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ABSTRACT

It is known that if A is positive definite Hermitian, then A-A I>1 n t.h €
Positive semidefinite ordering. Our principal new result is a convefse to this 1}111-
equality: under certain weak regularity assumptions about a f.unct:o'n F ox:llt ;
Positive definite matrices, A- F (A) > AF(A) for all positive defir‘ute A ﬁ_aind ? v
F(A) is a positive multiple of A~1. In addition to the inequahtyTA-A >1, it is
known that A-A~'T3 [ and, stronger, that A, (A-B) > A ;.(AB"), for A, B posi-
tive definite Hermitian. We also show that A nin( A.B)zkmin(AB) @d note t‘hat
Amin( AB) and AL, (ABT) can be quite different for A, B positive defln'te_ Hen{:tlm;
We utilize 1 sim ple technique for dealing with the Hadamard pr(?duct, ‘whxch re tfes :f
to the conventional product and which allows us to give especxa!ly §tmp1e proz s 1(1)
the closure of the positive definites under Hadamard multiplication and of the
inequalities mentioned.
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232 CHARLES R. JOHNSON AND LUDWIG ELSNER

Let P, denote the set of n-by-n positive definite Hermitian' matrices,
while P, denotes its closure, the positive semidefinite matrices. As is conven-
tional, we take P, and P, to be partially ordered via

B> A if and only if B—AEPn

and
B> A if and only if B-A€P,

the positive semidefinite and positive definite orderings, respectively. p
The Hadamard (or entrywise) product [5] of two matrices A = (a; ;) an
B = (b)) of the same dimensions is denoted and defined by

A'B=(aijbij)’

while conventional matrix multiplication is indicated, as usual, by juxtaposi-
tion.

_ Itis often attributed to Schur and has long been known [5] that P, (and
F.) is closed under the Hadamard product.

_ THEOREM 1.
P).

n

If A, B P, (respectively P,), then A- B € P, (respectively

(Furthermore, it is easily observed that if A€ P, and BEP, 3 theI;
A-BE P, unless B has a diagonal entry equal to 0.) Of course, P, i ?hoe
closed under conventional multiplication, but A, B P, does imply that

eigenvalues of AB are positive real numbers [4] and thus that AB € P, if A
and B commute.

It was first noted by Fiedler [1, 2] that

TueoREM 2a. IfA e P, then
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works in the complex case), it was noted in [6] that

Tueorem 2b. IfA € P, then

A-A 1>

It is possible for this inequality to be strict when A is complex. (This is
contrary to the statement made in [6] under the implicit assumption that A is

real.) For example, let
3 1-i —i
A=|1+i 2 1.
i 1 1

Of course Theorems 2a and 2b coincide when A is real. The maps A - A-A™!
?_}‘]d A— A-A~!T are quite interesting in general and have been studied in
~ Stronger than Theorems 2a and 2b are the following parallel results; the
first was shown in [3], and the second is new. For an n-by-n matrix A, all of
“fhose eigenvalues are real, denote the (algebraically) smallest of these
tigenvalues by A _ (A) and the largest by A . (A).

THEOREM 3a. For A, B€ P,, we have

Al A-B) 2 A (ABT).
Turorem 3b. For A,Be€ P., we have

A A-B) 2 A, (AB).

B .Again, Theorems 3a and 3b coincide if A and B are real (in fact, if A or
15 rf:al), But if A and B are complex, the eigenvalues of AB and AB” can
quite different, and A (AB) and A ( ABT) can differ. For example, if

_ 2 i _13 -~ 2i
A*[*i 1] and B [2:‘ 9 |

thena(AB)__{2 T~ _ .B)= {448 ) and
~ (242}, o(ABT) = {834}, and o(A-B) = {42V8 };
“e have ’\m,-,.(A-B)=4—\/§>Amm(AB)=2—J§>Amm(ABT)=6—f§.
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It is an interesting tangential question whether there might be similar
inequalities involving A .., and also what relationships there might be
between AB and ABT or between A-B and A- BT in general.

It is clear that Theorem 3a implies Theorem 2a and that Theorem 3b
implies Theorem 2b, while 3a and 2b or 3b are not directly comparable, for
example. Both Theorems 3a and 3b imply Theorem 1, because the eigenval-
ues of a product of positive definite matrices are positive. Theorem 3a was

first observed in [3], but as far as we know the distinct Theorem 3b has not
previously been observed.

Our goal here is threefold:

(1) to exhibit the new result Theorem 3b;

(2) to present a way of dealing with Hadamard products which relates
them to conventional matrix multiplication and yields strikingly simple proofs
for Theorems 1, 2a and b, and 3a and b; and

(3) to give a converse for Theorem 2b

Also the proofs of Theorems 2a and 2b and those of 3a and 3b are essentially
unified with a new lemma, which may be thought of as an analog to the fact
that the Frobenius norm of a matrix dominates the root sum squared of the
absolute values of the eigenvalues. Several proofs are known for Theorem 1,
some of which are brief through use of the Kronecker product, but both
published proofs of Theorem 2a and b (one of 2a and one of 2b} ar
somewhat elaborate. It is worth noting that proof techniques based upon the
Kronecker product, which succeed nicely for Theorem 1, appear unable t0
handle the successively more subtle facts, Theorems 2a, b and 3a, b.

What is immediately striking about Theorem 2b is that the inequality may
be rewritten as

A-A71> AL

so that Hadamard multiplication dominates conventional multiplication W}}e“
the two multiplicands are functionally related (namely by the inversion
function). Of course the left-hand side is positive definite by Theorem 1, but
that it should dominate the usual product is remarkable. The point of 0¥
converse is that inversion is essentially unique in this regard.

We say that F: P, > P_is an ordinary function on P, if, for AE P, with
unitary diagonalization

A=U"'diag()\1,...,)\n)U

1

F(A) = U*diag(fi(A,,..., Aadsevss A iseo s A DU for some given function®
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f:RT>R* i=1,...,n. Polynomials with positive coefficients, inversion,
and exponentiation are examples of ordinary functions on P, but in each of
these cases £, depends only upon A, and all f; are the same. The classical
adjoint, F(A) = (det A)A ™, is an example of an ordinary function on P, in
which the f’s depend upon more of the A;’s and the f;’s are different:
ﬁ(M,'--,)\,,)=rI,¢,.A,.. Of course, the class of ordinary functions is very
broad. Our motivation for this definition is that we want to consider a wide
class of functions such that A € P, implies F(A) € F, and AF(A) is Hermi-
tian; for, these are the circumstances in which the issue of a converse to
Theorem 2b is meaningful. The only aspect in which the ordinary functions
on P, are less general than this is that F is not allowed to depend upon the
unitary matrix U. If it were, aside from the problem of definitional ambiguity,
the definition of F could be modified for diagonal A, and there, since
Hadamard and conventional multiplication coincide for diagonal matrices,
A-F(A)> AF(A) trivially as long as F(A) is diagonal.
converse to Theorem 2b is contained in the following.

TuEOREM 4. Let F be an ordinary function on P,. Then
A-F(A)z AF(A)  forall AEF,

if and only if
for each A € P,,, F(A) is a positive scalar multiple of A~

Facts such as Theorems 1 and 2 may be proven by first making the
following observations, which hold for arbitrary n-byn complex matrices A
and B. For x € C", let D, be the diagonal matrix whose ith diagonal entry is
i i=1,...,n, so that D, = x, in which e is the vector of 1’s, as usual. As is
easily verified, we also note that Hadamard multiplication commutes with
Conventional diagonal multiplication in the following sense: D(A-B)=DA-B
= A-DB and (A-B)E = A- BE = AE-B, whenever D and E are diagonal.
We then have

x*(A-B)x=e"D}(A-B)De
- eT( Dx*AD:' B)e = Tr( D;‘AD,BT). (*)

A proof of Theorem 1, then, just relies on the well-known observation that

€ product of a nonzero element of P, and an element of P, is diagonal-
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izable and has nonnegative eigenvalues, which therefore cannot all be zer. If
A,B€PF, then D*AD, (€ P,) is nonzero as long as x+0, and B €?,;
thus, T(D*AD,BT) > 0 and x*(A- B)x >0, implying A-Be P,. '
Note that a fact about the Hadamard product of positive definite matrices
has been related to a fact about the usual product of positive definite
matrices.
A quite similar proof may be given for Theorem 2a and, with one

additional observation, for Theorem 2b. This fact will also enable us to verify
the new Theorem 3b.

LemMa. IfCisq nonsingular n-by-n normal matrix, E is an n-byn

diagonal matrix, and l-llp denotes the Frobenius matrix norm [||Alj%=
Tr(A*A)), then

IC™IECT), > E,.

Proof. let C=U*DU be a unitary diagonalization of C. Then
IC™"ECT||; = {U*D='UEUTDT)|, = | D-"UEU D), > |UEUT||, - IEs
e second and last equalities are due to the fact that the Frobenius nOI’fTﬂ 15
unitarily invariant, and the inequality is due to the fact that UEUT is
symmetric and that A/1th+|t|>2forall 0 £ ¢ = C. .

The lemma will be applied to situations in which C is actually Hermitian,
in which case CT = C, It should be noted that the inequality

ICTEC||, > 1By,

holds also, even for general nonsingular C (the proof is the same after writing
C in singular value form), while the inequality of the lemma does not hold
for general nonsingular C: Let

|1 =10 - 1100 0
¢ [0 l] and E*[ 0 1}'

But this is not critical here.
Now, let A€ P, and B=A-1T

(to prove Theorem 2a) or B= A" (t0
prove Theorem 2b). Using (*), the s

tatement A-B > J s equivalent to

Tr(Dx*ADxBT) >Tr(DAD,) = x*y.
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However,
Tr( D,‘AD,BT) = Tr( Bl/2TD:Al/2Al/2DrBl/2T)
= |AY2D,B'2T||t > | D,)|} = Te(D;* D,).

The inequality follows from the lemma in case B= A~! (proving Theorem
2b), or from the more familiar fact that the square of the Frobenius norm
dominates the sum of the squares of the absolute values of the eigenvalues in
case B = AT (proving Theorem 2a). n

Qm proof of Theorem 3b is a refinement of the calculations used
previously. It again uses the lemma in place of the classical inequality used in
the proof of Theorem 3a in [3]. We have

AminlA-B) = min x*(A-B)x

x*x=1]1

= min Tr(D*AD,BT)
1Dl F =1

= min ||AY2D,B'?7|%
WD lip =1

= min ”Al/2Bl/2B-1/2DIBI/2T”%
iD= 1

S (428 | min [B/2DBT
2 D AF=1

>[1BVA V252 = [ (B4 7]

= A..(AB).

Here, Il denotes the spectral norm, and the first inequality is the same as
at used in [3]. The second inequality follows from the lemma, and each of
the equalities is either a standard fact or an algebraic manipulation.

' Of course Theorem 3a may be proved in much the same way, as in [3], by
using the familiar fact that ||B~Y27D,BY/27||>||D|p in place of the
émma,

To prove Theorem 4 we need only establish the necessity of the asserted
Property of F. Because of the positive homogeneity of the inequality under
Study, the sufficiency follows from Theorem 2b. Let fi,.... fu: R} —>R" be
the functions which induce the ordinary function F, and let A}, Ag,.... A, >0

e
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be arbitrary. We seek to show that
MAA G A) = Ao fiA e A) = o = A £(ApA,):
Then, since these are the eigenvalues of AF (A), it follows that
AF(A) =N f(A,....,A )]

Thus, F(A) would be a positive multiple of A~!, as asserted by Theorem 4.
Our strategy is to show that for an arbitrary pair of distinct indices k, j,

MAR LX) =N f(A. ).

Without loss of generality (the same proof would work for any pair) we show
this for k=1, j =2 Let

and

We consider

Air-A,.G)diag()\S,...,)\n), i=1,2.
Since

~

A F(A,)~AF(A)=[A,F(4) - AF(A,))] ©0,_,
it suffices to consider the implications of

A,-F(A,-)ZA,.F(A,.), i=1,2.
A calculation reveals that

_l'rA1+A2 AI_A2
2_A1_)\2 A1+A2 ’

F(A )=1 () + £(2) AA) = (M)
Y2l A) - £ AN+ £ [
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and

AF(A,) = L[ MANFRER) M AQ) - Ah()

2{MAR) =X f(X) MAR)+ XA |
in which we have used f(A) to denote f(A,,...,A,), i=1,2. It follows that

AyF(A,) - AF(4A))

AN+ X, £(M) 3hafo(A) = A F(N)
L =AM A5 =M A(A) = A fi(A)
4 3A2f‘2()\)“)\1f1()\) fl(l))\z_*_)\lfé(A)
= M (N) = Aghi(N) — [MAN) + A 56(0)] |

For A\-F(A|)~- AF (A,) to be positive semidefinite, it is necessary that

\afo(A) 2 A fi(A)

(because
(1:1)[A1'F(A1) - AlF(Al)]( })

must be nonnegative). Parallel calculations involving

1 A I + Az Az - Al
279 [ A=Ay A A,
reverse the roles of the first and second variables and functions to produce

MAA) < Ao fo(A)-

We conclude that A1 fi(A) = Ay fo(A) and that A fillA)y=Af(M) in general,
completing the proof of Theorem 4.

If in addition to F being an ordinary function, we had also assumed that
each f depends only upon A, similar arguments would imply that each f is
the same function (call it f) and that af(a) is constant for all a> 0. The
Stronger conclusion would then follow that F must have the more special
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form F(A)=cA ™! for all A€ P, and some ¢ > 0, independent of A. In the
more general setting of an ordinary F, this strong of a conclusion may not be
reached (¢ must be allowed to depend upon A, in essence). For example,
F(A)= (det A)A~! is an ordinary function which satisfies the inequality of
Theorem 4.
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