w1th _7 < t. For
any a € k, we may con51der the 1nduced e\act sequence e ir it

0 —5 Xo ELa ¥ AG)- —4—» 0

1 D

Note that v, cannot spht since otherw1se ga‘—- vw for some w. } — P( ), but
by assumption, v is not a spht monomorphlsm, and w is not surJectlve since E(7)
is not a composition factor of Y. Since Hom(P(i), A(j)) = 0,-it follows that Y, is
indecomposable. The module ¥, i is an‘extension of P(i) by. A( 7), thus it belongs
to F(A). We claim that for a # B € k, the modules Y, and Y3 are not 1somorph1c
Assume there is an 1somorphlsm if.: Yo — Y. Since Hom(P(z), A(j)) =
induces an automorphism f'. of P() such that Va f fvg, a.nd an automorphzsm
f"" of A(j), such that‘paf" = fps. Since End(A(j)) = &, ~we can assume that
f"" = 1. The exact sequence 0 - Xy =Y - L\(]) - O glves nse to the exact
sequence L TR L

Hom(Y, P(z)) — Hom(.Xo,P(z)) ——6——> Extl(A(]:)hP(z)

with § the connectlng homomorphxsm and as we have seen, 5(90 f’ = 6(g93),
thus go f' — g5 is in the image of v*, so there isamapy:Y > P(2), such that
9o f' — g5 = vy. But, by assumption, v is not a spht monomorphlsm and y is not
surjectwe since E(7) is not a compos1t10n factor of Y Asa consequence 9af'— g3
is not irreducible. Again; we conclude that* ar= ﬂ, so that we obtain a one-
parameter family of 1ndecomposable modules la in F(A) contrachctmg, the fact
- that F(A) is of finite type.

Since the composition factors of }xo are of the form E(j), with j < i, it follows
that Ext!(A(j),Xo) = 0'for all 32 4, thus Ext'(A(j),Xp) = 0 for all j, and
therefore Xy = T(j) for some j. .Clearly, Xo = T(j) for some j < i, since the
composmon factors of X are of the form E(3), with j < 7. Also, since X, = T(7)
is relative injective i in’ .7-' (A), we see. that t = 0. This completes the proof.

Since we assume tha.t L is algebra,lcally closed the wa.luatlon of the arrows of
T'r(a) is symmetric: (; e we have, d\; = dvy for all X,Y) As usual, we may
replace an arrow [X] 5 [¥] with dxy = m by m arrows [X] — [Y] (and delete
the valuation). We are happy to know that for an F (A)—ﬁmte algebra A, multiple
arrows in PF(A), say from z to Y, exist only in case z is an injective vertex and yis
a projective vertex. For translation quivers (with possibly multiple arrows) with
this property we may define the corresponding mesh category as usual (without
having to choose a "polarization” [R2]).
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7. Hammocks

Let « : f‘;(A) — T'x(a) be the universal cover of 'r(a) as defined in [BG], but
with the valuation of ' x4 lifted to f;-(,_\) (i.e., if x — y is an arrow of ff(A)’ let
dry = dnz ny,dzy = dpg ). We will consider only the case of a translation quiver
I' = (o, T4, d,d ) with symmetric valuation, thus d = d’. In this case, we are
tempted to replace any arrow z — y by d:y arrows, but note that the universal
cover I' of T' will be formed before we insert multiple arrows. The valuation of
the translation quiver I' again will be symmetric, and we may do the correspon-
ding replacements for I'. Considering I and T as translation quivers with multiple
arrows, the map = : ' — T still is a covering map (but no longer universal”).

Assume now that k is an algebraically closed field and that A is F(A)-finite.

Let ' = T'r(a), and I = f‘}-(A). Fix some 1 < i < n, and let P5; be the
set of all vertices p € I' such that np = [P(j)] with j > i. In view of the second
characterization of [M : A(z)] for M € F(A), it seems to be reasonable to consider
besides I' also the full translation subquivers I'¥) obtained from I' by deleting all
vertices P;. We consider the mesh categories k(I') and k(T'(9) (taking into account
the possible multiple arrows).

Theorem. Let p € ==Y([P(?)]), for some i. Define h, : To — No by
hp(z) = dimg Homp;, (p, 2)-

Then the support of hy is a hammock, and h, is the corresponding hammock func-
tion.

We extend by to T by hp(z) = 0 for v ¢ 1"“3". Then, for M € F(A), we have
[‘Z\/I : A(Z)] =‘Zx67r"1([‘M]) hp(:l,‘) '

The proof will occupy the rest of this section.

Given any path w in I', we denote the corresponding residue class in the mesh
category k(T') by @; in particular, & denotes the residue class of the arrow a of T'.
A functor F : k(I') — F(A) will be called well-behaved provided the following two
properties are satisfied: First, for any object z of k(T'), the module F(z) belongs
to the isomorphism class wz, and second, if ai,...,a, are the arrows ¢ — y in
[, then the residue classes of F(&;),...,F(&-) modulo rad%,) yield a k-basis of
Irrray(F(z), F(y)) ' 3

According to [BG], there exists a well-behaved functor F : k(T') — F(A) (the
existence of multiple arrows does not add any difficulty), and we may assume that
for any projective vertex p of I, with 7p = [P(i)], we have F(p) = P(i).

Forp in T, with np = [P(?)], and z an arbitrary vertex of I, we set
Hi(P, :)': Hom(p, z)/ Hom(p7 75>i’ 3)‘
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We should remark, that_we ma\ 1dent1fV Hi(p, z) with Homr(.)(p, 4), in partlcula1
we have dimg H;(p, z) =" h,,(z) S1m11arlv for Z € ]’(A), let

H; (P(z) Z) Hom(P(z) Z)/ Hom(P(z) 'P>J,Z)

thus dimy H;(P(s), Z) = [Z -\( )]

Lemma. For any 'vertez u ofP the functor F znduccs an zsomorphzsm

EBH (p,u) = H (P(z) F(u»,

- [P (2)] , |
Proof Clearly, the functor F i is dense, and it maps EB Hom(p, 'P>,,u) onto
Hom(P(z), Psi, F(u)). Consequently, we only have to show that glven maps ¢,,
Hom(p, u) with }: F(qb,,) =0, then all ¢, factor through ’P>,
Let ¢, € Hom(p,u) be maps W1th Z F(¢p) =0.Fort >0, let W; be the set of

where p ranges over all p wzth kY

paths of lenoth tin T endmg in u. For any w. e Wt, let s(w) be its starting vertex.
We claim that, for any t > 0, we can wrlte ¢p in the form ¢p = zwew‘ ¢p,ww+¢(”

where ¢, 1 p — s(w) and ¢( ) are maps in k(I‘) such that ¢(‘) factors through

Psi,and F (2, ¢p,w) 0 for all w.€ Wt The proof is by 1nduct10n on t. ‘The case
t = 0 1s trivial. .
So assume for some ¢ >. 0 we' Lnow that ¢p = ‘Ewewz ¢p,ww + éﬁ, ), where é“)

factors through Py, and F(Z Sprw ) =0 forallw € W. Consider a w € Wi,

and let z = s(w). We. can assume that EN3 ’P>,, changmg, 1f necessary ¢;;) Let
:yi — 2z be the arrows endlno in z, where 1 < : <r. 'We clalm that '

¢P.Uj“ Z ¢P,w lah

for suxtable morphxsms ¢,, v :p --»:y, Thls is trlvmlly true in case qS,, w is a linear

combination of (res:due classes of) paths of length at least one, therefore it is true in

case p # z. Thus, we may assume 7z = [P()]. Since 0 = F(Z $pw) = F(dzw) +

2opt: F(ép,w), and Lotz F(o,, w) belongs toradr(a), we see that F(¢..w) belongs

to radr(a). On the other hand, #:,w is a scalar multiple of a path of length zero,

:shus F(O¢ w) 1is the correspondmg multlple of an identity map. It follows that
zZ,w —

Since F is Well—behavedj we see that [F(a:)]; : Y = @, F(y;) — F(z) is the
sink map for F(z) in F(A). Let f : X — ¥ be the kernel of this map. Since
0 =F(3, ¢pw) = F(3 .. bp.w,ifii), we see there is a map h : P(i) — X such that

[F(E ¢p,w 1)1 F(Z ép,w r‘)]
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First, consider the case of = being a projective vertex. By assumption, z ¢ Psi,
thus 7z = [P(j)] for some j < i. But X belongs to F(E(1),...,E(j — 1)), and
therefore Hom(P(i), X) = 0. It follows that F(3}_, ¢p,w.i) = 0 for all1<i<
In this case. let ¢, a;w = ¢p,w.i» Where a;w denotes the path in Wy, obtained by
composing the arrow a; with the path w. It follows that F (Z ®p,a;w) = 0, and

that
Z¢Pawalw—z¢p'uy1aw= w.

Next, we assume that z is not projective, thus X & 74 F(z). Note that in this
case there is a unique arrow J3; : 7z — y;, since we know that multiple arrows can
occur only from an injective vertex to a projective vertex. We can assume that

= [F(f1),.--,F(Br)] : X = F(rz) = @, F(yi). Also, h may be written in the
form h = F(E ¥p), thus we have F(3, ¥pB:i) = F(3 2, #p,w,i), for all 2. In this
case, let @p a;w = Gp,w,i — PpBi. It follows that F(Ep #p,aiw) = 0. On the other
hand, observe that

Z ¢P.a;w5"5u-) = Z(¢p.w,i - "ppBi)&iﬂ? = Z ¢p,w,i&iﬁ’ = ¢p.wu—”

where we use that 3, Bia; = 0.
For any path a;w, we have defined ¢p, o;w, such that F(3 » Ppciw) = 0, and such

that 3°; ¢p,a;w@i® = ¢p,uwW. The latter xmphes that 35, cw, > Ppaiw@i w+¢(t)
#p. This completes the induction.
However, for large t, we have Hom(p, s(w)) = 0, for any w € W, so in this case

bp = #$9. This shows that ¢,, factors through Psis and completes the proof of the
Lemma.

Corollary 1.  Let pg, ug be vertices ofl" with po proyectwe Let F(po) = P(2),
and F(ug) = M. Then

MA@ = D, hp(wo)= D hpo(u).

pET-({P@))) u€n—1([M])

Proof: The first equality follows from the Lemma considering k —dimensions.
The fundamental group G of I" operates on T, and the fibers #—1(z) with z € o
are just the G—orbits of I'y. Shifting by the various elements of G, the second term
is transformed in the third one.

Corollafy 2.  The support of hy is finite, for any projective vertez p of I.

~ Proof: For any indecomposable module M in F(A), there can be only finitely
" many elements u € W“([]VI]) with hp(u) 75 0, since these numbers add up to

M : A3
15




Corollary 3. - Let p,z ‘e . vertzces an T, with P proyectwe Ihé\n;l‘z,‘,(p) =1,

and, for z # p,
,,( ) =: Z h,,<y) ,,(rv)

o any—: _ L e
where, by definition, p('rf.) = 0'in case z i3 pro]ectwe ’ W
Proof: Clearly, hy(p) = 1, thus we may assume'z # p. Let a,: y,. -z, w1th

1 £ s £t be the arrows endmg inz In case L is projective, the o, mduce an
isomorphism =

e
- &

@Hom(p,y,) —»Hom(p, 7), . SR

,'.9=1 %

thus hp(z) =33, .. hp(y) in’ thls case 1-It 1rema1ns to consxder the case when z1s
non-projective. The a; mduce an exact sequence T i o S

..‘_M—»

Hom(p,TZ) @ Hom(p{y.) — Hom(p, ’) - 0

(see [BG] and the remarks m\RV]) thus We see{;, at LT

p<z> 2 Z w <> S

Now, let F(z) = Z F(y,) —kY:,,F(T..) = .—X and add up a.ll these mequa11t1es for
p' € #=}([P(2)]). Since we. obtam as'sum the equahty

2: 80 = ';*Z[Y A(Z)J - [x: ‘A(z WS L

.9'—'1, )

it folfl.ows that all the mequa,htles had been in fact equ’alities. This cor};;;letes the
proo KL R

It remains to consider the beha.v1our of h,; at injective Vertlces of I‘

Lemma. Letj <, and let [P(]) A(z)] =t. There are mapsf P(i) — P(j), ‘

9s € rad End(P(j), with 1 < $°< t and h P(]) — T(z), such that fg, - gt-—lh i
non-zero.

P:IOOf We want to show that the nght End(P(( J))-module Hi(P(3), P( 7 )) is
seri

First, consider the case i = n. Note that H; (P(n) P(i)) = Hom(P(n), P(i)).
Assume there are elements f;, f2 in Hom(P(n) P(7)) such that the subspacfs
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f1 - Hom(P(n), P(i)) and f; - Hom(P(n), P(?)) are incomparable. For a € k, let
Q« be the cokernel of f; + afs : P(n) — P(2). Clearly, Q4 is indecomposable, and
belongs to F(A). And, it is easy to see that for a # 3, the modules @, and Q3
are non—-isomorphic. Thus we obtain a one-parameter family of mdecomposable
modules in F(A), in contrast to our assumption on A to be F(A)-finite.

Let f : P(i) — P(j) be a map whose residue class modulo Hom(P(¢), P>, P(j))
does not belong to Hi(P(3), P(j)) - rad End(P(j)). Since Hi(P(i). P(j)) is serial
as a right End((P(j))-module, we obtain elements g, € rad End(P(j)), so that
fg1 -+ gs—1 does not belong to Hom(P(z), P>i, P(j)). The bilinear pairing exhibi-
ted above yields a map h : P(j) — T(¢) such that the composition fg1---gt-1h
does not belong to Hom(P(z), Psi, T(2)).

We will need the dual assertion which may be stated as follows:

Lemma. Letj > i, and let [T(j) : A(})} = ¢. There are maps f : P(i) —
T(5), ¢gs € radEnd(T(J)) with 1 <s < t, and h : T(]) — T(z), such that

fa1-+-ge-1h is non-zero.

Lemma. Letp beea pro;ectzvc vertez, ¢ an injebtive verter off‘ say wp =
[P(?)], and wg = [T(j)] If j < i, then hy(g) = 0. If j = ¢, then hp(y) =0 for any
vertezy € g*. If j > i and hp(q) # 0, then Zq__y hp(y) < L.

Proof: Forj < i, we have [T(5) : A®3)] = 0, thus hy(g) = 0. For j = ¢, we have
[S(7) : A(i)] = 0, thus Z y hp(y) = 0. Solet us assume j > ¢. In this case, and let
[T(G) : A@G)] = t. We know that also [S(j) : A(7)] = t. According to the previous
lemma, there are elements f € Hom(P(:),T(j)), g¢» € rad End(T(j)), h €
Hom(T(j),T(3)), with 1 < s < t, such that fg --- g:—1h # 0. This implies that in
'@, there is a path ¢ from p to ql, and non-constant paths 7, from ¢, to ¢s+1,
for 1 < s <t and 7 from ¢ to ¢', where 7¢, = [T(j)], for all 1 < s < ¢, and

= [T(:)], such that %) -+ F¢—17 # 0 in k(I?). Since the paths 7, and 7 are
of length at least one, let a; : g — ¥, with 1 < s < t be the first arrow of 7.,
and a. the first arrow of 7. Then @71 + -+ Ys—135 F# 0 shows that hyp(y,) 2 1, for all
1 <s <t Thus T ST

=[S AWM= Y D k2 Zh,,(y,) >t

€n- ([T s~y s=1

implies that the values hy(ys) are the only non-zero summands in the double sum,
and all these values are equal to 1. As a consequence, we have }___ hp(y) =1
for z = ¢,, and Z-__y hp(y) = 0 otherwise. On the other hand, the vertlces qs, areé
the only vertices in = 1([T( J )]) which belong to the support of k.

This ﬁmshes the proof.
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On contravariantly finite subcategories
Claus Michael Ringel

Let A be an artin algebra. We will consider (finitely generated left) A-modules,
maps between A-modules will be written on the right hand of the argument, thus
the composition of the maps f: My — M, g : My — Mj3 will be denoted by
fg. The category of all 4-modules will be denoted by A-mod. All subcategories
considered will be full and closed under isomorphisms, so usually we will describe
subcategories by just specifying their objects (up to isomorphism).

Let X be a subcategory of A-mod. Recall that & is said to be eztension closul
provided for any exact sequence 0 — X; — E — X; — 0 with X;,X; € A,
also E € X. Given an A-module M, a right X-approzimation of M is a map
g: X — M with X € X such that for any map h: X' —» M with X’ € A&,
there is a map h': X' — X such that h = h'g. In case every A-module has a
rlght X -approximation, X is said to be contra'varza.ntly finite in A-mod. We write
Ext4(X,Y) = 0 as an abbreviation for E\tA(X Y) =0 forall X € &, and we use

corresponding notation in similar cases.
There is the following criterion:

Proposition. Let X’ be an extension closed subcategory of A-mod. Then .V
is contravariantly finite in A-mod if and only if any A-module M can be embeddcd
into an A-module M such that M /M € X' and Extl(X,M) =0.

Proof: One direction is due to Auslander-Reiten [AR], the other one has
been shown in [R], Lemma 2. For the convenience of the reader, we indicate the
arguments of [AR], but we delete the functo1 ial and homological 1nterpretat10ns
of the individual steps.

So assume that X’ is contravariantly finite in .4-mod, and let M be an arbitrary
A-module. According to Auslander-Smalg[A.S], there is an embeddding v: M —
M' with M'/M € X such that for any embedding w: M — Y with Y/M € A,
there is a map f:Y — M’ with wf = v. Indeed, we just construct a commutative

diagram
v

0 s M > M’ » X! —— 0
| | E
0 y M >y I » XM ——— 0

with exact rows, I an injective A-module, and g a right X-approximation, starting
with the lower row. Of course, we can assume that v is an embeddmg, and one

easxly checks that v has the desired property




Recall that a map y: M — Y is called left minimal provided a.n}Le_ndomorphﬁm
e of Y with ye = y is an automorphism. We can decompose M’ = M @ M" §o thﬂ
the image of v is contained in 3, say v = [u0] with an embedding u: M — M
which is left minimal. In this way, we obtain a left minimal embedding u of M into
M with M /M € X and such that for any embedding w:M — ¥ with Y/M € A,
there is a map f:Y — M with wf = u. ; . o :

In order to see that Ext}y(X', M) = 0, consider an'embedding h: M < H with
H/M € X. We claim that h splits. The cokernel H/M 'of uh: M — H belongs to
X, since both H/M and M /M belong to X, and X is extension closed. Thus, there-
isamap f:H — M with uhf = u. But u is minimal, thus A f.:iKé"aii'aiit"omorphi§n1,
and therefore h is a split monomorphism. This completes the proof. = A

Consider now the following situation: Given subcategories X}, A5 of A-mod, let
Xy [ A2 be the full subcategory of all A-modules M which have a submodule U
belonging to &2 such that M/U belongs to X7. One may wonder whether with
A1, &, also &) [ A, is contravariantly finite in A~mod." Using the criterion above,
we are able to show: v ey TR

Theorem. Let X, A, be subcategories witk'Extﬂ(%fg,.Xl) =O If both X, A%
are eztension closed and contravariantly finite:in. A-mod, then also X; [ X, is
eztension closed and contravariantly finite in A-mod. .- : ,

Proof: Let X = &; [ X,. In order to show that X is extension closed, let A
be an A-module with a submodule U such that both U and M /U belong to X. By
definition, there are submodules U’ C U C U" C M such that both U/ LU e As
and both U/U', M/U" € X,. Since ExtY(U"/U,U/U') = 0, there is a submodule
M’ with U' € M" C U" such that U"/M' = U/U" and M’ /U’ = [""/U. Since A}
is closed under extensions, and M/U",U" /M’ €-X;; also M /M’ € X,. Similatly,
since &7 is closed under extensions, M’ € X,. Thus, M belongs to X. o

In order to show that &’ is contravariantly finite in A=mod, we apply the Propo-
sition. Let M be any A-module. We want to show that M can be embedded into
an A-module M such that M /M € X and Ext},(X, M) = 0. Since X> is extension
closed and contravariantly finite in A-mod, there is an embedding M < Y such
t?;at Y/M € X; and Ext!(X,,Y) = 0. Since X, is extension closed and contrava-
nanltly finite in A-mod, ther_e_ is an embedding Y < M.such that M/Y € &) and
Exty(X1, M) = 0. Clearly, M/M € X, since there is'the submodule Y/M € A3
and M/Y € A). It remains to be seen that Ext}(X,M) = 0 We know already
Extl (X, M) =0, thus we have to show that Ext!(X,,37) = 0..Consider the exact
sequence 0 — ¥ — M — M/Y — 0. Since Ext(X;,¥)) = 0'and M/Y € X,, it
follows that Extk(?t’z,f/f) = 0. R B ‘ y .

. Let us stress t}.lat the operation [ on subcategories?'iﬁs%’obvigi}isly associative, so
given subcategones.Xl,Xg,.. -» &, the subcategory X JX [ J X, consists of
the modules M which have a filtration M = M, D M, D .- D M, such that

2




M;_y/M; € A&; for all 1 £ ¢ < t. Using induction, we immediately obtain the

following result:

Corollary 1. Let A}, As,..... X,. be subcategories which are extension closed
and contravariantly finite in A-mod. Assume that Ext)(X;,X;) =0 for all j > i.
Then also Xy [ Xy [--- [ Xy is extension closed and contravariantly finite in A-

mod.

There is the dual notion of covariantly finite subcategories: Let X’ be a sub-
category of A-mod. Given an d-module M, a left X—approzimation of M is a
map f: M — X with X € X such that for any map h: X — X' with X' € A',
there is a map h': X — X'’ such that A = fh'. In case every A-module has a left
X -approximation, X is said to be covariantly finite in A-mod. And X is said to
be functorially finite in A—-mod provided X is both contravariantly and covariantly
finite in A~mod. The dual assertion of Corollary 1 is the following:

Corollary‘ 2.  Let Xy, Xa,...,Xn, be subcategories which are extension closed
and covariantly finite in A-mod. Assume that Exth(xj,X,‘) =0 forallj > i
Then also Xy [ X, [--- [ Xn is extension closed and covariantly finite in A-mod.

Applications

As first application, we will obtain Theorem 1 of [R]. Let © = {O(1),... ,0(n)}
be a finite set of .4-modules with Ext}(0(j),0(:)) = 0 for j > i. We denote
by F(©) the full subcategory of A-mod of direct summands of modules having
a filtration with factors in ©, thus, M belongs to F(©) if and only if M has
submodules M = My 2 M, 2 --- D M, = M such that M,—;/M, is isomorphic
to a module in ©. ' |

Corollary.i The subéategory F(O) is functorially finite in A-mod.

Proof: For any 1 <i < n, let X; be the subcategory of all modules which are
direct sums of copies of ©(z). Since Ext!,(0(z), ©(3)) = 0, we see that X; is closed
under extensions. Also, it is well-known and easy to see that Xj is functorially
finite in A-mod (in order to obtain a right X;-approximation for a module M, take
lg1,-.-,9¢] : M — ©(i)}, where g1,...,9: is a k-basis of Hom 4 (M, ©(7)), and simi-
larly, one obtains a left X;—approximation). The assumption Ext},(0(j),0(:)) = 0
for j > i yields Exty(X;,X;) = 0 for j > i, thus we can apply Corollary 1 and
Corollary 2 in order to conclude that X' = &) f Xo f -+ [ Xy is functorially finite
in A-mod. But, of course, X = F(0O). '

As a second application, we obtain a recent result of Smalg[S]. Let ¢ € A be
an idempotent such that e4(1 —e) = 0. Let R = ede, and § = (1 — e)A(l —e).
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Note that we may write A as a lower triangular matrix ring A4 =" [ ﬁg] with T'=
(1 — e)Ae. We may (and will) consider both R-mod and S-mod as subcategories
of A-mod, namely, we identify R-mod with the subcategory of all 4-modules
M with eM = M, and S-mod with the subcategory of all A-modules M with
eM = 0. In this way, R-mod and S-mod are subcategories which are closed under
submodules, factor modules and extensions, and thus they are functorially finite -
in A-mod. Given an A-module M, then (1 — )M is always an A-submodule
which belongs to S-mod, and M/(1 — €)M belongs.to R-mod. In particular,
Ext(S-mod, R-mod) = 0. For, given an 4-module M with a’submodule U such
that U belongs to R~mod and M/U belongs to S—mod, then'(1 — ¢)M is a direct
complement to U. R RN ,
Let R be a subcategory of R-mod, and S.a éub.céptégofs?fbfi S-mod.. Following -
Smalg[S], we denote R [ S by A~mod%. .« .0t e L TEr 0 T

Corollary.  Let R be an extension closed subcategory of R-mod, and let S -
be an eztension closed subcategory of S—-mod. If R is contravariantly finite in R- E
mod, and § is contravariantly finite in S—mod, then A-mod® is contravariantly.
finite in A-mod. If R is covariantly finite in, R-mod, and S is.covariantly finite
in S-mod, then A-mod¥ is covariantly finite in A*I}lod,: FLAN L ST

Proof: Clearly, a subcategory R of R-mod which is extension closed, or
contravariantly finite, or covariantly finite in R-mod, has the same property even
in A-mod. And similarly, a subcategory S of S-mod which is extension closed, or
contravariantly finite, or covariantly finite in “S—mod,,has’ the same property even |
in A-mod. Also, as we have noted above, we have Ext}(§-mod, R-mod) = 0,
thus Ext,(S. ) = 0. b cox et o

Both results generalize a previous observation of Grecht [G], de la‘Pena and *
Simson [PS], and Vossieck [V] on prinjective modules. Recall that-an 4-module ©
M is called prinjective, provided it belongs to A—mc;d;((_g)), where P(R) is the sub-
category of projective R-modules, Z(S) the subcategory of }iﬁjectiveiS—moduleé.,;
Thus, M is prinjective if and only if (1 — e)M is an injective -S-module, and "

o -

M/(1-e)Misa projective R—-module. Note that we have
A-mod}(s) = F(O),

witl'% O(1),...,0(m) the indecomposable projective R’mddulé;; and @( mi{—l), .o @( n)
the indecomposable injective S—modules. PP A e CE
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