On Matrices Leaving Invariant a Nontrivial Convex Set
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ABSTRACT

A real square matrix A leaves a nontrivial convex set invariant if there exists a
convex set C, which is not a linear subspace, such that A(C)CC. It is shown that this
is equivalent to the statement that A has an eigenvalue A with A=0 or A|<1.

INTRODUCTION

There are some results in matrix theory relating geometrical and spectral
properties of a matrix. We mention only the following:

THEOREM a. A real square matrix leaves a bounded symmetric convex
set with nonvoid interior invariant if and only if all eigenvalues have moduli
less or equal to 1 and the eigenvalues with modulus 1 have index 1.

TaEOREM B. A real square matrix leaves a solid pointed closed (convex)
cone invariant if and only if the spectral radius is an eigenvalue and has
maximal index among all eigenvalues with the same modulus.

Theorem a is only a reformulation of the result in [3, p. 47] using the
well-known relation between vector norms and convex bodies in R", while
Theorem 8 can be found in [5], [1, Theorems (3.2), (3.5)], and for the case of
compact operators also in [2, Theorem 3.1]. Several other results of similar
type are mentioned or proved in 21, [} [7].
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What can be said in general about the spectrum of a matrix A if A leaves
some convex set invariant? To exclude trivialities we restrict ourselves to
nontrivial convex sets. Here we call a convex set nontrivial if it is nonvoid and
not a linear subspace. The purpose of this note is to prove that A leaves a
nontrivial convex set invariant if and only if A has an eigenvalue A such that
either A>0 or |A\|<1 (Theorem 1).

This will be shown using two results which characterize the existence of a
nonnegative real eigenvalue, and of an eigenvalue with modulus less than or
equal to 1, of a matrix A by the existence of certain sets invariant under A
(Theorems 2 and 3).

Before stating the results explicitly, we collect the necessary notations and
concepts, which can be found mostly in (4, §8, pp. 60-65], or in [8].

We call a nonvoid set K CR" a cone if for a,B=0, aK+BKCK. The
linear subspace L=KN(—K) is called its lineality space. According to the
definition given above, the cone K is nontrivial if and only if K+ L. The
recession cone K| of a convex set C is the set of all y such that x+AyeC for
all x€C and all A=0. K, is a convex cone which is closed for C closed. If C is
closed and A(C)CC, then also A(K;)CK,. This can be seen easily by using
Theorem 8.3 in (4, p. 63].

A set of the form {z: y"2>0), where y+0, is called a half space. We
finally remark that if C is a nontrivial convex set, then its closure is also

nontrivial. This can be shown by using a separation theorem for convex sets
(e.g., Theorem 11.3, p. 97 in [4])

RESULTS
We now state the results.

TuEOREM 1. For a real square matrix A the following are equivalent:

(a) There exists a nontrivigl convex set C such that A(C)CC.
(b) A has an eigenvalue A such that A=0or A\|<1.

THEOREM 2. For a real square matrix A the following are equivalent:

(a) A leaves a half Space invariant,
(b) A leaves a nontrivial cone invariant,
(c) A hasa nonnegative real eigenvalye.

THEOREM 3.  For g req] Square matrix A the following are equivalent:

(@) A leaves a nonvoid bounded set S, §+ {0}, invariant.
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(b) A leaves a nontrivial bounded convex set C invariant.

(¢) A leaves a closed nontrivial convex set with trivial recession cone
invariant.

(d) A has an eigenvalue A such that |A\|<1.

PROOFS

We start with the proofs of Theorems 2 and 3.

Proof of Theorem 2. We shall show (a)=(b)=(c)=(a).

(a)=(b): Trivial, since a half space is a nontrivial cone.

(b)=(c): Let K be a nontrivial cone and A(K)CK. By restricting A to the
invariant subspace L, =K-—K, if necessary, we may assume that K has
interior points. Hence the dual cone K*={I€L}, I(x)=>0 for all xEK}isa
closed, pointed, nonvoid cone (see e.g., [1, (2.8))). AT, the transpose of A
considered as mapping L, —L,, leaves K* invariant. Again, we may assume
that K* has interior points, and by Theorem B above, AT has a nonnegative
eigenvalue p. This shows that (c) holds.

(c)=(a) : If p=0 is an eigenvalue of A, then there exists a left-hand
eigenvector yT #0: y’A=py’. As yx=0 implies y'Ax= py'x=0, A leaves
the half space {z: y"2=>0} invariant. u

Proof of Theorem 3. We shall show (2) = (b)=(c)=(d)=(b).

(a)=(b): Denote by C the convex hull of S. Then C is a nontrivial
bounded convex set, and from A(S)CS we have A(C)CC. (b)=(a) is trivial.

(b)={(c): We may assume that C is closed. As C is bounded, its recession
cone K is {0} (see [4, Theorem 8.4, p. 64]), hence trivial. This proves {(c).

(c)=(d): Let C be closed and convex, A(C)CC, and its recession cone K
trivial. If K= {0}, then C is bounded and so is the convex hull H of CU(—C).
As A(H)C H, Theorem « gives the existence of an eigenvalue A with A|<1.
So suppose K 5 {0}. As K+ R" (otherwise C=R"), the decomposition R"=K
@K™ is nontrivial. Let C; =K* NC. Then C,# {0} and C, is bounded. Let P
denote the orthogonal projection of R" onto K*. Then from the well-known
relation (see [4, p. 65]) C=L&(L* NC), where L is the lineality space of K,
and from the fact that =K, we have C=K®C;; hence P(C)=C, and
PA(C,) CPA(C)CP(C)=C,.

PA maps the bounded (closed) convex set C, into itself, and hence [see the
first part of (c)=(d)] PA restricted to K~ has an eigenvalue A, with A|<1. If
we choose a basis by, ..., b, of R", where by,..., b,€K and b, ,,..., b,EK™,

-----
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then in the block decomposition

A= (All Ai2) }’
Azl An }n—r

A, =0 because A(K)CK and A,, =PA/K™*. This shows that the eigenval-
ues of PA /K are also eigenvalues of A. .
(d)=(b): Let x #0 be an eigenvector corresponding to A, Ax = Ax. If A is
real, then x can be chosen real and A leaves the bounded convex set
C ={ax: —1<a<1) invariant. If \ is complex, A # A, then x = y + iz with
y, z real and linearly independent. A leaves the subspace L spanned by y, z
invariant and has there two different eigenvalues A, A, |A|=|A|<1. Hence by

Theorem a, applied to the restriction of A to L, we see that A leaves a convex
bounded set invariant. n

Remark. If (d) holds, it is also possible, by using the “real” Jordan
canonical form, to construct a convex set C with trivial recession cone and
interior points, such that A(C)CC.

Proof of Theorem 1. (a)=(b): We may assume that C is closed. Then A
leaves the recession cone K; of C invariant. If K, is nontrivial, then we see
from Theorem 2 that A has a nonnegative real eigenvalue. If K, is trivial, then
we see from Theorem 3 that A has an eigenvalue A, with |Al<L

(b)=(a): This is an immediate consequence of Theorems 2 and 3. .

I thank Hans Schneider for his valuable comments. The proof of Theorem

3, (c)=(d), presented here is essentially his and simplifies my original
argument considerably.

I thank Paul Binding for discussions.
This note is based partly on results obtained in 1968-69 during a visit of
the National Research Institute for Mathematical Sciences (NRIMS) of the

Council for Scientific and Industrial Research (CSIR) in Pretoria (South
Africa). Discussing [5) revived the interest in these results.
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