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Arbitrarily Varying Channels with States
Sequence Known to the Sender

RUDOLF AHLSWEDE

Abstract— The capacity of the arbitrarily varying channels with states
sequence known to the sender is determined. The result is obtained with
the help of an elimination technique and a robustification technique. It
demonstrates once more the power of these techniques.

I. FORMULATION OF THE CHANNEL MODEL AND
THE CODING PROBLEM

ET &, % be [inite alphabets, let & be a set of states.
and let W= {w(-|-|s):s € ¥} be aset of stochastic
|Z| X |¥}-matrices.
We call the sequence (¥ ")*_, an arbitrarily varying
(AV) channel if

W= {w(|-|s"):s"€L") (1.1)
w(yIx"|s") = Qw(y.lx,rs,) (12)
[-
for all
x"=(x,, -, x,) €L,y €F", and s"ES".

An AV channel can be viewed as a model for a discrete
memoryless transmission system, which depends on a
parameter or state, that may change within & in an
arbitrary manner. It also can be viewed as a channel model
for a jamming situation in which the jammer chooses the
states,

There is a large number of coding problems for these
channels because

(a) the sender, receiver, and jammer can have at every
time instant ! a certain side information about the
past, present, and future “operation of the system;”

(b) the communicators can often achieve higher capaci-
ties with randomized coding strategies; and

(c) the error criteria (maximal versus average) can
drastically affect a coding problem.

The reader is advised to consult [2], [7], and [10] for a
discussion of these phenomena. A more complete account
will be given in [8].
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We make here the following assumptions:

(J7) The jammer has no knowledge of messages or
words or letters, which are to be transmitted or
have been sent or have been received.

(S5*) The sender knows the entire sequence s" actually
used by the jammer before he transmits a message.

(R™) The receiver has no knowledge of the jammer’s
(pure or mixed) strategies.

It is convenient to assume also that & is finite. All our
results can be extended by standard approximations (as in
[2]) to the case of infinite &. In our analysis we consider
cases where the set of strategies available to the jammer for
block length n is a subset, say, &, of the set 2(#") of all
mixed strategies, that is, of all probability distributions
on £

Since our assumptions about the receiver’s and sender’s
knowledge are always the same, a channel model is com-
pletely specified by (#;)%..,. We introduce short names for
the channel models of interest to us:

€ describes the case where the jammer does

not randomize; that is, &, consists of

all one-point distributions.

¢ describes the case where the jammer can
randomize in any manner, that is, &, =
P(L).

€, 0Cc?(¥) describes the case where the jammer can
randomize in a special manner, namely,
he can use only strategies ¢" = [1{g, n

eN, withg € Q.

In particular, if = {q) has a single element, we write
also €,. This describes a channel that Gelfand-Pinsker [1]
called a channel with random parameters. Their character-
ization of its capacity, stated in the following as Theorem
1, serves as one basic tool for our solution of the capacity
problem for €, about which they write [1, p. 20]:

“This means that one has to construct codes which fit for every set of

states s;, = s,, —. This approach makes the problem much more
difficult, and one has no final answer.”

We need a few definitions.

Codes, Errors, and Capacities

An (n, N, A)-code for a channel model specified by
jammer’s strategies (%), is a system {(u,(s"), D;): 5"

0018-9448 /86,/0900-0621$01.00 ©1986 1EEE




622 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32) NO. §, SEPTEMBER 1986

EL"1<i<N}) with u(s")€X", D,C ¥" pairwise
disjoint, and

Z"w(Dilui(s

")'s")q"(s") '>' l - A

for 1<i<N,q,€®?. (1.3)

If we consider the average probability of error criterion
instead of the maximum error criterion, then (1.3) is re-
placed by

~ Z Lw(Dju,(s

zls

Is")g.(s") 21 =X for ¢,€,

(1.4)

and we speak of an (n, N, \)-code for (#/)%_,.
The capacities for €, ¢, ‘€ ? in the case of maxi-
mum (respectively average) probablhty of errors are

denoted by C;, C,C,, C, (respectively C,, C, CQ, C )
Since w(D,|u,(s")}s") > 1 — A (respectively

/NI w(Dfu,(s")|s") 2 1 - \)
for all s” € " implies L .w(D,|u(s")|s")g(s") =1 - A

(respectively 1/NIN ¥ .w(D,ju,(s")|s")q(s") =1 - A)
we have

C,=C, (C=C (1.5)
Furthermore, it follows from
= Z Lw(Dju(s")s")g(s") 21 - A

zls

that for a suitable half of the indices i

;w(Di|ui(s")|s")q(s") >1-2\

and therefore

¢,=C, (1.6)

We shall see later that actually C = C in contrast to the
behavior of AV channels in other cases (see [2]).

The Result for C,

Let %, be the set of all triples (U, S, X) of random
variables with values in %, % and %, respectively, where
¥ is a given finite set, and with a joint probability distri-
bution Pygy such that the marginal distribution of S is .

To every triple (U, S, X) €%, assign the quadruple
(U,S, X, Y) with

Pusxy(“’ $,%,y) = vax(“, s, x)w(y|x|s).

For every finite set 2 denote its cardinality by |Z).

The following result of [1] and several extensions thereof
were also obtained in [6]. All this work originated with the
study of storage in defective memory cells [5].

Theorem 1:
C = HUAY)-HUAS
. (U‘gxgy;egq[( ) - (U~ S)]

for a @ with |#| < |2| + ||

One of the discoveries of [2] was that the problem of
finding the average error capacity for AV channels with
states unknown to sender and receiver can be divided into
two subproblems, namely, the problem of positivity of the
capacity and the problem of the capacity formula. This
dichotomy is present in most capacity problems for AV
channels. Moreover, it is a remarkable phenomenon that
there is a certain trade-off between the complexity of the
two subproblems. By our experience a capacity theorem is
very hard to establish if one of the subproblems turns out
to be easy. An example for this is the zero-error capacity
problem. In our present case none of the subproblems is
easy.

The mathematics of the subproblems can be quite differ-
ent. The positivity part leads to several nice geometrical
problems for cartesian products of convex sets, which seem
to be of independent interest. This will be the main subject
of [8].

The formula part of our problem is a demonstration for
the power of our robustification technique [3, part II] and
our elimination technique [2],

The reader is advised to study [2], where many of the
techniques of the present paper, in particular the elimina-
tion technique, were first developed. He/she may also
consult the paragraph on arbitrarily varying channels in
(10}. Familiarity with [3] is not necessary for an under-
standing of this paper.

II. THE RESULTS

The robustification technique exploits the simple fact that
the probabilistic structure of channels is invariant under
permutations of the components. Once one has a com-
pound channel coding theorem it is merely an exercise to
derive via the robustification technique in conjunction with
the elimination technique a capacity formula for the corre-
sponding AV channel if the capacity is positive.

Thus in the present situation we first need an extension
of Theorem 1 to the compound case ©,. Here the sender
knows s”, but not q However, he can mform the receiver
about the type of 5"

We state the result as follows.

Proposition 1:

Cp= inf C,Qc (5

), ifC>0,

and rates below Co can be achieved with exponentially
small error probability in the block length.

Actually, the formula is valid also if C = 0, but this will
not be used and therefore is not proved here. The positiv-

ity part of the problem is settled in the following nonobvi-
ous lemma.

Separation Lemma: The condition C > 0 is equivalent
to the separation condition

(T) all we€ # have two distinct row vectors.

(This means, of course, that all DMC’s with transmission
matrix w € #" have positive capacity.)
Our main result is the following,
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Capacity Theorem: The capacity C of the AV channel
with state sequence known to the sender before transmis-
sion is given by

C= mn C.

€@y !

Moreover, the capacities for maximum and average prob-

abilities of errors are equal, that s, C = C.

Remarks

In contrast to the capacity theorem of [2], here the
formula for the capacity is valid regardless of whether
C>0orC=0.

[7, Theorem 6.2.3] says that the condition

(T) min  FIEw(ylu(s)ls)qls)

9.9€2(7)

>0

= Lw(ylo(s)is)q'(s)

for suitable functions u, v: - %,

is sufficient for C > 0. However, this condition is not
necessary for C > 0 to hold, and thus not exact. Example

I: For w'= {(1;2 132),(1(/)2 1;2)} is clearly non-(T),
but by the separation lemma C > 0.

It seems to us that the aforementioned capacity theorem
is one of the most complex coding theorems ever proved.
Its proof not only involves the techniques of AVC theory
but also some of the most advanced techniques from
multiuser theory entering via the proof of Theorem 1.
Fifteen years ago such a capacity theorem must have been
out of reach, and now it serves almost only as a demon-
stration for the power of certain methods. It is even
conceivable that soon a much simpler proof will be found.
This shows that there is hope also for several of the harder
problems in multiuser theory, which seem to resist all
efforts for their solution. Some problems can be solved
only at the right time; the time is right if the methods are
mature.

Channels with random parameters have been considered
already by Shannon [9]. In [7] they are called “channels
with stochastically selected states.” The kinds of partial
side information by the sender and/or receiver studied in
[9] and [7] lead to mathematically less sophisticated coding
problems.

Thanks are due to a referee for asking whether C can
really be smaller than min,, ¢, C(W), where C(w) is the
capacity of the DMC with transmission matrix w. We
show in the Appendix that in the deterministic case, that
is, all we W are 0-1-matrices, C = min,, ¢« y C(w), and
that already for Example 1 C < min, ¢ C(W)-

[Il. PROOF OF THE SEPARATION LEMMA

Before we enter the formal proof we describe the idegs
which led to the characterization of the positivity of Cin
terms of condition (7). For now, and also later, we use for
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any finite set 2 the following notation. #(Z) £ set of all
distributions on &; P(n, Z) 2 {p € P(Z): p(z)n=n,
is integral for all z € Z}; z" = (z3,"++,2,) €Z" is said
to be of type g (or (¢,0)-typical in the terminology of [3])
if |{t:2,=2z)|=q(z)n forall z € Z, and Z'"(q) is the
set of sequences in 2" of type g, g € #(n, Z).

Proof: Now obviously (T') is necessary for C to be
positive; however, sufficiency is by no means obvious and
to be proved.

A further observation is the fact that the condition

min Y| Ew(y"u(s")is")q(s")

q,q’E.@(y") yn ry

(T)

=Y w(y"lo(s™)Is")g'(s")|> 0
S’I
for some n and suitable functions u,v: " —> 2",

which is a natural extension of condition (T), is not only
necessary, but, as a consequence of [4, Theorem 1] (7,
Theorem 6.2.1]), also sufficient for C to be positive. How-
ever, condition (7. ) is a “nonsingle letter” condition and
therefore hard to verify.

Since knowledge of s implies knowledge of the type of
s", it seems reasonable to consider the (seemingly) stronger
condition

(T,) There exist functions u, v: P(FLYXF > X with

Yow(ylulq, s)is)a(s)

s

min Y

4.7 =2(%)

~Yw(ylelq, s)s)g'(s)]> 0.

It can be seen, though it will not be used, that (T})
implies (T.,) and a fortiori also (T). However, for Example
3 in the Appendix, which satisfies (T), (T,) does not hold!

Now we take advantage of the fact that for the present
channel randomization in the encoding gives no improve-
ment. Indeed, suppose that {(r;, D;):1 <i < N}isacode
with maximum probability of error A, where r; is the
randomized encoding function and D the decoding set for

message i, then

ZW(Di|x"l5n)’i(X"l5") < rriz’a'xw(D,}x"ls") (3.1)

X

and we can therefore define, for every s" us") as the
maximizing x". Thus we obtain code {(u(s"), D,): s" €
¥ 1 < i< NY with a maximum probability of error not
exceeding A.

We can, therefore, look for conditions characterizing
positivity of the capacity under randomized encoding. It is
natural to weaken condition (T7) to the condition (T7*).
There exist sets of random variables {U(q,s):(q,5) €
P(F) xS} and (V(g,5):(g,5) € P(F) X L), each

¥

sy

N Jw.h- -
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random variable taking values in 4, such that

q-ilreug(y)z LEw(ylU(q, 5)Is)q(s)

- LEw(y (g, 5)q'(s)| > 0.

Fortunately, conditions (T) and (7}*) are equivalent
and (T}*) implies C > 0. These facts will be stated as
Lemmas 1 and 2. With their proofs and the fact that (T)is
necessary for C to be positive we have also proved the
separation lemma.

Lemma I: The conditions (T') and (T}*) are equivalent.
For the proof we need the following elementary lemma.

Selection Lemma: Let J be the set of finite intervals in
R of a length at least ¢. For any € < ¢/2 there exist two
(selection) functions f: J —» R, g: J - R with the prop-
erties

fyel, g(IYel forall IelJ
[f(I)-g(I)|2¢ foral I,1'eJ.
(There is an obvious generalization to R™.)

Proof: Define A = {2me:m integral) and B =
{(2m + 1)e: m integral}. Since 2e < ¢, for all 1 €J we
have ANT# @ and BN I #0. Define f(I)=
min{a:a€ANI}and g(I)=min{b:be BN I} for
all 7 € J. Thus (3.2) holds. Since for a € 4, b € B neces-
sarily |a — b| 2 ¢, also (3.3) holds.

Proof of Lemma I: Obviously non-(T) implies non-
(T}*), because there is a matrix w(:|- [s,) with identical
rows and for g = ¢’ assigning probability 1 to s, the
minimization gives the value 0, regardless of the choice of
the random variables.

(T) implies (T}*): By (T') every matrix w(-|-|s) € #
has two distinct row vectors with indices a, and b,. We
construct now 2 line segment in R'*! for each g € 2(%).
For an s* with g(s*) = max, ¢(s) let I(q) be the line
segment joining the points

ESW(-IG,IS)q(s)
and

Y wl-la,ls)q(s) + w(-jbls*)q(s*)

sEs*

in R\, The length of each I(g) is greater than (or equal
to)
12
min | ¥ |w(yla,ls*) = w(ylbels*) '] 117! > 0.
oy

Since there are only || many pairs (a,, b,), all the line
segments 1(q), ¢ € P(¥), take one out of |&| many
directions. Therefore we can find a line & in R¥! such
that the projections proj, I( p) of the line segments I (9)
on £ all have a length greater than a constant ¢ > 0. By
the selection lemma there are functions f, g with

I£(projs 1(g)) ~ g(projg 1(g'))ll; = ¢/3
forall ¢,q9'€ 2(¥).
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Hence there are also selection functions F.G for the
original line segments of the form

F(1(g)) = X w(la,ls)q(s) + [aw(-la,.|s*)

s*s*

+ (1= a,)w(-lb,Is*)]q(s*)
G(I(g) = X wi-la,s)q(s) + [Bw(-la,|s*)

+ (1= B )w(-Ib,ls)] 4(5*)
with
IF(I(q)) = G(I(g); 2 ¢/3 forall q,q'€ P(¥).

(T*) follows now with the choices

a, fors # s*

U(g,s) = { a,» withprobability a, | \
b, with probability 1-a,/ '°7F7*

f a fors # s*

V(q,s) = a,. withprobability B, f .
ors=3s

I

Lemma 2: (T}*) implies C > 0.

with probability 1 - B,

Proof: We have shown in (3.1) that we can randomize
in the encoding. Again by [4, Theorem 1] it suffices to
show that two messages can be transmitted with small
(< 1/2) error probabilities.

Now the sender, having observed s” of type g, encodes
message 1 as

(U(g, 1)+, U(g, 3,))
and message 2 as

(V(g.5). . V(g,5,)).

The receiver receives ¥" respectively Y;. By the law of
large numbers, with a probability tending to one as »
tends to infinity the type of Y approaches the set
{Ew(-[U(q, 5)|5)q(s): g € P(£)} and the type of V'
approaches the set {Ew(-|V(g, 5)|s)q(s): ¢ € P(¥)}. By
(Ty*), for sufficiently large n, with high probability, those
types are a guaranteed distance apart and therefore, with
high probability, the reciever decodes those messages cor-
rectly.

IV. PROOF OF THE CAPACITY THEOREM

A. Proof of Proposition 1

By Theorem 1 and a standard concatenation argument
(or also by inspection of the proof of Theorem 1) every
rate R < C, can be achieved for all large m uniformly in
q € Q with an exponentially small error probability, that
is, there exist an ¢(R) and codes {(uf, Df):1<i<
M; M > e®™} with

L wl(D?) Tuf(s™)ls™)q"(s™) < e

s"eym

forl<i<M,qge Q,andalllarge m. (4.1)
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However, in our compound coding problem sender and
receiver do not know ¢g. We can overcome this difficulty as
follows. Set n £ (1 + 8)m. Observing s™, the sender knows
its type p. Using &m digits, for instance, after the block of
length m, the sender can inform (since C > 0) the decoder
about p. Since |2(m, &)| < (m + 1)), this can be done
with a code {(V”, B"): p € #(m, #)} of negligible rate,
that is, with a very small § and with an error probability
less than e~ 2®»™ where ¢,(8) > 0.

Based on the previous codes, we define now a code nof
depending on q € Q for blocklength n. For this we assign
first to every p € ?(m, %) and p’ € Q such that

] M
—Y T w{(Dr)Wsm)s")

M =1 s"esM(p)

1 M
<sinf =Y ¥

w((DF) Tud(s™)s™) + 7o,
40 M i=ls"es™(p)

¢, >0. (42)
Now for every s" = s"s,.; *** S, $" €S "(p) we de-
fine
u(s") 2 up(s™)o?, D(s") = DF X BP;1<i<M.
(43)

The receiver uses this decoding system by first deciding
upon the type p of s™ and then, with the knowledge of p,
he decides on the message i.

We estimate now the average error probability for this
code. For any g € Q by (4.3)

1 M
7 L L w(Ds") ulsM)ls")g"(s")
i=]s"es"
1 M
L ¥ L
i=1 peP(m,¥) s"esL"(p)
. qm(sm) + e—(,(&)m

- 3|

M i=1 pef(m,5)

< w((DF) WP (s™)1s™)

£ w0V tsmism))
s"eS™(p)

. qm(sm) + e—(;(b‘)m
(since all sequences in &™( p) have the same g ™-probabil-
ity)

1 M ¢ -~
S N
Mi=1pe9(m,y’) smeS™(p)

(s + e ((62)
< e amy e—(z(S)m+ e M (by (41))

B. The Robustification Technique

We use the symmetric group Z,, that is, the group of
permutations acting on {1,2,--, n). Bvery o € Ei"
induces a bijection 7: %" — " defined by 7s" =
(SO(I)"",SU(n)) for s"=(sp ", 8,) €L I1, denotes
the group of these bijections. Their restrictions to &"(p).
P € P(n, #), are also bijective. In [3, part II, ch 5] a
robustification technique was formulated as Theorem 6.
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An analysis of its proof led to the more general theorem
that follows.

Theorem Robustification Technique (RT): If g: #" -
[0, 1] satisfies for an @ € (0, 1) the inequality

Y g(s")p"(s") > 1-a,

s"esn
forall p"=[[p with peP(n, &),
1
then it also satisfies the inequality

1
- Y g(ms")<1-q,,

' nell,

forall s"€&",

where a, = a(n + 1),

Proof: The first inequality is equivalent to

Y(1-g(ms™)p"(ns") < a

s"

for nell, peP(n, &),

because  is bijective. Since p"(ms”) = p"(s"), it follows
that

1
Z(l - —'Zg(ws"))p"(s") <a for peP(n,&).
. n!

Here 1 — 1/n'L,_g(ms™) > 0, and therefore the left side
is decreased when summing for s" € ¥"(p) only. For
these s” T_g(ws") is constant and we get

1 st <e e

for every 5" € #"( p) and every p € P(n, &).
It is well-known (c.f. {10, p. 30]) that

p(F"(p)) = (n+ 1)—|Yl for p€P(n,&).
(4.5)

Now (4.4) and (4.5) imply (1 — 1/n'L g(7s")}(n + nH¥
< a for all s" € %" and thus the second aforementioned
inequality.

C. Application of Theorem RT

We need the following concepts. A correlated (n, N)-
code is specified by a finite probability space (T’ p) and a
collection {(u)(s"), DY):s"€ F"1<i<N}er of
(n, N)-codes. In using such a code, the index y is chosen
according to the random experiment (I, p), and then
sender and reciever use the code indexed by y. Since y has
to be made known to both of them, there must be a
common knowledge or correlation in the system. It serves
here only as a mathematical tool. The average error is
measured by

1 X .
max ¥ p(v)= L w((D7)ui(s")ls")-
s"€S” yel NS

C,,., is the capacity of ¢ for correlated codes.

Praposition 2:
C.= min C,.

corr q

qEP(Y)
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Moreover, rates below C, . can be achieved with exponen-

tially small error probability in the block length.

Proof: By the separation lemma, if C = 0, then non-
(T') and thus both C,, and min n, g #C, equal 0. In case
C > 0 by Proposition 1 for Q £ #(.#) there are codes

{(“i(s ),D,):1<i<N;s" E,S"'}
of a rate arbitrarily close to min geP y)Cq with

—ZZ

1 1s"es”

w(Dyju,(s")s")q"(s") > 1 —a (4.6)

for all g € P(¥), where a is exponentially small.
For g defined by

N

1
"ﬁ iglw(Dtlui(s

the inequality (4.6) ensures the validity of the hypothesis of
Theorem RT and therefore

Z Z (Dju,(7s")jms™) > 1 - a,,.

'nel'l 1=1

g(s") = ")s"), s" €&, (4.7)

(4.8)

By (1.1) and (1. 2) this is equivalent to

ZZ(

“IDjrtu,(ms")|s") > 1 - a,.
WGH N )
(4.9)

But this says that the correlated code specified by the
collection of codes

{(7 7 u,(ms™),

and the uniform distribution on II, has an average error
probability less than a,. Clearly, a, < e™" for a = (n +
1) ¥le=en,

7!D):1<is N;s"eyn)

nell,»

D. Application of the Elimination Technique (ET)

Theorem ET: If for ¢ > 0, A € (0,1) and n sufficiently
large the average probability of error of the correlated
code

(T, s {(u)(s

DN):1<i<N;s"e&") or)

satisfies
1N .
max T w(1)5 L w((D)l(s")s) < e, (410)
S yeT i=1

then there exists a I'* € T and a p* such that the corre-
lated code

(F*,p*, {(W(s™), DY) 1<i<N;s"€P") o)
satisfies for its maximum probability of error and for I'*

max max Y p*(y)w((D7)uX(s™)}s") <A,

lgisN s" yer*

IT* < n%. (4.11)

Further, if C > 0, then (4.11) implies that for blocklength
k =n +[4/C logn] there exists a code

{(r(1s*). B):s*esk1<icN)  (a12)
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with randomized encoding and maximum probability of
error less than 2A.

Proof: This result is proved in [2, sect. 5] in the case
where the u] do not depend on s". Since the random
variables S§;; are defined there for fixed s”, the previous
proof for (4.11) literally applies, if u} is replaced by
u)(s"). For the same reason, if g; in [2, (5.4)] (which
corresponds to our r,) is made dependend on s*, the
previous proof for (4.12) applies. The reader may also
consult [10, Lemma 6.8 and Theorem 6.13] and check that
the modifications mentioned are of no consequence for the
proofs of (4.11) and (4.12).

E. End of proof for the Capacity Theorem

_In Theorem ET (4.10) holds for rates arbitrarily close to
Ceorr- If C >0, then (4.12) of Theorem ET implies that
rates arbitrarily close to C,,, can be achieved under rando-
mized encoding with small maximum error probability. By
(3.1) the same can be achieved without randomization in
the encoding. Therefore C = C,_, if C > 0.

We know already that C = 0 or equivalently non-(7)
(separation lemma) implies C, . = 0 and thus always

C= c (4.13)

corr’

Since C < C< C..... we have established the equality of C
and C.

Finally, by Proposition 2 and (4.13) C = min sem Ly

APPENDIX

Here we are concerned with calculations and comparisons of
channel capacities.

A. The Deterministic Case

Let #” contain 0-1-matrices only. It is instructive to consider
the following two examples.
Example 2:

Z={1,2,3},9= {1,2},"”={(2 5)((} 3)(? é)}

Since the sender knows the states, that is, the matrices, at every
time instant he can always choose to produce output letter 1 or 2.
Therefore C = min, C(w) = 1.

Example 3.
R e ( H K K

Here a simple strategy as before does not exist. In trying to
find the capacity, the reader will realize that to solve this seem-
ingly simple problem is already a formidable task. He will then
perhaps appreciate the following consequence of the capacity
theorem.

Corollary: 1f #" contains 0-1-matrices only and d(w) is the
number of distinct rows of w, then

C = min log d( w).

Z=(1,2}, =

Proof: Let us define d £ min, ., d(w). Since C(w)=
log d(w), we have also C < min, logd(w)=1logd. By the
capacity theorem it suffices now to show that min ¢ p(s, C, 2

log d. This will be done if we can find for every g € P(¥) a
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wriple (U, S, X) € #, with
HUAY)-I(UAS)2logd.

We consider triples with deterministic Py, that is, functions
X PX U ¥, Since all w(+|-|s) are deterministic, also the
output variable y is deterministic.

We choose now %4 # and shall make our definitions such
that U = Y. First of all we define for s €.

g = {y:wlylxls) =1,
Clearly, |%,| = d(w(:| - |s)). Next we define for s € &

Y '! forued,
PUIS(ulS) ) {|0 | otherwise

forsome x€¥}cd.

and then x(u,s) such that w(u|x(u,s)js) =1 for u € %, and
arbitrary otherwise, because there Py g(uls) = 0. These defini-
tions enforce U =Y with probability one. Here Py(u)=
L, Py s(uls)q(s).

Now we have

(UAY)-I(UAS)
= H(U) - H(U) + A(UIS) = X4q(s) logl%,]

> min log|¥,| = log d.
§

Shannon found in [9] the capacity of a channel with random
parameters in case the sender knows at time ¢ the past and
present state.

It is the capacity of a DMC with input alphabet £ 1, output
alphabet % and transmission matrix w defined by

W ylxr s %) = La(s)w(y1xls)-

The row vectors of this matrix for Example 3 with ¢=
(1/3,1/3,1/3) are all permutations of (2/3, 1/3,0) and
(1/3,1/3,1/3). Since (1/3,1/3,1/3) = 1/2(2/3,1/3,0) +
1/2(0,1/3,2/3) only the six other row vectors are to be consid-
ered. By an elementary calculation, Cg, = log3 - h(1/3)=12/3,
which is smaller than C = 1.

We also draw attention to the fact that in Example 3 for the
compound channel with transmission matrices ¥~ the capacity,
say, C equals 1. However, in Example 2 Coomp = h(1/3);

comp?

whereas C = Cy, (for ¢ as above) = 1.

B. In General C < min C(w)
weEW

The corollary tells us that the desired inequality can occur only
in the nondeterministic case. The simplest situation we could
think of is Example 1 in Section II, where &= ¥=%={0,1}

0 1 .
and w0 =}y %) Wl = (% ). One readily

calculates that here for ¢ = (1/2,1/2)
Cy =1 - h(1/4) ~ 019, (A1)
More importantly, we need to know for our comparison the
0
value of min,, . ,» C(w), which by symmetry equals C{,, 1,2
Here for the input distribution (1 — &, a) the mutual information
I(e) equals h(a/2) — a. Since I'(¢) = 1/2lg2/a~ 1)~ 1=
0 has the solution a = 2/5 and I""(2/5) < 0, we get
1 0
= -2/5~0.32. Al
C(m 1/2) h(1/5) -2/ (A2)
Since our capacity C is invariant under permutation of rows in
matrices, we could (equivalently) consider the channel

W = {( 10 ) (1/1 1ﬂ)}.For curiosity we mention that by
12 12V e 1
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symmetry its compound capacity Comp(#) =11/ = h(1/4)
—1/2 and thus

Coomp(#) ~ 031, (A3)

We show now that for Example 1
C <028 (A4)

We obtain this bound by proving that for ¢ = (1/2,1/2) C, <
0.28. For this we use the following proposition.

[1, Proposition 1]: For (U, S, X)e A, the function I(U A Y)
—~ (U A S) is a) for fixed Pyys N-convex in Py, and b) for
fixed Py,s U-convex in Pys. We know already from Theorem
1 that in the formula for C, it suffices to consider U/ with values
in % such that ¢) |%| < %] +|&|

We add two simple observations, which are useful in calculat-
ing C,.

Observation 1; The labelling of the elements in % is irrele-
vant.

Observation 2:  Suppose that for a fixed Py,;5 we have

Pyus(xlus) = Pyus(xluys),  forall xe€X, se¥.
(A5)
Then we can identify u, and u, and still achieve the same rate.

Proof: Suppose that also Py and P, =g are specified.
Then we can define

Pys(uls) foru# u,u
Pu'|s(“|s) = Pu;s(“2|s) for u =1 (A6)
PU‘S(u1|s) for u=u,
and Pyus = Pyus-

Hence by (A.5) and Observation 1
(U A Y) - KU AS) =I(UAY) ~I(UAS). (A7)
Define now
Pys = YPys + 3Puns and
qu'/s = was~ (A-S)
Then a) of Proposition 1 and (7) imply
HOAT)-LDAS)2IUAY)=IUA S). (A9)
Finally define
PU‘|S(“|S)

_ {P{us(“ls)

Pys( wls) + Pﬂls("zls)

for u # u;, 1

for u = u* (a new clement)

and

qu/'s = PX|US' (A-IO)

By (5) I(U* A Y*) = {(f] A Y) and by the data processing
lemma I(U* A S) < I(UAS). These relations and (9) give
H(U*AY) - I(U*AS) 2 HUAY)-I(UA 5). (A1)

It was explained already in [1] that by b) it suffices to consider
deterministic Pyys, that i, functions x: X % — %. Since in
our case &#= (0,1}, £={0,1} and by ¢) 4 = {1,2,3,4}, there
are 28 such functions. However, by Observations 1 and 2 these
possibilities can be reduced to one, namely, to

(A12)
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In its analysis we use the abbreviations

A=Pys, B=Py,. (A.13)
A is generally of the form
€6 € € €
A= (81 5 5 84)' (A14)

Recall that g = P; = (1/2,1/2), and thus by (12)-(14)

2(‘1+81) 2(‘1"'81)
8, 8,
e, + 5 2e, + 6
po | Xar®) Aerm |
1 1
2 2
€+, €+ 86,
Define now
8 8 &8 &
A= ((2 o o <4)- (A.16)
2§ € €

Notice that in 4 we have exchanged ¢, with 8,, €, with §,, ¢,
with 8, and ¢, with §,. Therefore we get

8 )
2Ae, +8y) e, +8,)
€ €
T X +0 e + 8
po| XarB) Aarm) |
1 1
2 2
8 €
€+ 6 € +94
Since P, (i) = (¢, + 8,)/2 1 < i < 4, and since
€1 +8
Po) = 2%, B, () -
¢+ 8
P, (i) = — (i=3,4), (A18)

inspection of B and B’ shows that I(U A Y) = I(U’ A Y.
Clearly, also I(U A §)=I(U’' A S), and therefore for 4 =
1/24 + 1/24 by a)

HOAP)-IOAS)2I(UAY)-I(UAS). (A19)

The quantity to the left has symmetry properties which make it
possible to calculate

C = axI(U

)= ma ¥y - I(T A $5)

if one is guided by the idea that ¢;, €,, &; and 8, should be zero.
Now by definition of 4

+8 +08 +8 +8

- | T2 3 2 2

Al bve 84q 48 e8| A0
2 ) 2 2

and by the same calculation as the one which led from A4 to B,
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we obtain now

r o _X
29 29
Y Y
< L b2 2
B=1 1|
2 2
1 1
2 2
6 +06 +¢, +8 §+98
where 4 £ J——l—zi——z and y 2 1—2 (A21)
Furthermore, since ¢ = (1/2,1/2), from (20)
€& +8; € +8,
(n/2 VL ] (AR
This and (21) imply
Py (s (A3)
v ( 2 2)‘ ’

Now

H(Y)- H(Y)0)=1- [nh(%) +1- 7,]
and

HD) - B(OIS) = B w202, 2,

e3+82 €, + 8,
_H(Y’H“Ya D) 7'——7“

= -nlogn/2 + ylogy
+(n=y)log(n-7)

€+ 8, c4+8)

and thus

IUAY)-1(TAS) ='q(l —h(%)) + nlogn,/2

—ylogy - (n - y)log(n-7)
2 T(v.m), (A.24)
say, and
G, = max T(y,n). (A.25)
O<y<ngl

We can simplify the formula for T(y, 1) as follows:

Y Y
T(vy, =n(—h(—)+[lo n——logy
(v,m) 2 g7 - log

_7 log (1 - 7)])
-2
N (" Y logm - %log(" - Y)]) ) h(%')]

="(h(%) X Zn))

Since 0 < y < 7 and the second factor depends only on p £/,
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it is clearly best to choose 7 = 1. Thus

C,= max (h(p) ~h(§))

Ogp<i

(A.26)

Since (d/dp)(h(p) - h(p/2)) = log ((1 = p)/p) - (1/2)
log (2 — p)/p) = 0 implies ((1 - p)/p)* = (2 - p)/p) or
ot - 2p +(1/2) =0, we get the maximum at p=1 -
(1/22 ~ 0.293. From a table for the binary entropy function
0.868 < h(0.293) < 0.875, 0.597 < h(0.1465) < 0.603, and

0.265 < C, < 0.278, ¢ = (% %) (A27)
Additional calculations, which we omit, give also C = C, for
q=(1/21/2).

Finally, we mention that it is tempting to conjecture that c) of
Proposition 1 can be improved to ¢’) |#| < min (|| + |#|, |¥).
If true, this would greatly simplify calculations of capacities in
some cases.

C. Condition (T) does not imply condition (T;)

Since Example 3 satisfies (T) it suffices to show that it does
not satisfy (7)). For this we restrict the minimization to distri-
butions ¢, ¢’ concentrated on single elements of & and show
that for every u,v: - ¥

min Y w(ylu(s)ls) - wlylo(s)is') = 0. (A28)

In fact, there are exactly three different vectors occurring as
rows of the three matrices. On the other hand, for any u: ¥— %

629

there are at least two different vectors among the vectors
w(-|u(s)[s), s € ¥. Since2 + 2 > 3 for every u,v: & & there
exist 5, 8" €.% with w(-|u(s)|s) = w(-Jo(s’)ls’) and thus (28).
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