2
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We can now proceed with the construction of a code whose
expected coding length is too small. To guarantee invertibility
we assume that all our codes, C15CmsCan M <n < N, were de-
fined so that any concatenation of images of any of these codes
is uniquely decodable. This can be done by adding a short prefix
to each code specifying whether blocks of length 1, m, or n, with
M <n< N, were used. (There are many ways to do this; one
particular way is described in [3].) The code ¢, is defined as
follows. If xf& 4, then each letter is encoded separately,
using the code ¢,. Otherwise, x{ € A, and the partition {J,} is
constructed using Lemma 1. The coding, € ( xf‘ ), is the concate-
nation of the binary sequences f,, defined as follows. Suppose
J,=[u,v].

D) If v=u, then J, = ¢,(x,).
DIfv=u+m-1then J =¢,(x). )
3 v=u+L~1, with L>m, then J, = (x)).

Let l(x{) be the length function for the code &4. If xX € A,
then Lemma 1 gives the upper bound

i(x,“)sd(331<)+(H—e)y-2]S +(1—%—36)K(H+6).

The ergodic theorem can now be applied to guarantee that
Prob(A4,) goes to 1. Thus we can choose & small enough and K
large enough to contradict the Shannon lower bound, (5). This
completes the proof of Theorem 3. O

Proof of the Entropy Theorem: Let {c,} be a sequence of
noiseless codes such that limsup, /(x?)/n< H, as. Fix e>0
and define

D,={x:l(x})/n<H+¢€}, D,={x:xeD,}.

Note that x € D,, eventually almost surely, in the sense that for
almost all x there is an N(x) such that x € D,,n > N(x). Note
also that |D,| < 2"H*€) since c,, is invertible. Thus, if

C,={x: p(x}) g2 mH+20),
then

Prob(C,N D,) <|D,|27"H+20 < g=ne,

Therefore, x &€ C, N D,, eventually almost surely, and so x ¢ C,,
Cventually almost surely; hence, we have established the upper
bound result

1 1
limsup — log —<H,as.
" nop(x])

To obtain the analogous lower bound result define
Up={x:p(x7) 227479}, G,={xf:x€0},

and note that Ilj,,l < 2™H~9) Thus there is a one-to-one function
¢ from 0,, into binary sequences of length 2 more than rn(H — ¢),
Such that the first symbol in ¢(x}) is always a 0. Let &, be the
¢ode obtained by adding the prefix 1 to the code €, Define
G =¢(xp), x"el, and ¢, (x7)=&,(x!),x! &U,. The re-
Sulting code €, is invertible, so that Theorem 3 guarantees that
*&U,, eventually almost surely. This proves that

1
>H, as.,
p(x7)

and completes the proof of the entropy theorem. 0

liminf — log
n n
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Two Proofs of Pinsker’s Conjecture Concerning
Arbitrarily Varying Channels

Rudolf Ahlswede and Ning Cai

Abstract —At the 1990 IEEE Information Theory workshop, M. S.
Pinsker conjectured the following theorem: For an arbitrary varying
channel (AVC) every rate below the random code capacity is achievable
with deterministic list codes of constant list size, if the average error
criterion is used. Two proofs of this theorem are given.

Index Terms —Arbitrarily varying channels, list codes.

I. Proor oF THEOREM BY THE ELIMINATION
TechniQUE OF [1]

An AVC is defined here by a sequence & =({P(-]|s"):
s"e ")y, of sets of transmission probabilities, where for a
finite input alphabet Z, a finite output alphabet &, and a finite
set {w(-|-|5): s € 7} of stochastic |2°|X |Z |- matrices,

P(y"|x"|s") = ]iw(y,lx,ls,), €Y

for all x"=(x,x,," ", x,)€Z"=I]Z, for all y" € %", and
for all s" € /",

From a random code (n, N) of the AVC with average error
less than e " one can produce for any A €(0,1) by random
selection of L (used here instead of the letter R in [1]) deter-
ministic codes in the original ensemble and by randomization
with the uniform distribution u* over those codes a new random

code, say
({(«,D): 1<i< N;1=1,--+,L},u¥).

It was shown in [1}], (inequality (4.3)), that this random selec-
tion fails to lead for the new code and a fixed s"€ " to an
average error probability less than A with a probability smaller
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e~ (1+e% )", forany a>0.

It suffices now to choose a and L in such a way that

|#|"e A (1+ e%e ") E < 1.

@)

The original choice in [1] was @ =2 and L = n’. We show now
how to keep L constant.

Clearly, for a = en the left side in (2) is bounded from above
by

exp{nlog|.”|-neAl + L)

and this is smaller than 1 for

1 -1
L>(eA—;) log|.”l, 3)
and therefore, any constant
L>(er) 'logl”] 4

is good for n sufficiently large.
Now our random code can be modified to the deterministic
list code

{(uf,D}): (i,)ye{1,2,--- ,N}x{1,---,L}}.

It has list size L, a length N-L even greater than the original
code, and an average error probability less than A, because

L 1 N
Y —(— ZP(D,-’quIs"))zl—)«, for s" € A"
1 L\N

i=1

Remark 1: We are curious to know whether the random code
capacity can be obtained with a universal list length L* that is a
function of |Z||%/| alone, that is, it does not depend on the
error exponent ¢ (which is a function of the rate), A, and on the
class of matrices, in particular on ||,

Remark 2: The present and also the following approach yield
the bound in (4). Both approaches are based on modifications of
certain classical (L = 1) codes. By a clever direct selection of the
list codes one should do better. The ideas of [3] are promising.

II. ProoF oF THEOREM BY A REFINEMENT OF THE
RosusTiFicaTion TECHNIQUE oF [2]

As in [2, Section 5] we start with a code for an associated
compound channel and build from these a random code for the
AVC via permutations, Here this is done so that L, defined as
in (4), permutations suffice. Then we pass over to the list code
as before. For the compound channel with class of matrices

7/:{2}W('|'|S)Q(5)3Qeg’(/)}’

the coding theorem says that any rate R below the random code
capacity for the AVC, that is,

C= max_ min /(P,%),

PeP T weW
is achievable with deterministic codes of an error probability less

than exp{— ne(R)}, where €(R) > 0. Clearly, this code meets the
same error bound for the compound channel with class of
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matrices ¥, C ¥, where

x={2w(-1-:s)Q(s):Qe9:}, )

1 2
92,.’—'{QE?(/):Q(s)E{O.;,;.“-,l} forallsef}.

(6)
With Chebyshev’s inequality we derive, from the inequality

1 N n
L 5 ZP(Dujs) [TQ(s) e, forQe,

she AN i=1 r=1
that for any A €(0,1) and y €(0,1) there are subsets A5 C T
the set of strict Q-typical sequences in ", with the properties

1A
= LP(Dfluls") <dy,  fors"e A ()

i=1
n 1 —€n n
g2 (1= e T (8)

Consider now the symmetric group (the set of all permutz-
tions) ¥, acting on {1,2,---,n). We then define for s" €./
Ac/" and me3,

‘h"(S")=1T(Sl,'",Sn)=(s,,(],,"',S.,.,(,,)), (9)
m(A)={m(s"): s" € A}. (10)

The desired result is an immediate consequence of the following
fact.

Lemma: Suppose that for a family of sets {Bp: P € &} vith
B, Ty and for some 7 >0

[Bpl 2 |TSI(1— €7 "),
then for every 8 > 0 and integer

log|.”|

> 5

there are permutations { }~ , with

[{m(s™):1=1,2, - ,L}N Bp|> L(1-8),

forall P &, and all s" € Tp, @
if n is larger than a suitable ny(8,m). (If we choose L>

2log|.#1/ &), then ny(8,7)=1[2/87] does it.)

Proof: Let {m )L, be random permutations taking vall_JCS in
2, according to the uniform distribution on 3.,,. Then Pr(f)’/:T
=1/n! for 7€, and for all 5", 5" €Ty Pr(7(s")=S$ )E

I (nP(sN/nt=1/1T7I.

(1)

L]

Consider now for s" T the event B(s",6): “there ar¢ 31’
least |61 many I's with #(s")  Bg.” Its probability is gie" R

- £ (1) 2 ()

& Vil )\
cy\18L]
<L B3l < gL-mmidLl
ITp)

Therefore, the probability that for all s" € A" B(s",8) OC.CIA":
exceeds 1- e"'%81"lgL=m1I5L] Clearly this quantity is POSI™
for L as specified in (1) and # large. f
We now continue with the final steps in the second pr(,)(:n’
Choose B, = A}, 5 €{0,1} and 7 such that e ™" 2 1/(Ml)e,\ "
For large 7, n can be made arbitrarily close to €, becausc i
constant. By the Lemma, from (12) every 5" € Ty is contain®



'-—
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L(1- 8) of the sets {m '(43)}~ . By (7) therefore

o
Dok

1 N
¥ Z P (D) (w)ls7)

<Ay(1-8)+8.

By choosing 8 = A and by letting v tend to zero from the bound
in (11), we get again our previous bound on L in (4).
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Sequence Estimation and Synchronization from
Nonsynchronized Samples

Costas N. Georghiades, Senior Member, IEEE and
Marc Moeneclaey

Abstract —Recent advances in digital signal processing chips have
motivated the study of algorithms for data detection and timing extrac-
tion that are easily digitally implemented. These algorithms operate on
samples of the output of a matched-filter obtained asynchronously with
the actual symbol timing in order to extract their timing and data
estimates. A general analysis is presented of sampled receivers that
handle arbitrary baseband pulse-shapes and arbitrary sampling rates. It
is observed that the optimal processing of the matched-filter samqles
consists of digital interpolation, followed by symbol-by-symbol decoding
when sampling is at (or above) the Nyquist rate, or Viterbi (sequence;)
decoding when sampling is below the Nyquist rate. Performance is
Studied through the Cramer-Rao bound on mean-square estimation
error and a lower-bound on error-probability.

Index Terms —Sequence estimation, synchronization, likelihood-func-
tion, sampling, Nyquist pulses.

I. INTRODUCTION

The advent of high-speed digital signal processing (D_SP) chips
in recent years has generated a need for receiver algorithms thi?t
Operate on sampled as opposed to analog data to pro@uce their
timing and symbol estimates. A number of such algorithms that
treat the problem of timing-recovery from sampled data has
already appeared in the literature over the pas‘t few years
[1]‘[4]- These algorithms have a common theme in that they
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operate on samples of the matched filter output taken at some
integer multiple of the symbol rate and at some arbitrary phase
which may or may not be updated in time. This updating can be
done by adjusting the phase of an analog sampler or by digitally
interpolating between samples taken by a free-running clock.

In their classic paper, Mueller and Muller [1] study the
problem of timing recovery from samples taken at the rate of
one sample per symbol. The timing-recovery algorithms intro-
duced are decision-directed and operate on baseband signals.
The overall approach is to use the samples in order to estimate
the timing-error, which is further used to correct the phase of
the analog sampler in order to reduce the error. In a subsequent
paper, Agazzi et al. [2] study timing-recovery in digital sub-
scriber loops, and show that the wave difference method (WDM),
originally introduced in [5], can be implemented with two sam-
ples per symbol. According to their proposed algorithm, even at
phase lock, neither of the samples coincides with the actual
decision timing and an interpolator is used to provide the
decision data. The authors note that to avoid the need for an
interpolator, sampling at the rate of four samples per symbol
may be necessary.

Another timing-error detector of interest which operates on
two samples per symbol was recently introduced by Gardner [3).
In contrast to [1], this algorithm is not decision-directed and
does not assume carrier phase lock. Although similar to the
algorithm introduced in [2], it has the advantage that one of the
samples is taken at the data strobe and handles both baseband,
as well as carrier signals. As with the other two algorithms in [1]
and [2}, Gardner’s algorithm generates an error-signal that may
subsequently be used to correct the sampling phase in the
direction of reducing the timing-error, or to control a digital
interpolator. The latter approach has the advantage of a fully
digital implementation, and may well be the preferred way,
especially at sufficiently high sampling rates when interpolation
improves.

A further algorithm that does not update the sampling phase
was introduced by Oerder and Meyr [4]. Their algorithm is
effectively open-loop and operates on samples obtained under
the command of a free-running oscillator. Although not explic-
itly studied, the authors assume that symbol detection is done by
operating on data obtained through interpolation of the sam-
ples.

All of the previously described algorithms deal almost excly-
sively with timing-recovery, and assume that once timing is
established, data detection can be accomplished using a slicer
operating on the samples (or an interpolated value) obtained at
the timing estimate. In contrast to [1]-[5], in recent work [6], 7,
the problem of optimum joint timing and sequence estimation
from samples obtained at the rate of one sample per symbol is
investigated. The jointly optimal algorithm is based on maximiz-
ing a likelihood function for the sampled data, obtained by a
free-running oscillator, over both timing and modulation se-
quences. The joint optimization is done naturally using the
Viterbi algorithm in parallel for a number of discrete timing
delays. An iterative algorithm for evaluating the likelihood func-
tion based on the expectation-maximization (EM) algorithm 8],
[9] is also introduced in [10]. Results obtained indicate that such
joint, open-loop, algorithms are quite robust to timing errors
and can vield completely digital receiver realizations,

In another relevant paper, Falconer and Salz [11] treat the
problem of joint data, delay and phase estimation for 3 Gauss-
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