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ABSTRACT

Noda established the superlinear convergence of an inverse iteration procedure
for calculating the spectral radius and the associated positive eigenvector of a
non-negative irreducible matrix. Here a new proof is given, based completely on the
underlying order structure. The main tool is Hopf's inequality. It is shown that the
convergence is quadratic.

1. INTRODUCTION

Throughout this paper A will denote a non-negative irreducible N XN
matrix with spectral radius p and associated positive eigenvector p.

In [5], Noda established the convergence of an inverse iteration proce-
dure for the determination of p and p. He also showed that the convergence
is superlinear. Here we shall prove that it is at least quadratic.

This is an easy by-product of our proof of convergence, which uses on?y
the underlying order structure and not (as in [5]) the Jordan form..The main
tool is Hopf’s inequality. As it has been used for bounding the eigenvalues

#p, it is quite natural to use it for convergence proofs, too.

2. DEFINITIONS; TWO LEMMAS

(non-negative) if by >0 (>0),

trix B=(b,) is called positive
AN e e . 0, y >0 are defined in

i,k=1,...,N. We write B >0 (> 0). For vectors, y>
an analogous way.
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For a pair of vectors x,y with y >0, we define

x X [ x X
max|{ — )= max — , min{ — }= min —

iy Y iy

o) ) -

Hopf’s inequality [1, 3, 6] states: For B >0 and any pair of vectors x,y,
where y >0,

@ |»

[ Bx : x
osc(-B—y)<N(B)osc( y). (1)
Here
vpy=YRE) 71
VK(B) +1
and
Bu Bv
K(B)=jli%{max(§g)max(m)} (2)
It is obvious that
N (tB)=N(B), t>0, (3)
N(pgT)=0, p>0, ¢>0, (4)
N(D,BD,)=N (B), (5)

where D, (i=1,2) are diagonal matrices with positive diagonal entries. A
bound for N (B) is [3, 6]

N(B) ———~ = _ = mi i
( )\m1+mz’ my = maxby, m, min by. (6)
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Lemma 1. Let p>0, g>0, p=minp,, §=ming,, and B=(by) be a
positive matrix such that

|by — Pi‘h' e (7)

Then
N(B)< —. 8
(B) 3G (8)

Proof. Define B=(by), by=by/pigy, €=¢/p§. Then by (7)

maxb, <1+§  minb,>1-¢,

and hence by (5) and (6)

ReMmark. By taking p,=(m,+my)/2, q;=1, ¢ =(m,— my)/2 in Lemma
1, (8) yields the bound (6).

LemwMma 2. For a given number A,> p there is an M >0 such that

N((M—=A)")<MQA-p), p<A<A, (9)

Proof. The adjoint adj(B) of a square matrix B satisfies the relation {4,
p- 13]

Badj(B) =adj(B)B= (detB)I
In particular, for A>p,

- 1 .
(A[—A) 1= mad](?\l—zﬁ).

Hence by (3),

N((AI—-A) 1) =N (adj(AI— A))- (10)
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On the other hand,
adj(pI— A)=pq",

where g >0, A Tq =pq, g suitably normalized. Equation (9) follows now from
Lemma 1. n

3. THE ITERATIVE PROCEDURE

We define
= X
| ]| max( o ) (11)

Let {B,}, n=0,1, ... be a sequence of positive matrices commuting with A.
Assume the existence of y such that

N(B,)<y<l, n=0,1,.... (12)

For given x,>0, define iteratively

% ,,=B.x, (13)
£n+l
X = — , 14
1= TE (14)
- Ax, Ax,
?\n+1=max( " +l), §n+1=min( " +l). (15)
n+1 n+1

Ao A, are defined analogously.
We prove first some useful relations:

LemMa 3. Forn=1,2,...,

- osc(x, /p)
Mp<e 1—osc(x,/p

7S Co(A,—»p), (16)

X, -
p— ?\n~<posc(;)<C(p—- A (17)

where C, C depend on A, and C also on Ao



SPECTRAL RADIUS OF A NON-NEGATIVE MATRIX 239

Proof. From ‘|x,{|=1, n>0 we get

xn xni
lﬂosc(——) — < 1.
p Pi

N

Hence for suitable s

Xn k Ps

T Pk 1
J— - — —— __l ,
A“ P %a-?k Ps ( Px xn,s 1) < p( l—osc(xn/p) )

showing the left inequality of (16). The left inequality of (17) follows in an
analogous way. For the other inequalities we use a result in [2, Folgerung 2,
p. 72): Let x>0, >0, and Ax< ax, Az 2 Bz, and choose i so that x,/ 3 is
minimal. For any ki thereisan s<n-— 1 such that ay'=(A%); >0 and

X, X a*—B° Z\x
§<—5<b+ B —)ﬂ (18)

{(s) e
~' Nk

and

S— B x;\y A &
b,“ B—qﬂ<l<—. (19)

—

Taking x=1x,, a=A,, z=p, f=p in (18), we get

ny ~

min(x—;) < x;: <[1+C(Xn—p)}min(%)

for suitable C depending on an upper bound for )-\n, n=12, ... . According

to Theorem 1 such a bound is provided by A Thus

osc(i'i)<C(Xn—p)[l~osc(%)],

P

yielding the right inequality in (16).

Taking x=p, a=p, 3= Xy, B=A, in (19), we get for a suitable C

; A PR (x)

B~

* e
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or

This is the second inequality in (17).

THeOREM 1. Consider the procedure (13)-(15). For n=0,1,2, ...

A< Anr<p <Ky, <,
lim A, =limA, =p,
limx, = p.
If x,# p for all n, then the inequalities of (20) are strict.
Proof. If we multiply the relation
A.x, < Ax, <A x

by B, and use B, A = AB,, we get

and hence A, <A, ., )_\,,_H <}_\n. If x, % p, then ann — Ax, #0; hence A

nxn+l

—AX, ;>0 and A, <A, Similarly A <A, +1- The remaining inequalities
A, < p<A, follow from the quotient theorem (e.g., [4], II, 5.5.2). From (16),

(17) we infer the strict inequalities for x, % p. Now

X

xn+1 n'n

Ax, B Ax, Ax,
)\n+1—?\n+1=osc( +I)=osc( B )QN(Bn)osc( -
X,

(23)
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From (12) and (20), we infer (21). From (17), we get

xﬂ
lim osc( —) =()
17— oC p

or

xnt'
lim — =1, i=1,....,N.

n— 30 pi

Hence, we get (22). B

In the case of A >0, taking B, = A, Theorem 1 gives the convergence of
the usual power method. If only ‘A™ >0 for a suitable integer m, i.e., it Ais
primitive, the proof given above can be easily adapted to yield the same
result. In fact,

- ATAx, -
An-t'm - An+m=0Sc Amxn < N(A )(An— én)

More interesting is the case

B,=(NI-4) . n=0l... (24)
then x, # p. X, >p, B,>0 for all n,

If we start with an x, such that Axy# pXo,

as can be proved by induction.
Hence, Theorem 1 can be applied and gives the convergence of the

inverse iteration procedure considered by Noda [5]. Additionally, we have
the following statement about the rate of convergence:

TueoreM 2. In the iteration procedure (13)~(15) with

B,=(AJI—A)

the sequences {A,}, (A} converge quadratically to p and the {x,} quadrati-

cally to the eigentector p-.

Proof. From (23) and (9) we get

— - 2
Xn+1— _)En-i—lgM(xn_p)(}\n_ Z\__n)é M(}\n— _A_n) )

e

e
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ie., {)_\H—Z\_n} converges quadratically to zero. It is now obvious from (16)
and (17) that the sequences

also converge quadratically. [

Note udded in proof.

The author learned that Theorem 2 has also been proved in Stephen M.
Robinson-Karl Nickel: Computation of the Perron root and vector of a
nonnegative matrix, MRC Technical Summary Report #1100, September
1970, Mathematics Research Center, University of Wisconsin-Madison,
Madison, Wisconsin 53706.
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