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ABSTRACT

This paper discusses several measures of nonnormality of matrices, i.e., functions
v:C"" >R, where »(A)=0 iff A is normal. Besides measures already in the
literature, we introduce new ones and give comparisons between them at length.
Some of these comparisons, e.g. (Cl4), (C15), and (C17) manifest wellknown
phenomena of ill-conditioned eigenproblems.

1. INTRODUCTION

The class of normal matrices has received some attention from numerical
analysts. In particular, in connection with certain eigenvalue algorithms
normal and nonnormal matrices show quite different behavior. Related to this
fact is the difference in the sensitivity of the eigenvalues and eigenvectors
under perturbations of the entries of the matrix [3, 4, 9, 10, 13]. For
analyzing these difficulties several measures of nonnormality have appeared
in the literature. We give here an overview of the measures used, introduce
some new ones, and give comparisons between them. These are listed in
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Theorem 2. We have done it in such a way as to give there only the best
(to our knowledge) available bounds; however, we mention some weaker but
earlier results during the proof,

Let C™" denote the set of all n x n complex matrices, and A€ C™" a
fixed matrix with n>1. We associate with A the f

ollowing numbers and
matrices:

(1) its eigenvalues A= Y;+ i8; and singular values o, ordered so that
Ad=ZRl> - 2\ L oy20,> - 20,

(2) the matrices A = diag(A,,..., A ), == diag(o,,..., 0, );

(3) its polar factors H, H,, ie., the uniquely determined positive semi-
definite square roots of AA* and A*A;

(4) its Hermitian part F =(A+ A*
2 a.;

(5) its skew Hermitian part G =(A — A*)/2i with eigenvalues 8, > B
> .- ;Bn_

Here A* is the conjugate transpose of A. A matrix A is normal if AA* = A*A.
The sets of all normal, unitary, and diagonal matrices in C™" are denoted by
A, U, and 9D respectively, I iz and || || are the spectral and Frobenius
matrix norms. For nonsingular X, K (X)=|IX|I,IX"Y),, i=2F, is the
condition number of X. A function » of C™" into the nonnegative real

numbers is a measure of nonnormality if the following holds: »(A)= 0 iff
Ae N,

We make extensive use of the following relations:

)/2 with eigenvalues a,> a,> -

Ue, i=2,F = “AU”:':”UA”.':”A”U

B,CSCH" = IBClle<IBI4ICY,, 1IBC|, < 1B],(C]l,.

2. CHARACTERIZATIONS OF NORMAL MATRICES

There are quite a few characteri

e zations for A being normal. An incom-
plete list is given in

THEOREM 1. For A& C™" the following are equivalent

(1) A is normal, i.e, AA* = A%,
(i) )| Ax|| = |A*x|| for all x €C™ (|| || = Eyclig :
(iii) IV € ¥ s.t. V*AV is diagonal, ean vector nomm);
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) Zi AP =11ANE
v) |Ajl=0,i=1,....n
(V) ¥, =@,y i =1,...,n, for a suitable permutation p;

(vi) 8, =By, i=1,...,n, for a suitable permutation q;

+ (viii) H, = Hy;

(ix) F=(A+ A*)/2 and G =(A — A*)/2i commute;
(x) A=XAX"! for some X such that k(X)=1.

As these characterizations are either well known or easy consequences of

Theorem 2, we refrain from giving a proof and refer to the literature {1, 8, 11,
14].

3. MEASURES OF NONNORMALITY

Theorem 1 motivates the introduction of several measures of nonnormal -
ity. The most natural measure seems to be

,ul(A)=min{||A—N||F:N€./V}
and
ﬁl(A)=min{||A—N||2:NE./V},

the distance of A from the set of normal matrices. Another quite natural

measure is given by considering the matrix equation characterizing normal-
ity:

pa(4) = | A4 — AA*}2,
fia(A) = | AA - AA*|Y.

flflnrid defined in [4] for matrix norms » the »-departure from normality as
ollows:

A,(A)= min{ »( M ): M strictly upper triangular,

Wewx, Aedst. UAU=A+M}.
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We shall restrict ourselves to the spectral and Frobenius norm

n 1/2
py(A)=A4g(A)= (IIAII%— > le) ,

i=1
fia(A) =4y(A).
Ruhe introduced in [10] the measure

F4(A) = m?x |°=‘ - Mi”-

Besides this we consider

l-‘s(A) =||H; - Hy||g;

n

1/2
’ . 2
pe(A) = min > ‘A;‘_(O‘p(j)""ﬁq(f))l ) ’
pP.q jxl

n 1/2
j=1

n 1/2
Ms(A) = min ( Z (5,' “ﬁq(j))z)
q i=1

(p, g permutations of {1,...,n});

po(A)=min{|U-V|,: U*(A+A*)U e,
V*{A-AY)WVeg, Uvea),

fig(A) =min{||U—Vu2:U*(A+A*)Ue.@,
V*(A-A*)WWeg, UvVea],

t10(A) = min{||U - V|| .. UAV * €9, UVew),

fo(A) =min{(|U-V|,:UAV*c g, UVea);
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and for A diagonalizable

p1(A) =min{k(X)-n:XeCrr, X~ 1AX = A},

fii(A) =min{x,(X)-1: X eCm", XT'AX=A).
All these measures have the following invariance properties:

#(A) =p(A) = p(AT) = u(A*) = p(U*AU),
Uew, pLE M= {p.,.:i=1,...,11}U{ﬁ,.:i=l,2,3,9,10,11}
while the invariance with respect to shifts,
p(A)=p(A+wl), w€EC,

holds for all p € # . {Bg B5 B1gs Byo )-

4.  COMPARISONS BETWEEN MEASURES OF NONNORMALITY

The main results of this paper are comparisons between the abovemen-
tioned measures of nonnormality, which we summarize in

THEOREM 2. Let A € C™". The following inequalities hold:
(CO) G, <p,<Vnji, i=1,23,9,10.

nd —n |4
(C1) P'3~<\( )

V2(HANZ + IIAIE) #a < 2N Al it

Po-

(C5) p; <p,

(C6) py <,

(C7) p3<2Vn||Allpp, < 2n|Allgpy

(C8) 1A |15 ks < 1} < 2/|Allops.

(C9) no <3 <2UA|lpne — 1.
(C10) n3 < Jz‘l"% < 2||Flfpps — 4.
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(C11) p§ < ipd 2||C||m“3

(C12) i} < 8||A|13,, #2 < 8||A||2I‘9-
(C13) i3 <2lA|2i,0, ni< 2| All3k 0.
(C14) If p2 < 288, where

§ = min |a, —-aj| = mm |B Bil,
a#a,

then

\/~P2

SAEYY

2
(C15) py < ks where 1= min{|o, — 0j:0,#0;} and 1=1ifall o,
are equal.

If, in addition, A is diagonalizable, then:

ﬁ%l < <_'1 ﬂ%l
L+, S Tvg,

(C17) If all eigenvalues of A are simple and

(C16)

6j=min{|?\,-—?\j|:i#=j}, j=1,.

v n,

then

. 22 (n=1)/2
< 1+ —3 -
131} jgl { Sf(n — 1) } 1{.

(C18) p.2\2||A||2||A||FP11(2+ fin)<2A)2 Fi (2 + fin).
IFEL(2+ &
(C19) 4 < | ANVEE 1)

(1 + #11)2
(C20) By < Al gf -

Here we have used the abbreviation ., for RAA), i=1,..,11, and {, for
i(A), i=1,2,3091011. ’ i

In particular, the functions p € A are measures of nonnormality
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Fic. 1.

REMARK. Theorem 2 can be interpreted by saying that for certain
H.v € .# there is a function ¢, depending on v,p and on A, @(0)=0,
continuous, monotonic, s.t.

r(A) <p(n(A)) (4.1)

for all A. If we consider a directed graph with the elements of .# as nodes
and edges from » to p, if (4.1) holds, then this graph is strongly connected
[this is the reason why the trivial inequalities (C0) are included]. Hence for
any v, p € A a relation (4.1) holds, as (4.1) is transitive. See Figure 1. In this
Sense all measures of nonnormality considered here are equivalent. The
measures u,,..., pig, fiy, fig, 5 except for p - are equivalent in a stricter sense,
namely that in (4.1) ¢ depends only on », u and norms of A and A*, but not
on the eigenvalues of A.

Proof of Theorem 2. (CO) is an easy consequence of the relation
|Bile < ||Bl|z < Vn||Bll, forany BecC™".

(C1) is a result of Henrici [4]. The first inequality in (C2) is a rearrangement
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of the inequality
n 2
( > I?\i|2) <|lAllF — {u? (4.2)
il

established by Kress, de Vries, and Wegmann in [6]; the second one is a
consequence of

LAIE<lAlz= ¥ o2 (4.2°)
i=1 i=1

also known as “Schur’s lemma” [11].

It should be remarked that the first result of the form (C2) was given by
Eberlein, who showed in [2] that

K <VBIIAlleys,
For the proof of (C3) and (C4) we use that for N normal the equation

A*A = AA* = AY(A-N)+(A-N)*N-(A~N)N*— A(A-N)*

(4.3)
=A*(A-N)+(A-N)*A-(A-N)A*— A(A-N)"
H(A=N)A-N)*-(A-N)*(4~N) (4.4)
holds. Hence for any N € 4" we get from (4.3)
2 < 2([| Al +IN1)]1A - Nlg. (4.5)

If N iS SUCh that ’-‘-1=”A—NI|F:

and U € % such that U*NU=D € 92,
then it is obvious from

m1=||A—=N|p=||U*AU - Dilp=Min{|U*AU-D||,: D 9, Ueq)
(4.6)
that D is the diagonal of U *AU. In particular
INll, = 1IDll, < ||A]),. (4.7)

This together with (4.5) yields (C3).
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We use now that for any Ge C™"
IGG* — G*G|} = 2IG*Gli} — 2lIG?|F < 2|GliF (4.8)
(see e.g., Eberlein [2]) and get from (4.4)
13 <4I|AIFIA = Niig +V2]| A — N2 < (411 All +V2n | A = Nll2)IlA = NI,

for any N € 47, which implies (C4).

To prove (C5) we assume that U is umtary and U AU=A+M, M
strictly upper tnangular Then obviously pu2=|M|%=|U*AU — A||%
=||A — UAU *||2 > p3, as UAU * is normal.

(C6) is in Ruhe [10}, as well as the second of the reverse inequalities (C7).
However, we can do a little better:

n n

13 2 (UiZ—Milz):‘_‘ )> (o, + N D(o; — INi])

i=1 i=]

<m & (ot <paln (o) "+ (Zme))

< 2Vn || Allpys

i.e. (C7), first inequality.
The second inequality of (C8) is an immediate consequence of

A*A — AA*=H] — H12=H2(H2—H1)+(H2—H})Hl

and ||H\||, =||Hy|lg = || Al|,-
We now make use of the singular value decomposition (SVD)

A=W3IV* (4.9)
where W, Ve, 3= diag(o;). In terms of the SVD we get

H=WSW*,  H,=VZV* (4.10)

and

A=HU=UH,, (4.11)
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where U = WYV *. Define Y=W*V=(y,,) € %. Then we get

H -H,=W(SY-Y3)V*
AA* — A*A=W(S2Y - YS?)V

and hence
B3 =IH, - Hyll} = Ly, |%0,~ o, )", (4.12)
ij

K2 =[lAA* - A%A|2= T}y, |02 - a?). (4.13)
N

If A* denotes the Moore-Penrose inverse of A, then

]

IA™|ly=max{o, !:0,>0, i=1,...,n}

and we have

|o; ~ ol <A™ ||gl0? 0;2|'
This implies via (4.12) and (4.13) the first inequality of (C8). We remark that
also the second ineq ity of (C8) can be proved via (4.12), (4.13).

We prove now (Cl10). We may assume A=A+ M, M strictly upper
triangular. Then

F A+A* A+ A* MM+

T 4.14)
2 2 2 (
The theorem of Hoffman and Wielandt [5] gives the first inequality of (C10).
Considering the Frobenius norm in (4.14), we get
Lof=|F|2=Yy2+ 1. (4.15)

Hence
n

Thg= Z (af —2) = Loy~ Yy, +v,)

=

for any permutation p. Taking p such that ps = X(y, - ,;,)% we have by

&
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the Schwarz inequality
n l/2 n 1/2
éu%sm[():a?) A ) J
i=1 i=1

and by (4.15)

s <o [ IF I+ IFIE = 33 . (4.16)

The second inequality of (C10) is just a rearrangement of (4.16):

si5 <max{ g Fllg.2p-1Fllp — p2} = p7 (20 Flip — 7).

as follows from (4.15).
The proof of (C11) is analogous, using instead of (4.14) the relation

A—A* A-A* M-M*
= = + , (4.17)
2i 2i 2i

G

(C9) follows from (C10) and (C11) by observing that

A+ A* 2

2

2 |A-A*
+
“ 2i

we=pi+py and [lA|}= “ -
F F

For the proof of (C12) we assume that U, V € % and

A — A*
2

~ (A+A*
U*

- 5 )UE.@, sz*( )Ve.@.

An easy calculation (using MN = NM) gives
3(A*A — AA*) =UMU*VNV * - VNV *UMU *
=(U-V)MU*VNV* +VM(U -V )*VNV *
—VNV*(U-V)MV* —VNV*UM(U-V)*.

;I;:aking norms on both sides and using ||N||, < ||Allg, Mz <|lA]ly gives
12).
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(C13) is proved in a similar way. If UAV =D € 2, then
A*A—- AA*=(V-U)*D*DV+U*D*D(V-U),

from which, by taking norms on both sides, (C13) follows.
For the proofs of (C14) and (C15) we need the following

Lemma.  Let Y = (Yi;)i j=1.. .x € ¥ be a block matrix with Y, ecmm,
Ln;=n, and Y, positive semidefinite, i=1,... k. Then

Y =TIF<2 LY, (4.18)
i#j

Proof of the lemma. Let Y = diag(Y,;). Then we have

IVIE+ Y ~ 2= )Y |2 =n, (4.19)
as Y € ¥ and

=Y <n—|¥|2=yY- 732, (4.20)

which can be established most easily by considering the eigenvalues p of Y

(satisfying 0 < p < 1) and (4.19). Then
1Y ~TIE =Y =112 + ¥ - y)2 < 27 - y)2

by (4.20). .

We turn now to the proof of (C14). By eventually replacing A by U*AU
with a suitable U € % we may assume that

A+ A*

= diag(&,1, ), a*a;fori+j i,j=1,.. k,

and

='+C

where [ = diag(G,;) € 2. Observe that F and G have the same block
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decomposition and that the notation of the eigenvalues of F differs from that
in the introduction. From

~ ~ 12
NA*A — AA* |3 =||GF - FG|2= ) (& — &) IIG,I7

i*j
we have

4
G2 < 2 = ¢2, (4.21)
482

and according to the theorem of Hoffman and Wielandt [5] we get

S (B-v) <l (4.22)

i=1

where B, and v, are the eigenvalues of G and T' numbered in descending
order. Define a permutation P such that

PTPT =T = diag( vy, Yg»---» ¥, )-

The eigenvalues B, of G define a new block decomposition

B = diag(B,) = diag(B1,),., ,
and B". *B., i+ j- There is a unitary Y satisfying
PGP™Y = YB, (4.23)
and subdividing ¥ accordingly, we may also assume that the diagonal blocks

Y, of Y are positive semidefinite (i =1,...,s), for B is invariant under
unitarily block diagonal transformations:

T'Y-YB=P(I'~G)PTY= - PCPTY. (4.24)
If Y; is not in the same block as 8, then by (4.22)

Igi_7j|>|ﬁ,-"ﬁjl“IBj‘Yj|2§-8=A

3
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and A >0 as p2 < 288. Hence we have from (4.24)

Y1 I12A2 < 1C)2 < 2.

i*
By the lemma we have

Y- I)2 < 2;: = (%;ié - (4.25)

#2)
But PTY diagonalizes G and P7 diagonalizes F. Hence
Mo <|IY —1I||,
and by (4.25), (C14) is proved.
For the proof of (C15) we start from the SVD
A=WZIVv* (4.26)

of A. Writing 2 = diag(61,), i=1,...,k, 5, #§, for i # j, a block decom-

position is defined. If k=1, then A is normal and (C 15) is satisfied. So we
assume k > 1. Let

Y=W*v=(Y,)

be decomposed accordingly. By considering the polar decomposition of Y;i

we get V,, D, unitary, D, diagonal, such that V.Y, V.*D. is positive semidefi-

nite. Replacing V * by diag(ﬁiVi)V * and W by Wdiag(V,*), we get

A=WDV*, (4.27)

where D=3 diag(D,), |D| =
definite.

Now H, — Hy = (AA*)!/2 — (A*A)\12 = Wwsw * ~VZEV * and hence

2, and the diagonal blocks of Y =W *V are

H3=IH — Hyll} = [YS - SY|2 5 42 2 1IY12.
iaej

eV
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This and the lemma give

2p%
72 ’

IW=VIE=IY =TIz <2 X Yl <

i+j

and (C15) is proved.

We come now to the comparisons involving the spectral condition num-

bers k,, k.
(C16) is just a rearrangement of Smith’s result [12]

n -1
n—2+Kk,+Kk; ' <Kp< -2—(x2+x2 ),

and (C17) is nothing else than the inequality

in [12].
For the proof of (C18) we need the following facts:

(a) If S is Hermitian and X nonsingular, then
1SN e < 11X 1SX ||,

as can be seen from Schur’s lemma (4.2") applied to X ~!SX.
(b) If Y is positive definite and G € C™ ", then

IYIGY — Gllp < (ko(Y) — DGl -
This can be shown by writing the linear operator
L:C*"»C™",  L(G)=Y'GY-G
in the usual vectorized form (see e.g. [8, p. 9D

vee(L(G)) = (Y®Y !~ I,81, ) vec(G) = Lvec(G),

121

(4.28)

(4.29)

Where ® denotes the Kronecker product. As L is Hermitian and has
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eigenvalues n./7m;— 1 i, j=1,..., n, where the 5, are the eigenvaluz&s of Y,
and [|G||; is the usual Euclidean norm of the vector vec((G)€ C™, (4.29)
follows.

Assume A = X, AX{!and fi,; =«kxX,)- 1. Then
XTHA*A — AA*)X, = (Y A*Y = A*)A = A(Y 'A*Y — A*),
where Y = X *X, is positive definite. Using (4.28) and (4.29) yields
w <[ X1(A%A = AA% )X = 2UANIY 'A%Y - A%l
< 2l AN Al (koY) = 1] = 2UAJI AL [k2(X,) - 1]
= 2 ALl Al ey (24+ ), i.e. (C18).
For the proof of (C19) we observe that A = X (AX [T yields
IAIE <[IAIFR3(X,)
and hence
B =IANE = IANE <lIAIR[1 - xy(X,) 7],

which is just (C19). Observe that (C19) strengthens a result of Loizou [7},

H%SHA”%llu(z"‘ﬁu)- (4.30)
(C20) is proved by Ruhe [10). .
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