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V. CONCLUSION

The stationary processes with maximum entropy rate in the class
of processes whose pth-order marginal distribution satisfies some
constraint were shown to be Markov processes. In particular, the
{p — 1)th-order stationary Markov process with pth-order marginal
density g(z1,-- . 2p), with respect to some measure, was shown to
possess maximum entropy rate in the class of stationary processes
with pth-order marginal density equal to g(z1,---.2,). This result
forms the basis for an extension of the usual Gaussian maximum
entropy method of Burg to nonparametric settings.

A framework for the practical implementation of the proposed
nonparametric maximum entropy method was also presented. Specif-
ically, the pth-order marginal density should be estimated from the
observed data, taking care that the estimate is compatible with the
hypothesis of stationarity. This can be achieved by estimating the
conditional density g{(rp|rp_1,---,z1) from the data, and setting
9(21,+,x5—1) to be the corresponding stationary marginal. Then,
for the purposes of extrapolation of distributions or prediction,
the maximum entropy principle can be invoked, implying that the
distribution of the data can be approximated by that of a (p —
1)th-order stationary Markov process with the estimated pth-order
marginal density. Notably, unless the estimated pth-order density is
multivariate Gaussian, the nonparametric maximum entropy method
would point to a nonlinear Markov model.
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Nonbinary Codes Correcting Localized Errors

R. Ahlswede, L. A. Bassalygo, and M. S. Pinsker

Abstract-~A recursive construction yields for all alphabets asymptoti-
cally dense codes correcting a constant number of localized errors.

Index Terms—Localized errors, nonbinary alphabets, asymptotic dense
packing.

1. INTRODUCTION AND MAIN RESULT

The authors of the paper [1], where codes correcting localized
errors were introduced, noticed that an extension of results to nonbi-
nary alphabets causes difficulties. In particular this is the case with
the asymptotic Hamming bound, when the number of errors t = n
increases linearly with the length n of the code. Up to now we proved
it only in a small fixed interval [0, 7g], although we believe that
Hamming’s bound is the true bound in the interval [0, 1] Gf 7 > 1,
then the rate of transmission is equal to 0 because it is impossible
to transmit even two messages, when ¢ > 2). However, our joint
efforts bore fruit for other, rather accurate, asymptotic estimates on
the code size, when the number of errors ¢ is constant. The binary
case was studied in [2], but the method used there does not give the
tight answer for nonbinary cases. Here, we present another method.

During the transmission of g-ary words of length n over the channel
at most ¢ errors occur, and the encoder knows the set E of ¢ positions,
where these errors are possible. The decoder does not know anything
about these positions. Let & = {F | E C {1,2,---,n}, |E| = t}
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be the set of all subsets from {1.2,---.n} of size t and let M
be a set of messages (]M| = M). A code word x(m, E) depends
not only on the message m € M but also on the configuration of
possible errors E. So there exists the natural correspondence between
the message 7 € M and the list of code words g, {x(m, E}},
which we use for the transmission of this message. Thus the code
X for the set of messages M represents a collection of M lists
{Ugee, {z(m. E)}, m € M}. Since we can use the same word for
different configurations, the size of a list can be essentially smaller
than the size of the set & (|&:] = (7)) ‘

Let us define the cylinder C(a. A) with the base @ = (a1, .axn)
and the support A (A C {1,2.---,n}) as the set of words
(y1.+++.ya) With y; = a;, if i ¢ A. It is clear that the size of
the cylinder C(a, A) is equal to ¢'*! and the number of different
cylinders with the same support A is equal to A

As a result of the transmission of the codeword r(m, E) every
word of C(x(m, E), E) can appear as output of the channel. The
code X corrects t localized errors, if the decoder can correctly recover
every message m € M. The following condition is necessary and
sufficient for it:

Clz(m. E). EYNC(x(m', E'), EY=0O
forall E,E' €&, m,m' e M\,m#m'.

The maximal number of messages, which we can transmit by a code
correcting t localized errors, is denoted by Lg(n, 1).

Proposition 1:

Lin. 1)< &

where S = Y°'_ (¢ — 1)'(7) is the size of a sphere of radius ¢ in
the Hamming n space. A proof of this bound in the g-ary case can
be given as for the binary case in [1] or [3]. The key inequality there
has the following generalization.

Lemma 1: LetC(ay, A1),---,C{ar, Ar) be cylinders with pair-
wise different supports 4; # A,, i # j. Then, for the size of the
union of the cylinders,

T
> Y (g-phl,

The proof of this lemma can be made by an induction on n as in [1]
or [3] (for other proofs see [4]).
n

It yields immediately
However, it can be used more efficiently. Choose any monotone map
FU'-, & — & with the property F' C f(F) forall F € Ui, &
Then, we can write

Clz(m, E), E) = | C(z(m, f(F)), F).
FCE

T
UC(G,‘, A,‘)
=1

U ¢a(m, E), E)

for=tn

Thus, by Lemma 1,

| Clz(m, E), E)

F€&

= U Cletm f(F). F)

FEU::O &

>3 (1) o)
1z

and Proposition 1 follows.
The following lower bound can be easily deduced by the standard

greedy algorithm (maximal coding).
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Proposition 2:

n

_4
n
2
“(!)
Already Propositions 1 and 2 imply the asymptotic equivalence within
a constant

Lin.t)2

n
Ln )= 31_‘ when ¢ is fixed and n — x.
We draw attention to the fact that this equivalence is known for
nonbinary error-correcting codes except t = 1 only for t = 2 and
g = 3.4 (5]

The purpose of our work is to find the precise constant in the
equivalence. We construct asymptotically dense codes.

Theorem: For every constant £

n i! n
Lyfn. )= (L4 ol1)) = g - S0 +ol L)

where o(1) — 0 as n — ~x (o(1) depends certainly on t and g).

II. PrOOF OF THEOREM: THE INDUCTION STEP

We proceed by induction on ¢. The induction beginning f = 1 is
established at the end of the proof in Section IV. The induction step
to t goes through the following scheme.

We divide the interval of transmission of length n into b+ 1
successive intervals: the first interval shall be of length r and al
the other b intervals shall be of length k = "~ (more precisely,
when n — r isn’t divisible by b, these intervals have the length
|25 or [25]). Now, for fixed E let us denote by to, tyysoth

5
the number of possible errors in the ith interval (i = 0, L

(to+ti+-- -+t =t

At first we guarantee that the decoder always knows whether
to = 0 or to > 0. This we achieve by using in the first 7 positions
always at least t + 1 1's, if £, = 0, and always r 0’s, if fo > 0.

Now we distinguish three cases.

Case 1: to > 0. We use a code correcting ¢ — 1 localized errors
on the last n — r positions.

Case2 ty=0andt, < tforalli,i =1, --,b. Inthe first
7 positions, we transmit the values of £y, -,t,, and we use for
this transmission words of weight at least ¢ + 1 with the additional
restriction that in the first r; of the r positions there is at least 01
0. Since the number of solutions of the equality t; + - + ty =t
with t; < t, i =1,---,b, is equal to ("+i'1) — b, we can do this,
if the numbers satisfy

b - : { ry r=ri
(+i 1)-’)Sqr—2(:)(q—1)'—(q—1)‘q @

1=0

Having transmitted the values of #;,i = 1,.+-,b, we us¢ in the ith
interval (i = 1,--+,b) a code correcting ¢; localized errors.

Case3: to=0and t; =t t; = 0,i # j. We transmit it the
first r1 from = positions ones only in order to distinguish this and the
previous case, in the next [log, b] positions we transmit the number
j(j =1,2,-+-,b), and in the next r —ry — [log, b] positions and 1D
all intervals, except for the jth, we transmit all possible sequeﬂ_ces’
and, finally, we use in the jth interval a code correcting ¢ localize
errors with parameters guaranteed by Proposition 2.

After this description of the code count how many messages ca
be transmitted in each one of the three cases. Of course this counting
makes use of the induction hypothesis for t' < t.
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Case 1: We can transmit at least
n—r

)= — (14 0(1))

(- n-—r
(g-1) 1<t—1)

n-r

5 _ 4 (g—1)n

1
T ) t
(g-1) ( ¢ )
messages, where o(1) — 0 as n — r — oo. The-inequality is based

on the relations (3-7) < (17]) = ().
Case 2: We can transmit at least

Lyn—-»rt-

I+o1)] B

H Lo(k, t:) > )tkt(1+o(l)) @

messages, where o(1) — 0 as k — .
Case 3: We can transmit at least
—r1—{logy b]-2
n—k—r;—~[log, b} > qn 1~ (logg b1 =20

- k
t
20

LQ(ka t) q

2 E k) > ©)
t
messages, provided that
r—r1 > [log, b +2t. (6)
Therefore, if (2) and (6) hold, then
(1)
Lym ) > mind 421 ML oy,

tq" T ktg . St

where o(1) » 0ask —ocoand n -7 — 00 (7)

Under the conditions
- 1
and

n
q < *(’:T)[H-O(l)], where o(1) » 0as b —» cc.  (9)

we have from (7)

n

Lq(n, t) 2 §(l+o( ) (10)

where o(1) — 0, if k — oo, b — 0.
Finally, we have to choose the parameters r, 1, and b in a suitable
way:

_ (g—Dn
ry =7~ [log, b] - 2t
b = maximal number such that (2) holds. (11)

Clearly with these parameters (2), (6), and (8) hold by definition and it
remains only to verify (9). But the definition of b, (11), and (2) imply

q < (:)(1+o(1)), where o(1) — 0 as b — .

Since

(9) holds.
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III. AN AUXILIARY RESULT FOR PERFECT
CODES WITH ONE LOCALIZED ERROR

Recently Kaba}yansky [6] constructed codes for one localized error
of length D = "T_:]i(d = 1. 2,---), which are perfect and thus,

D ¢P
L(D, )= —1——=2(
(D)= iy = 5 o) @
From his construction, it follows also that
e
-L1)> ——— 13
)2 (g-1D+1 (13
Subsequently we established in [7] the following recurrence relation
of independent interest. We repeat the proof, because it is brief.
Lemma2: f N < (g— 1)T +1, then

LD

LAN+T,1)2 ¢"'Ly(T, 1).

Proof: On the first N positions, we always transmit a parity
check (mod g) code of the size ¢, The last T positions we reserve
for the code, which allows us to transmit L, (T, 1) messages and to
correct a single localized error. The method of transmission depends
on the position of the localized error in the following way.

1) The error is on the last T positions. We use our code as a code,
correcting a single localized error.

2) The error is in the first N positions. We use our code for
the transmission of both, the message and the number of the
position, where the error can occur. According to (1) at least
(g - T + 1 different words in the output of the channel
of length T corresponds to each of L,(T, 1) messages and
therefore we can make the successful transmission if

N<(g-1T+1.

The proof is complete. 0

Now, we derive (12) and (13) and thus, make our paper indepen-
dent of work that has not appeared yet. Clearly, for d = 1 we have
D =1 and (12) holds, because obviously Lg(1. 1) = 1. We proceed

now inductively from d to d + 1. We set D' = 1;—-— and observe

thatfor N = (= 1)D+1wehave D' = ¢' +¢"'+--- +1=
¢gD+1 =D+ N. By Lemma 2,

LD 1) 2 ¢ VPLyD, 1)

and by the induction hypothesis

' (9-1)D ‘ID qqf)
SIPY A =
LD D24 (g-DD+1 (¢-1)D+1
_ qdl _ qDl |
glq-1)D+q (g-DD'+1
Finally, we verify (13). With the choices T = 9-— and N =
(g = )T, we have by Lemma 2 and (12),
(4-1)T-1 qT
- = N , >SN ——
qD—l qD—l
= > (because D > T).

(q-1D)T+1~ (g-1)D+1

Remark: When g is a prime power then the maximal size of a
code of length n, correc!ing a single (not necessarily localized) error,
already equals 4-(1 + o(1)), where o(1) = o as n — x (8)).
Such a strong result is not available for general . However, next we
establish the asymptotic Hamming bound for general ¢ in case of a

Jocalized error (t = 1).
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IV. PROOF OF THEOREM: THE INDUCTION BEGINNING

For the value t = 1, only the cases 1 and 3 occur. This simplifies
matters, because there is now no need to inform the decoder whether
case 2 or case 3 occured. On the other hand, since (7) is linear in n,
rather accurate estimates are needed and in particular the inequality
in Proposition 2 is too crude for the present purposes. Instead, we
use (12) and (13), consequences of Lemma 2.

For general n, we devide the interval of transmission of length
n into b + 1 successive blocks such that the Oth block has length

r2 log, (g = 1)n] and all others have length D or D - 1 (and so
|252] < b < [32)).
Case 1: The one error can only be in the Oth block, where we

send (as previously) (’s. In the other blocks, all Sequences can be
sent. Therefore, we can transmit ¢" =" messages, where

qn—r — qn—[logq(q—l)nj > qn - Q_n_
Tlg-1ln+1 S

Case 3: Let the position of a possible error be in the Jjth block.

In the Oth block we use only sequences with at most 7 - 2 0’ (to
distinguish for the decoder this case from case 1) and we dlsb encode
that an error may occur in the jth block. We cannot waste even
one position! This we achieve by partitioning the q" — rg-1)-1
sequences with at most » — 2 0’s into b sets P;,-- -, P, such that

|P| - ¢ orlg-1)-1 <1,
b
fori =1,2,-..,8
Words in P; inform the decoder that an error may occur in the jth
block. There the sender uses a code meeting the bounds in (12) or
(13) and in the remaining blocks all sequences can be used.
Therefore, we can transmit at least

; (q—l)D+125—1(1+0(1))

[q' ~rg-1)- 1J ¢ ¢
messages, where o(a) — 0 as D — oo and b — 0. The proof is
complete. 0O
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The Maximal Error Capacity of Arbitrarily
Varying Channels for Constant List Sizes

Rudolf Ahlswede

Abstract—The capacity of an arbitrarily varying channel (AVC) for
list codes of arbitrarily small list rate under the maximal error criterion
has previously been determined. Here, the following sharper result is
proved: For an AVC A, any rate R below the list code capacity Cy(A)

is achievable with the list size L(A. R) = l log y_ RJ + 1, where J is

the output alphabet. For the average error ¢ terion, the corresponding
result was conjectured by Pinsker and proved by Ahlswede and Cai,

Index Terms—Arbitrarily varying channel, list codes, maximal error,
balanced hypergraph packing.

1. KNOWN RESULTS

An AVC is defined here by a sequence A = ({P(-| - |s"): s" €
S" ey of sets of transmission probabilities, where for a finite
input alphabet X, a finite output alphabet ¥’ and a finite set W =

{w(:|-|s): s € S} of stochastic |X| x |Y|-matrices
Py"|z")s") = Hw(yzlmlst), 0

t=1

for all 2" = (21, 23, +,2,) € X" = [[7 X, for all 4" € )",

and for all 5™ € S™. Let L be a positive integer. An (n, N, L) list
code is a system

{(uia Di): 1 <i < N}s
where u; € X", D; C V" and

N
Yo" <L forally € Y, ¢
i=1

1g denotes the indicator function of a set B,

We speak of an (n, N, L, \) code for A, if in addition for al
s" € §"

P(Difu;|s™) > 1 -1, fori=1,2,-.. N @

We call a number Cy(A) the list code capacity of A, if the two
conditions hold

1) For any ¢ > 0,6 > 0 and ) € (0,1) there is an
(n, exp {n(Ci(A) - 6)}, exp {ne}, A) code for all large n.

2) Forany § > 0and A € (0, 1) there is no €0 < € < 6, such
that (n, exp {n(C1(A) + 5)}, exp {ne}, X)) codes exist for
all large n,

The so-called row-convex hull of W is defined as
W= {u(-]): w( |2) € conv {w([zls): s € S}for all = € X}-
@
Let P(X) stand for the set of probability distributions on X’. Denoting

by I(F, w) the mutual information for input distribution P and
channel matrix w, we can introduce

C= max minl 5)
PEP(X) wory (P ). (
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