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IV. PROGF OF THEOREM: THE INDUCTION BEGINNING

For the value t = 1, only the cases 1 and 3 occur. This simplifies
matters, because there is now no need 1o inform the decoder whether
case 2 or case 3 occured. On the other hand, since (7) is linear in n,
rather accurate estimates are needed and in particular the inequality
in Proposition 2 is too crude for the present purposes. Instead, we
use (12) and (13), consequences of Lemma 2.

For general n, we devide the interval of transmission of length
n into b + 1 successive blocks such that the Oth block has length

r £ |log, (¢ - 1)n] and all others have length D or D — 1 (and so
[%5) < b < [3=2))
Case 1: The one error can only be in the Oth block, where we

send (as previously) 0’s. In the other blocks, all Sequences can be
sent. Therefore, we can transmit ¢ " messages, where

n

n—r _ n-|log (¢—-1)n] > q -
To=e “@-Dn+l

e
Sy

Case 3. Let the position of a possible error be in the jth block.

In the Oth block we use only sequences with at most r — 2 0’s (to
distinguish for the decoder this case from case 1) and we alsb encode
that an error may occur in the jth block. We cannot waste even
one position! This we achieve by partitioning the ¢" — (g — 1) ~ |
sequences with at most r — 2 0’s into b sets Py, .-, B, such that

Py Lol
b
fori=12,...p
Words in P; inform the decoder that an error may occur in the jth
block. There the sender uses a code meeting the bounds in (12) or
(13) and in the remaining blocks all sequences can be used.
Therefore, we can transmit at [east

q“—r(q-l)—lJ AN
b (g-1)D+1=5,

(L+0(1))

messages, where o(a)

—»oasD—-»ooandb—»oo.Theproofis
complete.

O
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The Maximal Error Capacity of Arbitrarily
Varying Channels for Constant List Sizes

Rudolf Ahlswede

Abstract—The capacity of an arbitrarily varying channel (AVC) for
list codes of arbitrarily small list rate under the maximal error criterion
has previously been determined. Here, the following sharper result is
proved: For an AVC A, any rate R below the list code capacity C(A)

is achievable with the list size L(A, &) = [ gVl | 41, where Y is

-R
the output alphabet. For the average error cr‘terion, the corresponding

result was conjectured by Pinsker and proved by Ahlswede and Cai.

Index Terms— Arbitrarily varying channel, list codes,

maximal error,
balanced hypergraph packing,

I KNowN ResuLTs
An AVC is defined here by a sequence A = ({P(:]-|s"): s" €
S" 1)z, of sets of transmission probabilities, where for a finite
input alphabet X, a finite output alphabet Y and a finite set W =
{w(:[-]s): s € S} of stochastic |X} x |V|-matrices

P(ynlxﬂlsn) = Hw(ytlftlst).
t=1
for all 2" = (21, 2p,-+,20) € A" = [} &, for all g~ € )",

and for all s € §™. Let L be a positive integer. An (n, N, L) list
code is a system

@

(@, D): 1< < N},
where u; € A", D C Y" and

N
le,- ") <L, forally" € y". )]
=1

1g denotes the indicator function of a set B,

We speak of an (n, N, L, \) code for A, if in addition for all
Sn e Sn

PDifuls™) > 1-%,  fori=1, 2,---,N. ()

We call a number Ci(A) the list code capacity of A, if the two

conditions hold

I)Forany e > 0,6 > ¢ and A € (0,1) there is an
(n, exp {n(C(A) - &)}, exp {ne}, ) code for all large n.
2) Forany 6 > 0 and ) € (0, 1) there is no €0 < e < 6, such

that (n, exp {n(Ci(A) + 6)}, exp {ne}, 1)) codes exist for
all large n.

The so-called Tow-convex hull of W is defined as
W={w(-[): w(-|2) € cony {w(f2]s): s € S}for all z € X}.
O]
Let P(X) stand for the set of probability distributions on ¥ Denoting

by I(P,w) the mutual information for input distribution P and
channel matrix 1,

We can introduce

i

= min J(P, w).
weW

max ®)
Per(x)
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Theorem [1]: Ci{A) = ¢.

Remark: The proof of [1] is based on Lemma 2 in conjunction
with a binning idea ([1] Lemma 4).

The method of binning was discovered independently by Slepian
and Wolf. Furthermore, the list size exp {ne} can be improved. We
quote from [1, p. 835]:

“Actually one could continue to reduce the list size from !
to log ! and so on. But thus one achieves the capacity only
for larger and larger block lengths. It would be of interest to
obtain results for a constant list size but those results would
have to be obtained by a different approach.”

Actually, we use again the first part of the earlier proof.
List Code Lemma ({1, Lemma 2]): One can construct for any Pe
P(X), e >0, and n > nle) an (n, N, L, A) code for A with

N > exp {nH(P) - f(P,|X])logn},
L < exp {nmax H(w" | Q)+ ngle)},
weW

A < exp {-nE(e, P},

where lime_og(e) = 0, E(e, P) > 0 fore > 0,Q = P-w and
P(z)w(y | 2) = Qy)w*(x | y) for z € X, ye).

A. The Missing Concept

In [2] we discussed packings, coverings, and partitions in hyper-
graphs H = (V, €). Also, for the last two concepts the notion “c-
balanced” was introduced. The following result has found particularly
many applications.

Covering Lemma 3 ([2, p. 250]): A hypergraph H = (V, £) with

e 2 mi 0
rgxea\)}cdeg (v), d Ivrél‘!)ldEg (v) >

has a c-balanced covering with exactly k edges, if

D) k> |£ld log V] + 1)

) c<k<ce|D™?

3) exp {[h(ck™") + ck~" log (DIE|"Y)Ik + log VI} < -

Since D > d, a) and b) can hold only if ¢ > log[V|. In typical
applications in information theory || depends exponentially on the
blocklength n and thus c has to grow with the block length.

However, a more general concept, namely that of a packing with
some—but controlled—overlap has not been focused upon. It catches
the essential structure of list codes and deserves an analysis for its
own sake.

We call F C £ a c-balanced packing of M if for all v € V,

{E:EeF,veE} <ec )

Generally speaking coverings are casier to handle than packings,
because overlap is allowed, however for ¢ > 1 c-balanced packings
ate easier to handle than c-balanced coverings, because it is not
Tequired that F covers V! This has the effect that condition 2)
in Covering Lemma 3 can be dropped and “constant” ¢’s ar not
automatically excluded.

Indeed the following result holds.

Packing Lemma: A hypergraph H = (V, £) has 3 c-balanced
packing with k edges if b) and ) of Covering Lemma 3 hold.

E(I)Proof: We just have to repeat the old arguments. Choose edges
_ 3"',E(k) independently at random according to the uniform
distribution on £. Next Estimate Pr({E(”,-“,E(k)} is not c-

balanced),
For this define

i 1,

ie{)

ifv ¢ B,
ifve B
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and observe that the probability for v to be covered by more than
c edges is given by

k k
Pr (Zg; <k- c) =Pr (Zg; <k -ﬂ)>,
=1 =1

where 8 = ck~". If we define p = D|€|™" then condition b) implies
that p < 3 and the exponential form of Chebychev’s inequality
gives—as in [2, p. 86, (2.14), pt. 1], that

k
Pr (Zgi < k(1- m) < exp{[h(8) + Blog DIEI"'k}. (7)
=1

Since

" Pr{(EW,-.-,EW) is not c-balanced}

k
<SP (zg; <k(1 - ﬂ)),

veY i=1
the result follows. 0

II. APPLICATION OF THE PACKING LEMMA TO THE LIST
CobE IN THE LisT CODE LEMMA
Choose the hypergraph (V, £) with V = Y™ and £ = {(Di:1<
i < N}, where the D;’s are the decoding sets in the list code with
parameters (n, N, L, A). Notice that for a P assuming the value C

EID™" > N-L7' > exp {nC = f(P, |X])logn —ng(e)}. (8)
Application of the Packing Lemma gives us a subcode of size k=
exp {nR}, if R is any rate below C, and of list size ¢ = L(A, R),
provided that conditions b) and ¢) hold. By (8) and the choices of k
and c, b) obviously holds, if € is so small that g(¢) < C — R and
n is large enough. To verify c), we derive an upper bound on the

exponent there.
Now,

h(ck™")k + clog (D|E| ™) + nlog |
< —cloge+n-c: BR-ef(1-c-e”

- nc{é - %f(P, |X])logn - g(e)] +nlog|Y|

Rn) Rn)

log(l—c-e”

and since —(1 — z)log (1 — z) < 2z for small z, we upperbound
this by

. 1
—clogc+2c-—n-c[C-—R—Zlog|y|-—2g(e)],

for n > ni(e).
It suffices to guarantee that the term in square brackets is positive
or that

¢> (€ - R—2g(e)) " log|¥| > 0.

To this end just choose e = ¢(R) small enough.

Remark: The condition in [3] is ¢ > [E(R)A]™" log|S], where
E(R) is the reliability function of the AVC in the case of random
codes and average €rror.
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