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ABSTRACT

Several “distances” between the spectra of two matrices are discussed and
compared. Optimal bounds are given, which enable us to reduce certain bounds on
the eigenvalue variation of matrices by a factor of about two. The results of Bhatia and
Mukherjea and of Bhatia and Friedland on the eigenvalue variation are derived in an
elementary way using results of Henrici on the spectral variation.

INTRODUCTION

It is well known that the eigenvalues of an n X n matrix A depend
continuously on the elements of A. In many applications, e.g. inverse eigen-
value problems, more specific information is required. For the gener_al case,
quantitative results on the change of the spectrum have been obtained by
Ostrowski [11], by Henrici [8), and recently by Bhatia and Mukherjea [3] an'd
by Bhatia and Friedland [5]. It is the aim of this paper to develop their
results.

The two main results are the following.

In Theorem 1 we derive a comparison between two measures for the
distance between the spectra of two matrices, which is sharp. It allows us to
reduce the bounds on the eigenvalue variation of two matrices in the general
case, which are mentioned above, by a factor of about 2. -

Then we give a new derivation and slight improvement of the rgsults in
[3} and [5), based on Henrici’s result in {8]. Indeed, they can be obtained by
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elementary inequality manipulations with real functions. Together with the
fact that Henrici's bound is proved using simple norm estimates of the

resolvent, this shows that a short and elementary derivation is possible,
avoiding the use of the characteristic equation.

1. NOTATION AND BASIC RESULTS

For two complex n X n matrices A and B with spectrao( A)={A|,...,A, }
and o(B) = {y,,...,4, ), where the eigenvalues are counted according to their
algebraic multiplicities, we introduce the following “distances” between the
spectra:

So(B)= max min |, — p,], (1.1)
i

the spectral variation of B with respect to A (see [7])

hB)= max S,((1—t)A+tB); (1.2)
O0=st=<1
and

v(A, B)= min max |\, |, (1.3)

the eigenvalue variation of A and B. Here the minimum is taken over all
permutations 7 of {1,2,...,n}. We shall use the Euclidean matrix norm

1/2
”A”E:(Elaiklz) (1.4a)
ik
and the spectral norm
| All, = p(AHA) 2, (1.4b)

Here p(A) denotes the spectral radius of A.

The main result connecting the different “distances” defined above is the
following,

TrHeorem 1. For two complex n X n matrices A, B,

v(A, B)<(2n—1)h,(B) (1.5)
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and
v(A, By<a max{h,(B), hg(A)}, (1.6)

where
| n ifnisodd,
a"_{n“l if niseven. (L7)

Moreover, the constants 2n—1 and a,, cannot be improved.

Proof. (1.5) may be proved adapting the argument used by Ostrowski in
(L1, p. 276 ff.]. This adaptation is not new: see the remarks in [8, 4.4, p. 35}
and the remark referred to in that remark. For completeness let us indicate
this proof.

We may interpret h,(B) geometrically by saying that the spectra of
(L—t)A + B, t€[0,1], are contained in

KA: U C(Ai’hA(B))’

i=1

where C(A;r)={z€C: |z~ A| <r}. As the eigenvalues of (1—t)A+1tB
depend continuously on ¢, each connected component of K, contains as
many eigenvalues of A as eigenvalues of B. Matching eigenvalues in the same

connected component yields (1.5).
Turning to the proof of (1.6), denote max(h,(B), hz( A)) by 6. We may

interpret this geometrically by saying that the spectra of (1—¢)A +¢B are
contained in

KA: U C()\,,S) and KB: U C(p‘t’a)

As shown above, each connected component of K, and of K B contains as
many eigenvalues of A as of B. In [7] the following theorem is proved by

graph-theoretical means, using Hall’s theorem.

TuroreEm 2. Let A,...A,, fty,...,}t, be 2n points in the complex p?ane,
such that each connected component of U |C(A;,1) containing p circles
contains exactly p of the numbers ..., and each connected component of
UC(p.,., 1) containing p circles contains exactly p of the numbers A,,..., A .
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Then there is a permutation w of {1,...,n} such that fori=1,...,n

Mi_.“w(i)lgan- (1.8)

Applying this result establishes (1.6).

We finally show that the bounds given in (1.5) and (1.6) are sharp. For
(1.5) consider the example

A = diag(0,2,4,...,2n —2) and B=(2n—1)diag(1,...,1).
Then h,(B)=1 and v(A, B)=2n—1.

For (1.6) and n = 2k +1 odd we consider

A=diag(0,...,0,2,4,...,2k),

S !
k+1

B=diag(1,3,...,2k—l,2k+1,...,2k+1).

k+1

Here hy(B)=hg(A)=1and v(A, B)=2k +1=n.
If n =2k even, we take

A=diag(O,...,0,2,4,...,2k).
k

B=diag(1,3,...,2k—1,2k+1,...,2k+1)

k
where hy(B) =hg(A)=1and v(A, B)=2k—1=n—1. u

The importance of the bounds (1.5) and (1.6) lies in the fact that most of
the bounds for S,(B) available in the literature are also bounds on k A(B) and
on max(hy(B), hz( A)) [see (2.2), (2.4), (2.6)]. Hence they also give bounds on
v(A, B) via (1.5) and (1.6). While those obtained by (1.5) are in the literature
(see {3, 5, 11]), the bounds via (1.6) are apparently new and improve the
known results by about a factor 3. See also Remark 3 at the end of Section 4.

It should be noted that (1.5) and (1.6) stay true if h 4(B) is replaced by
max{S,(C(t)), 0=t <1}, where C(-) is a continuous map from [0, 1] into the
set of all complex n X n matrices such that C(0)= A and C(1)=B.
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2. BOUNDS ON THE SPECTRAL VARIATION

There are two ways for estimating the spectral variation of B with respect
to A. The first and most employed uses the characteristic polynomials. If
@(x)=det(x] — A), x(x) = det(xI — B), and M is a bound on the eigenvalues
of B, then it is obvious that

1/n
Su(B) < (max{|p(x)— x(x)], |x| <M})"". (2.1)
This approach is used by Ostrowski in [11, Appendix K], who shows that
S.(B)<(n+2)M'"'/"llA— BIl, (2.2)

where

1
M:max(laifl’lbii”’ "'AIH:;;Zlaii" (2.3)
i i

Other bounds derived in this way are given by Bhatia and Mukherjea in
[3]:

S(B)<C(n)'/"ML'/"|A—BII/", (2.4)

where

M, = max(Il All g, I Bll ), C(n):=§k‘“"/2(:), (2.5)

k=1
and by Bhatia and Friedland [5}:
s,(B)<(2M,)' " '/"nt/"Il A= BIlz", (2.6)
where
M, = max(l| Allg, Il Bl ;). (2.7)

All these bounds are also bounds on max(h(B), hs(A)) and henc? give
bounds on v( A, B) via (1.8), which are better by a factor a,, /2n —1~3 than

those given in the abovementioned literature.
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The other way of estimating S,( B) was followed by Henrici in [7]. He uses
norm estimates of the resolvent (A —ul) ! and shows that

Su(B)<S,(A,IIA—BI), (2.8)
where || || is some matrix norm majorizing the spectral norm, A is the
departure from normality of A with respect to the norm || ||, and S, is defined

as follows: For x = 0 define as g,(x) the unique nonnegative root of g + g2
+ -+ +g"=x. Then

y A
T, =~ for r>0,
(A ) =1g ) YT (2.9)
0 for r=0.
It is worthwhile to notice that
S.(A,1)=p(H(A,r)), (2.10)

where H(A,r) is the nonnegative (and for A,r >0 also irreducible) n X n
matrix

0 A 0

H(A,r)= R . (2.11)
0 0 A
LT T r |

From both representations it is easy to derive:

Sq(4, 1) is strictly monotone in A and r, (2.12)

r=1/"S (A, 1) is strictly monotone in A and r. (2.13)

3. GLOBAL BOUNDS FOR Sa(B) BY HENRICI'S THEOREM

The way used by Henrici is much simpler and in my opinion more
adequate for bounding a geometrical magnitude like S,(B) than using the
more algebraic concept of the characteristic polynomial. On the other hand
the bound (2.8) involves the ““local” magnitude A, which is not easily
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available. We show subsequently that this difficulty can be overcome. By
using simple inequality manipulations we shall derive from (2.8) global
bounds on S,(B), which are slightly better than the bounds (2.4) and (2.6),
and, by the way, show that (2.8) gives normally better bounds than (2.4) and
(2.6).

We start with a technical result:

Lemma. For given real =0, § > 0 and positive integer n define
y=(8"" 1+ 2+ - +T"“1)1/". (3.1)
Then v is the minimal number such that
min(S, (M, r),8M) <yM'~1/"i/7 (3.2)
foral M=0,r=0.

Proof. Define, for fixed M> 0, r, = 8"My ™ ". Then we have the relation
S (M, 1) =yM' " V" =8M. (3.3)

Here the second equality is a consequence of the definition of r,, whilfa the
first equality is equivalent to (3.1). From (2.13) and (3.3) we get immediately

r<n, = s(tM,r)<yM'"V'r!/"<SM,
r=1, = s(tM,r)=yM! 7/l >8M,

and hence (3.2) for M >0. For M =0 (3.2) follows directly. (3.3) shows that y
is optimal. |

We apply this result in several situations.
AppLicaTion 1. The departure A from normality of A with. respect to
the spectral norm can be written as A=\Tll,, where T is strictly upper

triangular and A = U#(A +T)U, U unitary, A= diag(A,,-.-»A,), is a Schur
triangular form of A. Hence

A=|ITl,<HIT+Allg+IAl,<2M, [see (2.7)].
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Hence by (2.12) and (2.8)
Sa(B)<S,(2M,,l|A— BIl,). (3.4)
Together with the obvious inequality
S{(B)<v(A,B)<2M,, (3.5)
we get, applying (3.2) with 1 =6 =2, y" =n2" "1,
Su(B) <min(S,(2M,, || A — Bll,),2M,) < n'/"(2M,)' /"4 - B|IL/",
(3.6)

i.e. the Bhatia-Friedland bound (2.6).

APPLICATION 2. Consider the Euclidean norm || || .. Ordering the eigen-
values of A and B in the following way:

ARl s <AL m|= sz 2,

and using the inequalities 3|\, |>< M2, 3|, |2 < M2 [see (2.5)], we can easily
prove by induction that |\, —u,| <(1+n"V2)M, for i=1,....n and that
hence

Sa(B)<v(A,B)<(1+n"1/2)M, (3.7)
holds. For the || || ,-departure A from normality we have
A=Ap(A)=ITlp<IA+Tl .= M,.

Hence we infer from (2.8), (2.12), B2)withr=1,8=1+n"12 y"=ym[(1
+n7 2y )

Su(B) < min(S, (M., A — Bli,),(1+ n"t/2)M ) (3.8)

</ {1+ 712y 1] 4 - gy

<n'/2(1+ - 1/2)pl-1/m 1A~ B/, (3.9)
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It is not difficult to show that for all n=>1
[+ a2 —1]<cn)  [see (2.5)] (3.10)
and that for all n> 4
v (1+n"172)" < C(n) (3.11)
holds. Hence the bounds (3.8) and (3.9) improve (2.4).

AprpLICATION3. By applying Theorem 1 to the results of Applications 1,
2, global bounds for v( A, B) are obtained. They can be slightly improved by
applying Theorem 1 first and then the lemma. We treat only the case of the

spectral norm:

As the right hand side of (3.4) or of (3.6) depends only on the bound of
A,B and ||A —Bll,, it is also a bound for max(h,(B), hg(A)). Hence by
applying Theorem 1 directly we get

o(A, B)<a,-n'/"(2M,) " "|A- BlIi/". (3.12)
Proceeding the other way, we first observe
(A, B)<a,S,(2M,,Il A= Bl,). (3.13)
Now using (3.5) and the lemma, we get
v(A, B) <a,min(S,(2M,,I|A— Bll,),2/a,M,;)
<a,(2M,)' "1 A— BIY Y., (3.14)
where
1/n

v,=(1+a;'+ - +al™)

and

1/n
we(ttoig) < for n>2 (3.15)

n-—
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This shows that (3.14) is slightly better than (3.12). A similar result is true for

the Euclidean norm.

4. FINAL REMARKS

REMARk 1. The best bound on S,(B) which depends only on a common
bound M, for ||All,, I Bll, and on the norm of the difference is obviously
given by

Sa(B)<9,M)~'/"||A— Bl|}/" (4.1)
where
8n=sup{”;—i(§~l~)|57:ilAllzgl,ilBllzgl,A¢B}' (4.2)
We have
217V/n < <nt/ngl i/ (4.3)
where the lower bound follows from the example A= — B= Identity and the

upper bound is just (2.6) = (3.6). This shows that the bound (2.6) cannot be
too far from the optimal bound 9,. No such statement can be made for the
eigenvalue variation, but we suspect that the optimal bound

»=sup{v(A, B)IIA~BII"V/"; | All,<1,IIBll,<1, A% B}
is well beyond its upper bound a,2' ~1/"n!/" given by (3.12).

REmARK 2. Let us call bounds on § 4(B) local if they depend explicitly on
A and on some norm of A — B. Examples are (2.8) and the Bauer-Fike bound

[1]
Ss(B)<|iA— BIC(T). (4.4)

Here, as in the sequel, || || denotes a monotone vector nomn and its least
upper boun_dl matrix norm || A|l =sup{ll Ax||:||x|| <1}; furthermore, A=
Tdiag(A)T™! and C(T)=IITIIIIT"!|. The best local bound is of course
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given by h(A, Il A — Bl}), where
h{(A,7)=sup{S,(B):I|A— Bl <7}. (4.5)

Another problem related to this is the following. Given a number g and a
vector x, [|x|l =1, and r = Ax — px, find bounds for min|A; — | dependent
on llrll and on A. The best bound is g( A, |7 ]l), where g is given by

g(A,7)=sup{min|A, —p|: glb(A—pul)<7} (4.6)
and

alb(C) = { Nc~tN=t ifCis rfonsingular,
0 otherwise.

It is not difficult to prove that
g(A,7)=h(A,T). (4.7)

In fact, if B is a matrix such that || A — B|| < and p is an eigenvalue of B,
then g{b(A —pI)<r. From this we get minjA; —p|<g(A, ) and hence
h(A, 7)< g(A, ). If on the other hand p is such that g[b(A —pulI)<r, then
there exists x such that ||x{| =1, | Ax —ux|l = llrll <. Let y, x form a dual
pair (see [9, p. 43)), i.e., y"x=1=lly"li plix ||, where || ||, denotes the norm
dual to || |l. Then B= A — ry” satisfies | A— Bl =llrg" I = llrllly"lp<r
and Bx = px. Hence min |p — A;| < h(A, 7), which implies g(A, 7)< h(A, 7).

As a consequence of (4.7), if f{A,r) is a function such that S,(B)=<
f(A, |l A— Bl|) for all B, then also for all p,x # 0

Ax —uxl|
T

and vice versa. In this sense the bound (2.8) is equivalent to the bound of
Morrison [10] (see also [6]), and the bound (4.4) is equivalent to the result

Az —pxll

min|A; — p| < C(T) T

in [2].
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ReMARK 3. We finally remark that Theorem 1 leads also to an improve-
ment of Ostrowski’s theorem [11, Appendix A] on the continuity of the roots
of algebraic equations:

Let {x)=2 _qa,x" ", g(x)=2p_ob,x" "%, ap=by=1,

n 1/n
y=2max(|a,|'/%, |b,|'*) and 8=( 2 la,—b,|y"""
>

v=1

Then the roots x,,...,x,, of f and y,,...,y, of g can be ordered so that for
i=1,...,n,

IS B n odd,
xi—wil=<e {n*—l, n even.
Similarly the results in [4] can be improved.
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