Block Scaling with Optimal Euclidean Condition
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ABSTRACT

Let # denote the set of all complex n X n matrices whose columns span certain
given linear subspaces. The minimal Euclidean condition number of matrices in .# is
given in terms of the canonical angles between the linear subspaces, and optimal
matrices in .4 are described. The result is also stated in terms of norms of certain
projections.

1. INTRODUCTION

This note is a contribution to the following problem: For given linear
subspaces %, i =1,...,k, of C", dim Z; = n,, such that

C =%+ %, + -+, (1)
consider the set of‘ matrices
H={AC™ " A=(A,,...A) A, €C™™, Im(A)=%}. (2)
Find X € # such that
k,(X)=min{x,(A): A€ A} (3)

Here » is a given matrix norm and k,(A)=r»(A)(A™") is the con.mdition of A
(with respect to ). We shall consider in particular the Euclidean norm
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WXz = ?,j-ﬂxiﬂz)l/z and

ke(X)=NXUANX " lp. (4)

The problem formulated above includes two important special cases:

(a) Let A be a given matrix, and 2, invariant subspaces of A of dimen-
sions n,. Then X € # iff X~ 'AX = diag(B,), where B, € C"". Hence the
problem is to find a block-diagonalizing X of minimal »condition.

(b) Let A=(A,,...,A;) be invertible, A,€C™". Then %;=Im(A,)
satisfy (1). Here X € # iff there exists D = diag(D,), D, € C"™ such that
X = AD. So this amounts to the problem of optimal block scaling.

Both problems have been extensively treated in the literature, especially for
k = n (see e.g. [2], [1], and the references given there) and special norms. In
the case of n, > 1 only few results are known [2].

The formulation used here is that of Demmel in [2]. He gives lower
bounds for the minimal condition with respect to the spectral norm. This is
done by comparing it with kg(S_ ), where S, =(S,,...,S,) is any matrix
in A such that the columns of $; are orthonormal (i =1, ..., k). He also shows
that for k =2 any §,,,, has minimal condition with respect to the spectral
norm. (A result equivalent to this statement is given in (3] by Eisenstat,
Lewis, and Schultz.)

We give here a complete solution of the problem for the case of the
Euclidean matrix norm. For the special case n, =1, i.e. k = n, this result is
due to Smith [6] and Wilkinson [8). The solution is given in terms of the
canonical angles between certain subspaces.

2. RESULTS

Let #), #, be two linear subspaces in C", dim A, =m,. Tt is well
known that there exist orthonormal bases XpseinsX,, Of M) and yy,...oUm, of
M 4 and numbers 6, i = L,...,min(m,, m,), 0 < 6, € /2, such that

xly=c0s6,-8;, i=1,..m, j=1I,..,m,. (5)

Here the 8, the so-called canonical angles, depend only on #, and .#,. In

fact the npmbers cos 0, are just the singular values of MM, where the M, are
n X m, with orthonormal columns spanning .# A7)
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With 2,,..., 2, satisfying (1) we associate the set of subspaces
k
¥ = N«:*, dim¥, =n,, (6)

i=1
iv]

and the canonical angles 6/, r=1,...,n;, between £, and &, (j=1,...,k).
From (1) we get 0 <8/ < 7/2.

THEOREM. Let &, (i =1,...,k) be linear subspaces of C" with dimen-
sions n, satisfying (1), ¥, defined by (6) and # by (2). Then

(7)

kK
1
min A):Ae A | = -,
{KF( ) } jgl ,gl COs 0,:’

Proof. It proceeds partly along the lines of Smith’s proof in [6]. As
outlined above there exist X oY such that the columns of X i Y; are orthonor-

mal bases of £, %, and satisfy

Y/'X, = diag(cos0],...,cos 4} ) = 3,
(8)
YfX;=0 if i#j.
Define the n X n matrices X =(X,,...,X;), Y=(Y},...,Y;). By (8) we have
YHX = diag(Z,,...,2;) =2, 9)
where 2 is diagonal. Hence
X" 1=3"1YH (10)
Now A € .# has the form
A= Xdiag(D,,...,D;) = (X,D,,....X,D,) = XD, (11)
where Dj are n; X n; nonsingular. Hence by (10)

A l=D-IX-!=D"'Z"YH, (12)

" R e e W e e v reei s o .
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Introducing the singular value decomposition of D,

D;=UAV, A,=dagA\,...M), (13)

i ]

we have at once by (11), (12)

k k k
1Nz = L IX, D= L IDIE= X IANE (14)
i=1 i=1 ji=1
k k
JA 2= 2D 2R = AT E (15)
j=1 j=1

For any A = diag(A,), M = diag(p, ), and unitary U, Birkhoff’s theorem (e.g
[4, p. 97]) implies

IAUM\|F = Zki“iﬂzp‘iﬁkiz Z 2|)\i|2|l"u(i)12 (16)
i, i

for a suitable permutation m(i). Applying (16) to A7'UfZ ! in (15) and
using Cauchy’s inequality, we get

k n; k n
[k (A2 =AIZIA 2> X ( ) P\’Ll2) )y ( }f I\ |~ 2feos ) 1"

j=1\r=1 j=1

r=1

k0 2
>(z mose,frl} (1)

j=lr=1

and equality is attained for A = (cos /)™ '/%, U;= I, , and any V,. Hence (M
is proved. ! ! B

XEljx?%Ar}K 1. We have also proved that any A of the form A=
v dlag(Vj), where Vj is an arbitrary n; X n,; unitary matrix, has minimal
condition with respect to the Euclidean matrix norm.

REMARK 2.‘ We can formulate the result of the theorem also in terms of
norms of projections. Consider the decomposition x =x, + x, = P,x + %2
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where 1, € 2, x,€span(UZ, j#i)=%,*. Then with X,,Y; as defined
above, we get P, = X,(Y,"X,)”'Y,. Hence the numbers (cos6) ' are just
the singular values of F,. It is well known that for a matrix B € C,, ,, with
singular values 0, > 0,> - - - > 0,,, LI |0, is a unitarily invariant norm, which
is just the dual norm || ||2 of the spectral norm ||B||, = o, [5]. Therefore (7)
can be written as

k
min{xp(A): A€ A} =) ||P]2D.

i=1

Note added in proof: The author has learnt that the Theorem has been
proved independently by Dr. Paul Van Dooren (personal communication).
Dr. Van Dooren has also given a description of all minimizing matrices, see
Remark 1.
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