A Note on Characterizations of irreducibility of Nonnegative Matrices

L. Elsner

Institut für Angewandte Mathematik der Universität Erlangen-Nürnberg D-852 Erlangen, Martensstrasse 1, Germany

Submitted by Hans Schneider

ABSTRACT

Three sufficient conditions for the irreducibility of a matrix A are given, which for nonnegative A are also necessary.

In this note we shall prove the

THEOREM. Let A > 0 be a nonnegative $n \times n$ matrix,

$$x = (x_1, ..., x_n)^T > 0,$$
 $q_i = (Ax)_i | x_i,$ $i = 1, ..., n,$
 $D = \text{diag}(q_1, ..., q_n).$

Then the following conditions are equivalent:

- (a) A is irreducible.
- (b) Rank(A-D) = n-1. There exists z > 0 such that $A^Tz = Dz$.
- (c) Rank(A-D)=n-1. There exist $z, z_i \neq 0, i=1,...,n$, such that $A^Tz = Dz$.
- (d) $A^{T}z = Dz$, $z \neq 0 \Rightarrow z_{i} \neq 0$, i = 1, ..., n.

Proof.

(a) \rightarrow (b): For s sufficiently large, B = A - D + sI is nonnegative irreducible and Bx = sx. The Perron-Frobenius theorem states among other results that s is a simple eigenvalue of B, so that Rank(A - D) = n - 1, and that there is a vector z > 0 with $z^TB = sz^T$, or $z^T(D - A) = 0$.

(b) \rightarrow (c): Trivial.

(c) \rightarrow (d): From Rank $(A^T - D) = n - 1$ it follows that z is unique up to a factor. This shows (d).

(d) \rightarrow (a): If A is reducible, we may assume $A = \begin{pmatrix} A_1 & 0 \\ A_2 & A_3 \end{pmatrix}$ with an $s \times s$ matrix A_1 (s < n). Now $(A_1 - D_1)\tilde{x} = 0$, where $D_1 = \text{diag}(q_1, \dots, q_s)$, $\tilde{x}^T = (x_1, \dots, x_s)$. Hence there is a $\tilde{x} \neq 0$, $\tilde{x}^T (A_1 - D_1) = 0$. It follows that

$$A^{T}\begin{pmatrix} \tilde{z} \\ 0 \end{pmatrix} = D\begin{pmatrix} \tilde{z} \\ 0 \end{pmatrix}.$$

This contradicts (d).

REMARK 1. The equivalence of (a), (b) and (c) in the special case $x = (1, ..., 1)^T$ was shown in [1]. The general case can be reduced to the special case by considering $X^{-1}AX$, where $X = \text{diag}(x_1, ..., x_n)$, but we feel that the proof given here is shorter and more elementary.

REMARK 2. The nonnegativity of A was used only in (a) \rightarrow (b). Hence each of the conditions (b), (c), (d) imply A irreducible also for general A. Observe that it suffices here to require $x_i \neq 0$, i = 1, ..., n.

REFERENCES

1 I. M. Chakravarti, On a characterization of irreducibility of a nonnegative matrix, Linear Algebra Appl. 10 (1975), 103–109.

, 4.

Received 18 July 1975