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0. INTRODUCTION

In the present paper we study discrete memoryless channels (d.m.c.) with noiseless
feedback. A d.m.c. with noiseless feedback will be abbreviated as d.m.c.f. When
we talk about feedback we shall always mean noiseless feedback.

In [8] Shannon proved that feedback does not increase the capacity of a d.m.c.
Kemperman [5] and Kesten (oral communication) improved on this result by show-
ing that also the strong converse to the coding theorem holds. Even though feedback
has no effect on the value of the capacity of a memoryless channel it provides new
possibilities for the actual construction of codes. The first attempt in this direction
was made by Horstein. In [4] he introduced a sequential (varying block length)
coding scheme for the binary symmetric channel with feedback (b.s.c.f.). However,
the scheme is fairly complicated and — what is more important. — Horstein does not
rigorously prove that for any rate below channel capacity the decoding error prob-
ability for his scheme tends to 0. It seems that no worker in the field of coding theory
understands his reasoning or can give a proof. Some mathematicians believe that
his method is wrong. A completely different approach was taken by Schalkwijk
[6], [7] and Kailath [6]. They found for the Gaussian channel with feedback
and with an energy constraint a sequential coding scheme which performs at any
rate below the capacity with a double exponentially descreasing error probability.
This coding scheme makes heavy use of some of the properties of the Gaussian
" channel and nobody has succeeded in carrying the basic idea over to the d.m.c.f. —
perhaps, because it is impossible. The result stands as an isolated “break-through”.

It is clear from what we said earlier that the coding theorem for the d.m.c.f. is an
immediate consequence of the coding theorem for the d.m.c.

The known proofs of the coding theorem for d.m.c. use either a random coding
method (Shannon [7]) or a maximal coding method (Feinstein [3], Wolfowitz [10]).
The presence of feedback enables us to give a new proof of the coding theorem
for block codes, which is not based on random coding or maximal coding ideas.
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Our proof has two parts. In the first step we reduce the set of all messages to
subset of suitable size, This is made possible by’ the elementary lemmas 1,2,3
section 1. Here we use the idea of “generated sequences” (see [10]), but there
¢ also other ways to obtain the reduction. In this first step we do not use feed-
‘ck. The second step consists of an iteration of the earlier procedure, we iterate
til we come up with the message sent. The iteration is possible because we have
“dback.

In'section 3 we give an alternate scheme for the b.s.c.f. That scheme differs from
* one outlined above in that it makes use of feedback already in the first step.
¢ second step is the same as before. :

Our approach provides the following advantages:

I. For every block lengih we give an explicit coding scheme, which can casily

implemented. The maximal coding method yields a code construction only for
“od block length. If one changed the block length one would have to repeat the
nstruction. The same difficulty arises if we select codes at random according to the
1dom coding method. ' '

Y. Our approavch turns out to be very useful in solving coding problems for more
nplex channels with feedback. For the channels treated in [1], for instance,
'dom coding and maximal coding methods seem to fail.

Fhe extension of our result to the case of infinite alphabets is straight_ forward.

L DEFINITIQNS AND AUXILIARY RESULTS

et X ={1,..,a) and Y = {1, ..., b} be finite sets, which serve as input and
put alphabets of the channel described below. Write X =X and Y* =¥ for

1.2,... By X, = [] X* denote the set of input n-sequences (words of length n)
n =1 : : . :

14

' by Y, =[] Y* denote the set of output n-sequences.

f=1

et w(+[+) be an a x b -stochastic matrix, that is,

) 12w(j|i)20 for ieX,jey

b
2wl =1 for iex.
=1

J

he transmission probabilities of a discrete memoryless channel (d.m.c) are



| déﬁned by |
(1.2) , Py, | %) = H w(y' [ %)

=1
for every x, = (x!, .., x")e X, and every p, = b yeYsn=1,2 ..

We introduce now a d.m.c. with feedback (d.m.c.f). By this is meant that there
exists a return channel which sends back from the receiving point to the transmitting
point the element of Yactually received. It is assumed that this information is received
at the transmitting point before the next letter is sent, and can therefore be used
for choosing the next letter to be sent. '

A code (n, N, 2) for this channel is described as follows: |
~ There is given a finite set of messages M = {1, ..., N}, one of which will be present-
ed to the sender for transmission. Message m € M is encoded by an encoding (vector
valued) function "

(L3)  fulm) = [fa. fHZ"), ... 12", 27N, g L Y],

where f, is defined on Y*~! for ¢ > 1 and takes values in X', and Z',Z2% ...,z
are the chance received elements of Y (known to the sender before he sends
Iu(Z's ... 227Y); £ is an element of X!, The distribution of the random variables
Z'(t =1, ..., n) is determined by £, ..., f171, and w(+[*). We denote the probability

of receiving y, € Y,, if m is thus encoded, by P(y, | f,(m)).
A code (n, N, A) for the d.m.c.f. is a system
(1.4) ' {(f,,(m),'A,,,) [ m=1,..,N},

where the f,(m) are as defined in (1.3), A, =Y, for m =1, .., N; Ann A, =0
- for m + m’, and PAn|fm) 21— 2form=1,.., N.
The entropy of a probability vector p = (p1, ..., p,) is defined to be

(1.5) H(p) = ——‘_le‘ log p, .

The “rate” for the probability vector 7 on X and matrix w(+[-) is

(1.6) R(m w(*|")) = H(q) - Xm H(w(-l'))e
where ¢ = 7. w(+[*). |

For = and w(-|-) define a b x a-stochastic matrix w*(+[) by
(1.7) ‘ w*(i[j):wm, J=1,..,b;i=1,..,a.
. : 4
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It is well known and easy to verify that
(18 - R(m, w(*[*)) = H(m) ~ q; H(w*(-j))
. J ’
The capacity C of our channel is given by :

(19) -~ C = max R(x, w(+|+)).

For ueX, define N(i|u) as the number which counts how often i occurs as
a component of u. Similarily define N(j | v) for v e ¥, N(i, j | u, v) shall count the
number of components in which # has an i and v has ajsi==1,..,a;j=1,..., b
- For a probability distribution 7 on X define the set X (n) by

(1.10). X(m) = {x,|xeX, |n]l - N(i|x) <1 fori=1,..,a}.

LemMA 1. _
a) - X i(m)] = exp {H(m) I + 0(log 1)},
b) [X,(n)] 2 exp {H(n)I - f(a,n)log I} for I = 1,2, ...

f(a, ) can be given explicitly.

For u € X(n) and & > 0 define Y(u, ¢, m, w) by

This Lemma follows immediately from definition (1.10) and Stirling’_s formula.

(1.11) }Kms,m\ﬂ:={vae)1}Nﬁhihuv)-w%j]ﬂbﬂih@lgsl
fori=1,..,a;j=1,.., b} .
LeMMA 2. For ue X (n); 1 ='1,2, ...:
P(Y(u, 2, %, w) | 1) 2 | — g Eemmt

where E(e, m, w) is positive and can be given explicitly.

This Lemma can easily be verified by using Chebyshev’s inequality. Define Y,(g, 7, w)
by . ' ‘

(1.12) - | : Y(e, nw)= U Y(u, e, n, w).

ueX (n)

Finally, define foraveY, a probability distribution g* on ¥ by
(1.13) g =NG|o) It for j=1,..,b
and a set X (v, ¢, m, w) by | |
(1.14) X (v, &, m, w) = {u | u'e X (n), INi, j | u, v) — w*(i | ))N(G | v)| <

S@a+ el forj=1,...bi= 1,...;a}.
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LEMMA 3. |
[Xi(0, 5,7, w)| < exp {Za] HOSC) L+ a0 1),

where .lim_g(s.) = 0 and g(e) is a known function of €.

e—0

The Lemma follows from (1.14) and Chebyshev’s inequality.
Definitions (1.10), (1.11) and (1.12) were used (in a slightly different form) in [10].

» DESCRIPTION OF OUR CODING SCHEME FOR THE D.M.C.F.
AND PROOF OF THE CODING THEOREM

Let I be a positive integer and let M = {1,2,..,a'}beasetof N = a' messages.
Choose 7 such that R(rn, w) = C and let [; be the smallest integer such that 1X,, ()| =
> a'. It follows from Lemma 1 that ,

' log a N
2.1 I, = ——1+ h(l),
1) - ERL h0)
where h(l) can be given explicitly and h(l) = O(log ). We mapjnow M, one to one
into X,,(m) and call the image X, (n). Let u* = (fi.....fw) be the image of m,.
‘meM;. : :

For me M, and t = 1, ..., [ we define now Nzt ... Z2"7 "y by

(2.2) | N AR AR Tl M

Suppose the sender is sending message m and he has sent. already the lctters
!, - fu. The receiver has received a sequence v = (v', ..., v'") € ¥, which is known
to the sender, because we have a channel with feedback. Lemma 2 implies that the
probability 1, that v is not contained in Y, (u*, g, 7, w) satisfies

@3 - 3, < emFEm

v is therefore contained in Y, (¢, 7, w) with a probability larger than 1 — A;. The set
Y, (e, 7, w) is known to the sender and to the receiver. If v¢ Y, (e, 7, W), we count
this as a decoding error. In this case it is irrelevant how the sender continuous the
transmission (over the fixed block length). Let us assume now that v is contained
in Y,(e, 7, w) and define X, (e, m, w) as in (1.14) and g* as in (1.13). v is actu-
ally contained in ¥, (u*, ¢, 7, w) with a probability greater than 1 — Ay. For v in-
Y, (u*, &, n, w) we have by (1.11) -

(24) IN(i,j|u*v) - W(i‘l'i)N(illu*)‘ <sl, for i=1,.,aj=1,...b.
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Using the definition of X,,(m) we obtain from (2.4)
(25) NG, j|u*, v) = w(j | i) m,l,] sel for i=1,..,q4j= L,..,b,
and

(2.6) ‘]N(i,j[u*, v) — w*(i | j) g;l;| <el, for. i = Lo,ajj=1,...b.

Since N(j | v) = 2 NG, j | u*, v) we obtain from (2.5) that
v =1

(2.7) NGl =gl s e, for j=1, ... b
(2.7) and the definition of g imply that | |
(2.8) | 9] — g <ae for j=—1,. .p.
It follows from (2.8) and (2.6) that .
29) NG| u*, 6) - 1) gL < (a + 1) el

for | = I ..,a;j= 1,..,b.

This and definition (1.14) imply that u* is contained in X, (v, ¢ m, w). Since v
is contained in Yi,(u*, &, n, w) with a probability greater than | — Ay, u* is contained
in X, (v, ¢, x, w) with a probability greater than 1 — Aq.

Define now M, by 7
(2.10)  My=X,(nen W)

Since v is known to sender and receiver, M, is also known to them. If u* js not
in' M5, we count this as a decoding error. The sender may then continue the transmis-
sion over the fixed block length in any way he wants. If y* is in M, we have reduced
the number N of possible messages to a number |[M,] of possible messages. We give
now an upper bound on [M,|. ' '

Lemma 3 and (2.8) yield that
@) Vo] = exp (3 HOA (L) 1+ ) 1),

where f(¢) is a known function and Iimf(e) = 0. Abbreviate H(r) as H and
b ;

=0

2. 4; Hw*(-| /) as H. We iterate now our procedure. Let I, be the smallest integer
i=1 ,

such that |X,(w)] 2 |M,)|. _
It follows from Lemma 1 and (2.11) that one can give explicitly a function 7(e),
lim f(e) = 0, such that ‘

e—+0
2.12 ‘ L =—=1, +2%
(2.12) - 2= b+,
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We map now M, one to one into X ;,(n) and call the image Xi;(")- Let (fi*', ...
» S ¥12) be the image of (fL, ..., fi)e M. FormeM and t = I, + 1,.., 1, + I,
" we deﬁne now fr(Z',..,Z" ") by -

:(2.13) o iz, ...,z Y =11,

We apply now the same procedure, which we applied above to the set M,, to the
set M. After I, letters have been sent we come up with a set M, defined analogously
to M,. The image of m is contained in M, with a probability 1 — 1, >
21— e He=mW Since 0 £ H[H < 1, we constantly reduce the number of mes- -
. sages by iterating the procedure. However, since I, > I, > 13 > ..., the decoding
errors Ay, A,, ... are increasing. We iterate the procedure only d(I) = c log ! times,
where ¢ is a constant to be choosen later. For the remaining steps. we need only
a few — relatively to | — letters, because the I.’s decrease quickly. We achieve small
error probabilities for the steps s, s > clog I, by repetition of these steps.

The decoding error probability after d = d(I) = c log [ iterations of the procedure
is bounded by Z ,1,, which is smaller than d . exp { — E(e, =, w) (K(e))* ™ 1,}, if we set

K(e) = H fi;)

By choosing d(I) = 1 log (K(z-:))'1 .log I, we obtain that

(2.14) | , (KE) P .1 =12
and that |
(2.15) i Ay £ exp {~1E(e, m, w) 1'%}

for I = I* (g, m, w), a known function.
Let now D be the smallest integer such that

(2:16) - A a'le < k&P i o

Obviously, D is an upper bound on the number of steps needed and satisfies
(2.17) _ D £ f¥(s)logl,

where f*(¢) is a known fu.nction'.
From the fact that for small ¢, 0 < K(g) < 1 and from (2.14) we conclude that

(2.18) L <1 for s=d(l),...,D

For every s between d and D we repeat the same procedure [1'/*] times. The total
amount of letters needed is less than 1'/2 ['/* f*(g) log 1.
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" To be more specific, let us assume that at instance s = ¢ we are dealing with the
set My, ,. After I, letters have been sent we come up with the set M, , = M, (1)
Now we repeat the same procedure of sending the ly4 ¢ letters - ' '

W+ +ilg+1 Lt tlg+ilg4,
S RIS

[11#] times. We thus obtain sets
(2.19) M, a(r); r=1,.., [,

Define now M, , by

(220) My, ={u]u eX,, (n), ue M‘H‘z(r) for more than 4[1'/#] of the r's} .
Obviously, | - A

(2.21) [Myss| < 2 max M,,’”(r).
u* = (f'h+...+1a+x f:,+...+l‘,+1,,+,)

is contained in every one of the sets (2.19) with a probability greaterthan1 — 1,,, =
=a, >4, if I 2 Iy(o, ¢, ), a known function. Since the channel is memoryless
we obtain that the probability for u* to be in M,,, is greater than

[10/4] [11/4] e
(2.22) > < >a’(1 — a1 > | exp {~H(a, 1 — a) 1'%},

r=[11/4;2] r

We repeat now the same procedure for s = d + 2, ..., min (D, D) < D. D' is the
largest integer such that

(223)  exp {—E(e,m,w) 1)} < «, a constant smaller than 1 .

[, depends on &, but is independent of 1. 1. satisfies

(224) lloea] oy o]
E(e, 7, ) E(e, m, w)

We thus come finally up with a set Mp. of meséag-es, where
(2.25) , My | < a™ .

C > 0 implies that at least two row vectors of w(+|-) are different. One can therefore

easily construct a code (no(lp.), a'>, a') for our channel. no(1p) depends only on o’

and e. If we send every code word [1'%] times we decrease the error probability to
Ap = exp {~H(«','1 — ') I'%}. Thus we reduce the set M, to a set with one
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element. The probability A that this is not an image of message m satisfies

-1

(2.26) A<21 &Y 14 Ay < exp {—3E(m W) 1) +

s=d+1
+ f*(e)logl.exp {—H(«', 1 — &) 1'*} + exp {—H(«, 1 — &) 1"
The total number n of letters sent is less than

H™'loga(l + (K(e) +-K(t-:))2 4+ )+ fHE) P log T+ no(lp:) -

- We therefore have:

(2.27) n<H 'loga (I——l—-——

- K(¢)
Since K(¢) = H[H + f(e)/H, we obtain from (2.27) that
(228) - Izloga”l.(H - H~J@)n - gen),
where (e, n) is a known function and equals o(n). (2.28) and N = ' imply
(2.29) N =exp{l.loga} Z exp {(H — H — f(e)) n — g(e. n)} .

It follows now from the definitions of n, H, H and from (1. 8) that N 2 e\p {Cn —
~ fle)n — (e, n)}-

We thus have proved the

) I+ f*(e) P logl + no(lp) .

Tueorem (Coding theorem for d.m.c.f). Given R, 0 < R < C, then one can
compute an E(R) such that for every n(n = 1,2, ...) one can give explicitly a code

of length N = e®" such that the decoding error probability A is smaller than
‘e E(RIm/4
e

REMARK. We were not concerned about the problem to find the best possible
bound on the error probability 4. One easily can improve on our bound by refining
our estimates and our coding scheme. ‘ '

3. AN ALTERNATE CODING SCHEME FOR THE B.S.C.F.

Let now X =Y = {0, 1} and let w(~[-) be a 2 x 2-stochastic matrix satisfying:
w0]0) =w(l[1) =q>1, |
=w(0]'l)=p=1~_—q;

w(+|+) is the transmission matrix of a b.s.c. It is well-known that for base 2 the
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capacity C of the b.s.c. — and therefore according to [9] also the capacity of the
b.s.c.f. — is given by

(3.1) C=H(}1%) - H(gp).=1+qlogyq + plogy p.

Let I bea positive integer and let M = {1,2,...,2'} be a set of N = 2! messages.
We describe now our encoding procedure. '
In a first step both, sender and receiver, partition M mto 2 sets of equal size:

(3-2) MS = {1,2,..,2"1}

and
M = {2"1 +1,..., 2’} .

Suppose the sender is going to send message i, ie M. If ie M}, he sends at the
first instant a 0 and if i € M9, he sends a 1. The receiver receives — no matter what the
sender has sent — a 0 or a 1. Since we have a channel with feedback, the letter
received by the receiver is also known to the sender. If 0 is received, sender and receiver
count this as 1 success for each message in My, and if 1 is received, they count it as
1 success for each message in M?. Let S} be the set of messages, which had no suc-
cess at the first instant, and let S| be the set of me<.sages, which had a success.
Obviously, |Sy| = |S} ] = 2!~!. We partition S into 2 sets of equal size, S5 and
S!, say. S} shall contain the smaller (message) numbers and S{ shall contain the
" larger numbers of S;. Similarily we define S!and 8]. A sub-point and a super-point
shall have always this meaning in the sequel.

(This device to partition S and S| into two sets of equal size could be replaced
by any other device, which is known to both, sender and receiver.) Define now M
and M| by

(3.3) | M) =slusl and M! =Sl uSi.

The sender sends now a 0 or a 1 depending on whether ie My or ie M;. If a 0 is
'recelved sender and receiver count this as a success for every message in Mg and
ifalis: recewed they count this as a success for each message in M!. Let now S}
be the set of messages with no success, S? be the set of messages with 1 success,
and S? be the set of messages with 2 successes. Our procedure is such that ISOI
]Szl-—2""¢md|S|—2‘1 B
Now we partmon SZ into two sets of equal size, Sé and SZ, say. Similarly, we

partition S? into the sets $2, $ and S into the sets §2, S3. Define MJ and M} by

G4 M} =S;uSiuss
and -
(3.5) , M} =SiuSiusi.

The sender sends now a 0 or a 1 depending on whethzr ie Mj or i e M2,
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By iteration we obtain sets SsOsk=sge=12,.. . 1), where S; contains the
messages with k successes after t letters have been sent. What the elements of Sy
are is a matter of chance, however, the cardinality |S;| of S; satisfies a simple recursion
formula.

Define for convenience S*, = pfors=01,2,..,1 S; = 0 for k > t and S5 =
= M. Then we have
@6 [Sil = 3{SiTh] + 37

for k=0,1,...,t; t =1,2,..., l. Since |So] = [M] =2/, the solution of (2.6)
is given by

(3.7) : | Is] = %C{) 2!

for k=0,1,2,..,5 t =1, 2, ..., . In particular we have

(3.8) : I,Sil=(:,> for k=0,1,...,1.

Where is message i after the first I letters have been sent? For every letter sent. the
probability of a success for message i is q. Therefore i will be with high probability
in one of the sets

ol
S[ql —~&el] S[ql el]+ 13 2o ‘S[ 3
where ¢ is a fixed number between 0 and q — 1. Denote the union of these sets by

]
S(1, g, €). The probability that i is in S(I, 4, ¢) equals ) (l> g*p' . Tt is well-
k=(ql~sl]

known (see for instance inequality (A.6) on page 246 in Peterson’s book *Error
correcting codes”) that . _
. . . 1 ’ .
(39) . Z ! q"p’“k >1 — 2—E(£,q)l ,
k=[ql—cl] \ K ‘ '

where

p+e
» p
E(e, q) is positive. The cardinality of S(I, g, €) can be estimated by

E(e, q). = +(q — ¢) log, 1

—8+(p+a)log3
q .

k=[ql-ei} \ k

.v(3-10) - ]S(l, 0 8)[ _ i (l) < (q __ 8)—(q'—‘c)l(p + 8)—(p+z)l.

(Sée Peterson, inequality (A.8)). Denoting the entropy of the probability vector
(g — e, p+¢e) by Hig — & p + &) we obtain therefore that .

(3.11) _ _IS(I’ q, e)l < pH@-eptol
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The equations N = 27¢/2:1/% (3.9) and (3.11) are now full substitutes for the
lemmas 1, 2, 3. We can now 1terate the procedure in exactly the same way as in
section 2 and thus obtain a non-sequential coding scheme for the b.s.c.f. The scheme
is optimal in the sense that we can achieve any rate below the c.lpamty with an
arbitrary small decoding error probability.

REMARK. After this paper was finished E. Berlekamp pomted out to me that
he. used the idea to partition the messages already in his very interesting paper [2].
However, the combination of this idea with the idea of an iterative procedure, as
described in section 2; seems to be new. For this reason and also because it may
be interesting to compare the different approaches taken in section 2 and section 3,
we did not exclude the later section.
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