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ABSTRACT

Two real matrices A, B are S-congruent if there is a nonsingular upper triangular
matrix R such that A=R7BR. This congruence relation is studied in the set of all
nonsingular symmetric and that of all skew-symmetric matrices. Invariants and
systems of representation are given. The results are applied to the question of
decomposability of a matrix in a product of an isometry and an upper triangular
matrix, a problem crucial in eigenvalue algorithms.

INTRODUCTION

In studying the theoretical foundations of certain algorithms for the
numerical determination of the spectrum of a matrix the following problem
arises: For given real symmetric (skew-symmetric) nonsingular matrices A
and B, determine if there exists an upper triangular matrix R such that

A=R"BR.

This defines an equivalence relation, which we study here in some detail
(Secs. 3, 4). It turns out that it is useful to investigate also the more general
equivalence relation ~, where A ~ B means that there exists a lower

T T . .
triangular nonsingular matrix L and an upper triangular nonsingular matrix
R such that A=LBR (Sec. 2). In both cases we give invariants and

representatives of these equivalence relations. N
In Sec. 5 we apply some of the results to the question of decomposability
of matrices in the form G-R, where G is an isometry of a given bilinear form
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and R is an upper triangular matrix. This decomposability is crucial fqr
certain numerical algorithms for the algebraic eigenvalue problem. It is
shown that only in a few cases is the set of decomposable matrices not too
small. These cases are studied separately at the end of Sec. 5.

1. NOTATION

In this paper all matrices are real. We denote the set of all nXm
matrices by M, . the n X n matrices by M,, the nonsingular n X n matrices
by GL,,, the symmetric matrices in GL,, by S,, the skew-symmetric matrices
in GL,, by SK, the upper (lower) triangular matrices in GL,, by T, (T, ),
the matrices in T, (T,) with unit diagonal by T}, (T,,), the nXn
permutation matrices by I1,, the diagonal matrices in GL,, by D, and those
with diagonal *1 by D,. For A=(g)EM,,, we denote by A,, the
submatrix consisting of the first s rows and the first ¢ columns of A.

2. T-CONGRUENCE

DEFiNITION.  Two matrices A, B €GL,, are called T-congruent (triangu-
larly congruent) if there exist LET, and R €T} such that

A=LBR. (1)
We write A -T-« B.
We observe at once
A=L, ;B R, i,j=1,...,n, (2)
and hence
A=B = rank(A,)=rank(B,), i,j=1,...,n. (3)

In order to establish the reverse implication (Theorem 2) we have to prove

_ Tueorem 1. For A€M, there exist LET., PEI, and an upper
triangular matrix R such that '

A=LPR. (4)
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If AEGL,, then there exists exactly one P €11, such thatA—-;P.

Remark. This result may be somewhere in the literature. It can be
obtained easily from a result of Della Dora [1, II. V.8]; hence we give here
only an indication of the proof.

Proof Define recursively a permutation ),...,7, and matrices All=

(a{”), r=0,...,n, by the following procedure: A(O)—A L={je{l,...,n},
a,1’=7‘=0}
min I, if I,#9,
T, =
' |anyj€{l,...,n} otherwise.

Eliminating the other nonzero elements in the first column by row opera-
tions always using row 7, gives A
If 7,,...,m,_, and A" ! are constructed, define

Ir={1€{1’ n} I#WI’ Ty (r_l)#o}

and

minl, if I+,
any j#my,...,m,, otherwise.

r

Eliminating all elements a!'~V+0, j7m,,...,m, (for all these, j >m,), by using
row 7, only, we have A @

By constructlon A®=L-14 for a suitable LET,, and a¥=0 for
i#m,...,m, j=1,...,n. Hence A®=PR, where R is upper tnangular and
P=(p,)=(8, )EH Thlsshows( ). If A€GL,, then RET, and A ~ P. By

(3) the ranks of P, ; are determined by A. But the ranks determine P umquely
as

7, =min{ v : rank(P, ;) =rank(P, ;_,) +1} (5)
fori=1,...,n, with rank(P, o) =0 formally. u
Tueorem 2. Let A,BECGL,. Then

A~ B iff rank(Ai)--rank( ) i,j=1,...,n.
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Proof. Let rank(A, ) =rank(B; ;). According to Theorem 1,

P — H
ATPeHﬂ, BTQE n

and rank(P, ;) =rank(Q, ). Equation (5) gives P=Q and hence A = B. This
together with (3) proves the theorem. n

By embedding matrices of M,, ,, in quadratic matrices and using Theo-
rem 1, similar results can be obtained for rectangular matrices.

Tueorem 3. For A€GL, there exist RET, ,, LET, ,, PEIL,, D €D,
such that

A= LPDR. (6)

P and D are uniquely determined.

Proof. In view of Theorem 1, only the uniqueness of D has to be shown.
Let A=L,PDR,= L,PAR,, where A€ D,; then

PD=LPAR, L=L['L,€T,,, R=R,R;'E€T;

n, 1>

or P'L™'PD=AR. Comparison of the elements in position (i,4) gives d; =4
|

Because of the importance of the ranks of A, , the following result is of
some interest.

Tueorem 4. For mn given integers r,; (i=1,...,n, ji=1,...,m) the
following are equivalent:

(1) There exists AEM,, ,, such that

rank(A,’,-)=ri,i, i=1,...,n, j=1,...,m;
@)

(1) 0<r,’,<min(i,j),i=l,...,n,1'= .
(id) i<t a<n;+li=1..n,j=1,

,m—1,
(i) r,, <£,,;<r,;+1Li=1..,n-1j=1,...,m,
(V) ny=r 0 =n=n,,, for k<i,i=L1,...,n,j=1,....m—1,

M ny=ta; = =1, fork<ji=1,...,n—1, j=1,....m.
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Proof. (1)=(2) is obvious. To show the reverse implication we assume
that r, ; with (2) are given.
Let 1, =0, k=1,...,n. We define

Ij={k:rk,f=1+rk,j—l}’

’ n+1 otherwise

}, j=1,...,m,

and
A=(aﬂ)=(8”(,)), i=l,...,n, j=l,...,m.

Then it is not difficult to show that A satisfies (1). n

Let us remark that the inequalities in (2) are not independent. In fact we
need only r, , <1, k=1,...,n, (ii), (iii), (iv) to prove that the matrix A given
in the proof of Theorem 4 satisfies (1). Hence the remaining inequalities
follow.

3. THE SYMMETRIC CASE

DrerFiNiTION. Two matrices A, B €S, are called S-congruent (symmetri-
cally triangularly congruent) if there exists R €T, such that

A=R’BR. (7)

We use the notation A o B.

We shall establish results similar to those referring to T-congruence. Let
S,={PD:Pell, P=P", D=diag(d)ED,, d=—-1=p,;=1}.  (8)
S, can be described as the set of all matrices which originate from

Synmmetric permutation matrices by eventually replacing 1’s in the diagonal
by —I’s.

The following is a result analogous to Theorems 1 and 3.

TueoreM 5. For any A €S, there exists R €T, and a unique Q €S,
such that
A=RTQR. (9)

-
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Proof. As a first step we prove the following: Let B=(b,) €S,,. Denote
by I(B) the maximal set of indices i such that for i € I(B) b‘,‘#=0 for exactly

one k€ (1,...,n} and this k is in I(B). If I(B)# {1,...,n}, then it is possible
to find R ET+ ", such that

I(R"BR) 2 I(B).

Let i =min{k:k & I(B)}, j=min{k:b,#0)}. Then i,j& I(B). If b, #0, k>,
eliminate by by subtracting b,/ b; times the ith row from the kth row. In
the same way eliminate b, by a column operation. Hence we get R, €T,
such that B=R/BR, has in addition only one nonzero element in row and
column i. If i=7, then I{(B)u{i}CI(B) and we are ready.

If i %, one has in addition to ehrmnate the nonzero elements bk and by,
(k>1) by a similar procedure. Only the ehmmatlon of bﬂ has to be modlfled
To ensure the symmetry of the result, subtract 1 b, i/ by b, times the ith column
from the jth column and similarly for the rows. Now for the resulting matrix,
which is of the form R'BR, R€E€T, , one has I(B)u {i,j} CI(R RBR).
Starting with B=A we get after finitely many steps R €T}, such that
Q=RT"AR satisfies I(()={1,...,n}, i.e., in each row and column of Q there
is exactly one nonzero element. We can find D, € D, such that in D,QD,=
Q the nondiagonal nonzero elements are 1, whlle the diagonal nonzero
elements are +1 or — 1 accordmg to the sign of this element in Q Hence
QE€S,,. Setting (RD,) ' =R, (9) is established.

Wntmg Q=PD as in (8), we see from Theorem 1 that P is uniquely
determined.

If A=R"PDR=S"PAS, R,SET}, PD,PAES_, then

PD=RTDPADR,

where R €T, DR= SR ~!. Theorem 3 gives
PD=DPAD,
which implies
pu(d;— A d?)=0.

Hence for p, =1 we have d,=A

i» While for p, =0 the definition of 5, gives
dy=A,=1. This shows D= A

The description of the invariants of ~ is not so easy. Obvnousl)’ the
ranks of A, ; are invariant, and likewise the “numbers sgndet(4, ;), i=1,....%
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but the two matrices A,A,ES,

0 0 0 1 0 0 0 1
0 1 0 0 0 -1 0 0
A = =
170 o -1 of Az 0 0o 1 ol
1 0 0 0 1 0 0 0

129

which by Theorem 5 are not S-congruent, show that in general these

numbers don'’t tell the whole story.
A complete characterization is given in Theorem 6.

We need some preparations. Let B* €M, denote the Moore-Penrose

inverse of B €M, , i.e., the matrix uniquely determined by
BB*B=B,
B*BB*=B",
BB*=(BB*),
B*B=(B*B)".
(e.g. [8]). The range of B is denoted by R(B), i.e.,

R(B)={bER":3xER", Bx=b)

For B €M, (n > 2) symmetric we consider the following partition:

where B,_, €M, _,, b,_;EM, _, 1, b,, €ER, and define
d(B) = bnn - bnT_ lBﬂtl n—1°
For later reference we state the well-known fact

detB
detB, _;

which is also implied by (15).

d(B)= if detB,_,#0,

(10.i)

(10.ii)
(10.iii)

(10.iv)

(11)

(12)

(13)

1
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Lemma. For B &M, symmetric, the following are equivalent:
(1) rank(B)=rank(B,_,)+1

n—1

2) b,_, ER(B,_y). d(B)#O.

In this case

B";(g"_l d((;))' (14)

If under the conditions (1) or (2) B < C for some symmetric C EM,, then

sgnd(B) =sgnd(C).

Proof. We remark that if B,_,x=b,_,, then x™B,_,x=bT_\B," b,

and
(1 o a9 09

Hence (2) implies (1). If b, _, & R(B,,_,), then
rank(Bn—l“)n—l) =1 +rank(Bn—l)’

and if (1) is satisfied, the last row of B is a linear combination of the first
n—1 rows; in particular

b,y ER(B';F—l) = R(Bn—l)'

This shows (1) = b,_,ER(B,_;) and (15) gives d(B)#0. Let B'-S-«C. Ir
view of (15} we assume b,_, =0, d(B)=b,,. There exists

such that C= R7BR. From

C= ( R/B,_\R, R{B, _r
t'B, \R, r"B,_,r+p%,,
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we get
d(C)=r"B,_,r+p°,,—1'B,_,R,(R{B,_,R,) " RIB,_,r
= 0B,
the last equation following from (10.i) and the nonsingularity of R;. |

For A €S, define

dl(A)=all’ d,

't

(A)=d(4;,), i=2....,n. (16)

THEOREM 6. For A,B €S, the following are equivalent:

(1) A~ B;

2) rarj( (A; ;) = rank (B, ), i,j=1...,n. Ifi=1or rank (4; ;) =1+rank
(Ai—l,i——l)’ then

sgnd,(A) =sgnd,(B).

Proof. (1)=(2) follows from the preceding lemma and Theorem 1. The
case i =1 is obvious. .

(2)=>(1): We may assume A,BES,, A=PD, B=FPD. The rank condi-
tions give P=P, We show that if D=diag(d,), D=diag(d,), then d;=d,. If
pi=0, then d;=d =1 according to the definition of S,. If p;;=1, then
dy=sgnd,(A)=sgnd,(B)=d,. ¥f i>2 and p,=1, then 1+rank(4,_,, ;)=
rank(4, ,). Here obviously d, = d(A), d,= d(B). Hence d;=d, for all i. =

COROLLARY 6. Let AES, such that det(A, )0, i=1,...,n. Then for
B €S, the following are equivalent:

A~ B, (17)

sgndet(A, ;) =sgndet(B;;), i=L...n. (18)

Proof. (17)=>(18) follows by (2).
If (18) is satisfied, then det(B, )70, i=1,...,n, and hence rank(4,;)=
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rank(B, ;) = min(i, ). By (13) sgnd,(A) =sgnd,(B) for i=2,...,n, and the same
for i=1 by (18). Theorem 6 shows A < B. [ ]

This corollary can also be easily obtained by using well-known results on
triangular decompositions (e.g. {9]).

4. THE SKEW-SYMMETRIC CASE

DerFiniTiON. A, B €SK,, are called S-congruent if there exists R €T,
such that

A=RT"BR.

Let 9, denote the set of all matrices M such that M contains exactly one
element *1 in each row and column, the rest zeros, M= — M7 and m, >0
for i <j. I, consists of all matrices which originate from symmetric permuta-

tion matrices with zero diagonal by setting the 1’s below the diagonal equal
to —1.

Tueorem 7. For any A €SK, there exists R €T} and a unique TIEJ,
such that

A=RTIIR.
For A,B €85K,, the following are equivalent:
(1) A~B;
(2) rank(4, )= rank(B, ), i,j=1,...,n.
Proof. 'The first part is proved as in Theorem 5 by symmetric elimina-
tion. It is easy to see that Il is uniquely determined by the numbers
rank(4, ;) [see (3) and (5)]. This proves also (2)=>(1). (1)=>(2) follows from (3).

u
Let us remark that SK, @ implies n =2k even.

CoroLLARY 7. Let AESK,, detA,, ,,#0 (i=1,...,k), and B €SK,.

A~B <« detBy,#0, i=1,...k (19)
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Proof. 1t is easy to prove by induction on k that the only matrix IIEJ,
with detIl,, ,,;#0, i=1,...,k, is given by

Hence for a matrix C €SK,, we have

C“"S-'J L—4 detC2L2,‘¢O, i=1,...,k.

This proves the corollary. u

5. APPLICATION TO DECOMPOSABILITY

We study now the decomposition of a nonsingular real matrix A into a
product G-R of a matrix G in a fixed given group § and an upper triangular
matrix R €T, :

A=G-R. (20)

This decomposition plays a certain role in solving linear systems and eigen-
value problems: If G is easily invertible,

Ax=r
is split into two easily solvable systems,

Gy=r,

Rx=y.

On the other hand, Della Dora has shown in [1] and [2] that for big enough
G -T? the algorithm

A0.=As
A =.G|'Bi’

‘ i=0,1,...,
A1 = RG,

under certain assumptions yields a sequence {A;} converging essentially to
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an upper triangular matrix the diagonal of which consists of the eigenvalues
of A. We consider the case that § is the group of isometries of a symmetric
or skew-symmetric bilinear form.

Let ] be a nonsingular real symmetric (skew-symmetric) matrix. Then
(x.y); = x'Jy (21)

describes a symmetric (alternating) nonsingular bilinear form (see e.g. [4]),
and

G ={GeEM,:GIG=]} (22)

is the group of all isometries:

GeG o (xy);=(Gx,Gy); forall x,y€R". (23)
In addition define
M,={GR:GEG,RET;} =G, T} (24)
and observe
AEM, & ATA~J. (25)

Indeed from A €M, one has ATA=RTGTIGR=RTJR, ie., ATA 7/ On
the other hand A 7JA Y J means the existence of R €T;" with AJA=R"JR,
whence (AR "')'JAR "'=J or AR '€,

We want to study M,. Let us remark that we need only consider the

(I:{ases ]+ €9, and J €9,,. This is a consequence of the following relation: For
ET?

Mgpyr =R “'M,R. (26)
Proof of (26).
A€EMpng < A'RTJRA=R]RTJRR,
< (RAR Y)"JRAR !
=(RR,R~')"J(RR,R ")

< RAR™'eM,.
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The next theorem shows that in most cases M, has Lebesgue measure zero in
M,, so that these decompositions are not suited for numerical computations.
THEOREM 8. Let J satisfy one of the following conditions:

(i) J €S8,, det], ;=0 for some 1<i<n-—1.
(i) J €SK,, det], ;=0 for some i=2k, 1 <2k<n-—-1.

Then M, is of Lebesgue measure zero in M,,.

Proof. In case (i) it follows from Theorem 6 and in case (ii) from
Theorem 7 and (25) that A € M, satisfies

f(A)=det{ATJA),;=0. (27)

Now f is a polynomial, homogeneous of degree 2, in the unknowns ;. It is
known (see [3], p. 83 and p. 84) that there exists K €GL, such that

K7K =diag(L,...,1,—1,...,—1)  in case (i) (28)

and

KTK =diag(J,,....],), J,=(_‘1’ 3) in case (i).  (29)

In any case f(K)= + 1. This shows that M; is contained in the algebraic set
{AEM,, f(A)=0}, which is of Lebesgue measure zero, as f#0.
We must still study

]=diag( i) i==l (30)

in the symmetric case, and

J=diag(), i=1L....k, L=11=(_(1’ (1)) n=2k,  (31)

in the skew-symmetric case, as these are the only matrices in 3, and 9,, not
satisfying the conditions of Theorem 8. This is done in the following

theorems.
For given n and p (1<p<n), consider the set I, of' all sequences
(f1s+--»ju), 7= £ 1, p of the j;’s being + 1. For any i=(jp. i) EL, let

J,=diag(j1.- - fn)-
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We remark that there are exactly pl(n — p)! permutations II such that
J,=T"J11

and that there are (g) elements in IP.

Tueorem 9. Let J=], j€L,, AE€CGL,. Then the following are equiv-
alent:

(1) det[(A"JA), 150, i=1,...,n.
(2) There exist S € G, PeH , R €T, , such that

A= SPR.

n (2) the matrices SP and R are uniquely determined, if in addition the
diagonal of R is chosen to be positive.

Proof. (1)=>(2) is attributed to Graeyv [1]; we give a proof for complete-
ness. According to Corollary 6, A TJA < J, where J €D]. As J is congruent to

I T Elp, we have J=PTJP for a suitable P &€11,,. Therefore there exists
R €T, with ATJA= R"PTJPR. This shows A(PR) '€ G,

(2 )=>(1) From A=SPR one has ATJA= RTPTST]SPR R™PTIPR, i
ATJA ~ P"JP, and hence (1).

Let us assume A=SPR=S'P'R’. Obviously ATJA ~ PTJP €5, and
ATJA ~ - PTJP' €S, which implies PTJP= P TP’ Hence the matrix C=

(8'P’)” 'SP, which by assumption is equal to R°R ™7, is in G,. On the other
hand C €T, and we see from CT/=JC ! and the positivity of the diagonal
of Cthat C=1. .

We remark the obvious fact (in view of corollary 7)
AEM; < sgndet(ATJA),=j,---j, i=1,...,n.

Hence M, is open, but not dense in GL,_.
For fixed J and for all P €11, let

Np ={SPR:SEC,,RET:}
Then

N I = M I U N P = Mn
P
and we have the following
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THEOREM 10. The following are equivalent for P,Q €11,,:

(1) NPzNQ’
(2) NpN Np# D,
(3) PQTEG,.

Proof. (3)=(1): follows from SPR=S(PQT)QR.

(1)=>(2): Trivial.

(2)=(3): If A=S,PR,=S,0QR,, then ATJA=RPJPR,=RjQ"JQR, or
PTIPR=R ~TQ"Q, R=R,R; ". This shows R=diag(+1), PJP=QQ,
and PQTEC,. o

We see that except in the case J=1I (i.e., p= n), M, is not dense, but that
we have (;) different open sets of matrices Np, the union of which is dense
in M, .

From Theorem 9 we find that for given P,Q the transformation
SPR € N(P)—>SOR €N(Q)

is one-to-one if we restrict ourselves to R triangular with positive diagonal.
In this sense the different Np’s are of the same “‘size.”

As another consequence, G; for J €L, p<n, does not give a matrix
decomposition suitable for eigenvalue algorithms. Nevertheless there exists a
modification based on this decomposition, the so-called HR algorithm (see

(5], [6], [7], [10]).
In the skew-symmetric case things are simpler. It remains to study the
case (31) 2k=n):

]=Ik x]p

where I, is the k-dimensional unit matrix,

(L3 5)

and X denotes the tensor product [3, p. 8].

Turorem 11. For A EGL, the following are equivalent:

(1) AEM,, i.e, A=SR,SEG, RET,;
(2) det[(A7JA); 170, i=2,4,...,2n.
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Proof. (1)=>(2): As ATJA Y J and detJ,, 5,70, Corollary 7 yields (2).
On the other hand, if (2) is satisfied, Corollary 7 gives A TJA -;] and
AEM, .

Remark. Theorem 11 implies that M, is big enough, indeed M,=M,.
This can be found in [2] already, but not the characterization (2). In [2] some
algorithms for the actual computation of the decomposition are given.

The author wants to thank F. Uhlig for stimulating discussions.
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