Another Note on a Theorem of Minc on Irreducible Nonnegative Matrices

LUDWIG ELSNER

Fakultät für Mathematik der Universität Bielefeld. Postfach 8640, 48 Bielefeld 1, West Germany

(Received April 28, 1977)

A short proof is given for a part of a theorem of Minc.

Minc [1] proved the following.

THEOREM Suppose A is a nonnegative $n \times n$ matrix and for some permutation matrix P

$$A = P \begin{bmatrix} 0 & A_1 & 0 & \dots & 0 \\ 0 & 0 & A_2 & \dots & 0 \\ \vdots & & & & & \\ 0 & & & 0 & A_{h-1} \\ A_h & 0 & \dots & 0 & 0 \end{bmatrix} P^T$$
 (1)

where the zero blocks on the diagonal are square. Then A is irreducible if and only if A has no zero rows and columns and $B = A_1 A_2 \dots A_h$ is irreducible.

Pullman [2] gave a short proof for the if-part using the following fact:

Define the relation \leq for nonnegative *n*-tuples by writing $x \leq y$ iff $y_i > 0$ whenever $x_i > 0$ for $1 \leq i \leq n$. Then a nonnegative matrix C is irreducible iff $Cx \leq x$, $x \geq 0$, $x \neq 0$ implies x > 0.

Here we note that also the "only if"-part can be proved by using the same device. Assume $Bx_1 \ll x_1$, $x_1 \geqslant 0$, $x_1 \neq 0$. Define iteratively nonnegative

vectors x_h, \ldots, x_2 by

$$A_h x_1 = x_h \tag{2}$$

$$A_r x_{r+1} = x_r$$
 $r = h - 1, ..., 2$ (3)

Then $Bx_1 \ll x_1$ gives

$$A_1 x_2 \leqslant x_1 \tag{4}$$

(2), (3), (4) imply $P^TAPx \le x$, whence $APx \le Px$, for the nonnegative vector $x = (x_1, x_2, \dots, x_h)^T$, $x \ne 0$. A being irreducible gives Px > 0, in particular $x_1 > 0$. Hence B is irreducible.

References

- [1] H. Minc, The structure of irreducible matrices, *Linear and Multilinear Algebra*, 2 (1974), 85-90.
- [2] N. J. Pullman, A note on a theorem of Minc on irreducible nonnegative matrices, Linear and Multilinear Algebra, 2 (1974), 335-336.