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stage (stage indexed by u — 3) of the hierarchy. The correspond-
ing merging rule for the (u — 1)th stage is as follows: if there are
an integral power of two of successive macro-shells with equal
cardinality, these are merged into a single, larger macro-shell.
One can also apply this rule successively several times. The
number of successive times is denoted by S. The performance
and complexity of this approach is shown in Tables I-III. These
tables correspond to § = 1,2,3, and each table contains all the
possible combinations of #’s, i = 0,-+,7. For example, the first
row in each table means that: (/, i = 0,,7) =
(7,7,6,5,4,3,2,1) and the second row means that: (£, i=
0,--,7) = (6,6,5,4,3,2,2,2). The cases of special interest (good
performance and low complexity) are underlined.

We have also examined: i) the case of S = 0, and ii) applying
the nonuniform merging in the (u — 1)'th stage. In both cases
the results were inferior to those presented here.

V1. NuMERIcAL COMPARISONS

A four state trellis diagram of [6] achieves y, = 0.95 dB,
CER, = 1.5. In [14], an example for N = 64 is given which
needs 1440 multiply-adds (assuming a 16 bit processor) and a
memory of 1.5 kilo-bytes to achieve a tradeoff point with y, =
1.15 dB, CER, = 1.5

For a given CER, by appropriately choosing the merging
parameters, we achieve nearly all of the shaping gain possible
using a small amount of memory (refer to Table IV). Computa-
tion of the optimum 1, is based on 3.

Table IV can be compared to Table V, which shows the
method applied when an equal number of points is used in the
macro-shells at each stage (this becomes the method discussed
in [11]). The cases of special interest are underlined. The present
schemes offer a reduction in complexity by a factor of 5 to 10.

VII. SumMary AND CONCLUSIONS

We have presented efficient addressing schemes based on
partitioning the subconstellations into nonuniform shaping
macro-shells of integer bit rate. The corresponding shaping
performance is computed using the weight distribution of an
optimally shaped constellation. As an example of performance in
a 32-D space, we use about 0.8 k-bytes of memory to achieve
trade-off points very close to the optimum performance. It
seems that this is the simplest known method to achieve shaping
gains in the order of 1.0 dB. Note that this method needs only a
small number of table lookups and no arithmetic operation is
needed.
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On Communication Complexity
of Vector-Valued Functions

Rudolf Ahlswede and Ning Cai

Abstract—New upper and lower bounds on the two-way communica-
tion complexity of abstract functions g: X % — = give tight bounds,
when applied to vector-valued functions {* = (f,,-+,f,): 2" X " —
Z", if the alphabets are small. For the set-intersection function, an
optimal protocol is presented. It is based on a simple new idea applica-
ble also to abstract functions. The two-way communication complexities
of all other Boolean functions are also determined. The results are
extended to meets in abstract lattices and to a probabilistic model.

Index Terms—Two-way communication complexity, vector-valued
functions, Kronecker product, prefix codes, correlated sources, rank,
alternating partitions.

I. INTRODUCTION

Let £, 7, and Z be finite sets. For any function f: X % —
Z, we consider the (vector-valued) functions f™ 2" X " —» 2™
defined by

f"(x"’yn)= (f(xl’Y1)""’f(xn’Yn))! (1.1)
for x" = (x,;++,x,) € 2" and y" = (y,,,y,) € %" and study
their two-way communication complexity C(f"; 1 « 2); that is,
the minimal number of bits which need to be exchanged for any
argument (x", y") between a person P, knowing x" and a
person P, knowing y” so that both can calculate f"(x", y").

We also consider cases of nonidentical component functions;
that is, we are given sequences (2))}, (Z)7.,, and (Z,)7_, of
finite sets, a sequence (f,)., of functions f: 2 X %, » 2, and
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stage (stage indexed by u — 3) of the hierarchy. The correspond-
ing merging rule for the (u — 1)th stage is as follows: if there are
an integral power of two of successive macro-shells with equal
cardinality, these are merged into a single, larger macro-shell.
One can also apply this rule successively several times. The
number of successive times is denoted by S. The performance
and complexity of this approach is shown in Tables I-III, These
tables correspond to § = 1,2,3, and each table contains all the
possible combinations of /s, i = 0,:,7. For example, the first
row in each table means that: (7, i=0;7 =
(7,7,6,5,4,3,2,1) and the second row means that: (Z,i=
0,-+,7) = (6,6,5,4,3,2,2,2). The cases of special interest (good
performance and low complexity) are underlined.

We have also examined: i) the case of § = 0, and ii) applying
the nonuniform merging in the (4 — 1)'th stage. In both cases
the results were inferior to those presented here.

VI. NumMERicaL. COMPARISONS

A four state trellis diagram of [6] achieves y, = 0.95 dB,
CER, = 1.5. In [14], an example for N = 64 is given which
needs 1440 multiply-adds (assuming a 16 bit processor) and a
memory of 1.5 kilo-bytes to achieve a tradeoff point with y, =
1.15dB,CER, =15

For a given CER, by appropriately choosing the merging
parameters, we achieve nearly all of the shaping gain possible
using a small amount of memory (refer to Table IV). Computa-
tion of the optimum 1y, is based on 3.

Table IV can be compared to Table V, which shows the
method applied when an equal number of points is used in the
macro-shells at each stage (this becomes the method discussed
in [11]). The cases of special interest are underlined. The present
schemes offer a reduction in complexity by a factor of 5 to 10.

VIIL Summary anp CoNcLUSIONS

We have presented efficient addressing schemes based on
partitioning the subconstellations into nonuniform shaping
macro-shells of integer bit rate. The corresponding shaping
performance is computed using the weight distribution of an
optimally shaped constellation. As an example of performance in
a 32-D space, we use about 0.8 k-bytes of memory to achieve
trade-off points very close to the optimum performance. It
seems that this is the simplest known method to achieve shaping
gains in the order of 1.0 dB. Note that this method needs only a
small number of table lookups and no arithmetic operation is
needed.
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Abstract—New upper and lower bounds on the two-way co
tion complexity of abstract functions g: ’x % —.7 give tigh
when applied to vector-valued functions " = (f;,«++,f): "
2", if the alphabets are small. For the set-intersection .ful
optimal protocol is presented. It is based on a simple new ide:
ble also to abstract functions. The two-way communication cor
of all other Boolean functions are also determined. The re
extended to meets in abstract lattices and to a probabilistic ™

Index Terms—Two-way communication complexity, vect
functions, Kronecker product, prefix codes, correlated sour
alternating partitions.

1. INTRODUCTION

Let 2, 7, and 2 be finite sets. For any function f:&
%, we consider the (vector-valued) functions f™: 2" X ¥
defined by

f"(x",y") = (f(xl,yl),"',f(xmyn))‘

for x" = (xy,,x,) € 2" and y" = (y,2 ) €F” a
their two-way communication complexity C(f"; 1€ 2
the minimal number of bits which need to be exct'lange‘r
argument (x", y") between a person P, knowing
person P,, knowing y" so that both can calculate frx
We also consider cases of nonidentical component f
that is, we are given sequences (2)7.,, (%)= 214 -
finite sets, a sequence (£, , of functions f,: % X %

Manuscript received December 30, 1991; revised'SeP“’fsmbEI
This paper was presented at the 1991 IEEE International Sy
Information Theory, Budapest, Hungary, June 24'28,'. M

The authors are with Universitit Bielefeld, Fakultat fir
Postfach 100131, 33501 Biclefeld, Germany.

TEEE Log Number 9406009.

0018-9448 /94804.00 © 1994 IEEE



3ER 1994

IEEE ],

signal-
vol. 39,

F Trans,

25 and
vol, IT-

al signal
rans. In-

roperties
ol. 1T-40,

in signal
oronto,

aping of
Theory,

al signal
Trans.

munica-
bounds,
Y-
‘ion, an
applica-
Nexities
wlts are
Jel.

.valued
oy rank,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 6, NOVEMBER 1994 2063

the vector-valued functions f" 2" X ¥" - 2", where 2" =
i, ¥ =107, 20 =112, ad fQry") =
(fl(xl’ YI)"“’fn(xn’ yn))
In particular, we sometimes assume that
Z=%=%Z={01,",a-1} (12)
We denote the set of all protocols for calculating " by &y and
for any protocol Q € Qpr, I(x",y") is the number of bits
exchanged for inputs x” and y”. In the worst case, we gel

L(Q) 2 max  lo(x",y"), (1.3)
el yr ey
the length of the protocol Q. In this terminology,
C(f";1o2) = min L(Q). (14
Qedp

For abstract functions g: #X ¥ — Z with &, %, Z finite, Yao
[1] introduced a k-decomposition as a partition 2 = {U; X
Vi U X V) of X % into g-monochromatic rectangles.
Those are rectangles U X V (U cZ, V.c¥) on which g is
constant. Let 2, be the set of all such decompositions. For the
decomposition number

D(g) £ min ||, (1.9

PP

z

Yao’s inequality (in the improved form of [9]) states that
Clg;1o2)>log, D(g). (1.6)

The function table (or matrix) associated with g shall be
denoted by M,. We refer to the k-decompositions above also as
k-decompositions of Mg. Mehlhorn and Schmidt [2] gave an
important lower bound for D(g). They associated with M, the
class of matrices {A,: z € .Z}, where

1, iff M(x,y) =2z,

A(x,y) = , (1.7
0, otherwise,
and established the inequality
D(g)> Y rankg(4,), (1.8)

267
where the rank is taken over any field F. Here we always choose
the field of rationals and therefore omit the index F.

There is a simple but useful lower bound on D(g). We call
the set {(x,y,), (x,y)} an independent set of 4, if
A(x,y,) =1for t = 1,2,,i, but no two members of the set
are in the same monochromatic rectangle of A,. The maximum
cardinality of such a set is the independence number ind (4,).
Clearly,

D(g) > Yind(4,) &£ I(g). (1.9
z
11000
The matrix ? g } é with independence number 4 and rank
0

0101
3 is an example for “rank(4,) # ind (4,)".

For the information of the reader, we mention that other
authors (for example [11]) speak of fooling sets and sizes instead
of independent sets and independent numbers.

There are three seemingly basic observations in the present
paper.

1) The protocol Q: For the set-intersection function A"
(Boolean “and”), the decomposition number is 3" (Lemma 1 in
Section II) and we found a protocol Q' whose length achieves
this bound (Theorem 1 in Section II). Other Boolean functions
are easy to analyze. Moreover, all functions f" = (f,, f) with
124 = (%] =12, 12] < 4 fall into four classes, which can be re-
duced to Boolean cases (Corollary 1 in Section III). Here and

also for the analysis of meets in abstract lattices, variations of
the basic protocol Q are used (Theorems 7, 8, 9 in Section 1X).
2) General upper bound: Partitions arising in protocols are
more special than k-decompositions. For a function g, we de-
note the class of those “protocol”-generated partitions by &,
and introduce the protocol partition number
D*(g) = min |&|.
Ped,

4

(1.10)

Whereas obviously
C(g;1 & 2) 2 log D*(g), (1.1D)

we found an equally simple upper bound involving the depth
d() (defined in Section IV):

C(g;1o2) < min (logl®l +d(#)).  (112)
P,

Explicit definitions, the result (Theorem 2), and proof can be
found in Section IV. Consequences for vector-valued functions,
in particular with constant alphabets, gives Theorem 3 in Section
V. Theorem 4 in Section VI states a probabilistic version of
(1.12). Also in a probabilistic vector-values setting (for so-called
correlated sources), there is an asymptotic result {Theorem 3,
Section VII).

3) Lower bound for vector-valued functions: The independence
number I and the rank function show multiplicative behavior
under the Kronecker product (Lemmas 2, 3 in Section VIID.
Our new observation is that the bounds can be combined on a
letter-by-letter basis, yielding a bound better than the maximum
of the two original bounds (Theorem 6 in Section VIII). Finally,
this bound along with our upper bound (1.12) enables us to
determine C(f"; 1 & 2) within o(n) for small alphabets. The
precise results are stated in Theorem 10 in Section X.

I1. Exacr SoLutions For aLL BooLran Funcrions

In the Boolean case, that is, =¥ =2 = {0, 1}, one readily
verifies that every Boolean function can be transformed by
exchanges of 0 and 1 into one of the following functions {defined
by tables):

0 1

0[0 0 {00
Bl'](o 0)’ BZ'(l 1)’

00 10
B3:(O ]), B4:(0 ]).

Here B, is a constant function, B, is the projection on the first
argument, B, is the symmetric difference A, and finally B,
stands for the logical “and” A, which is also called the intersec-
tion function.

Now, obviously C(BJ; 1 & 2) = 0 and C(Bj;1 © 2) = n, be-
cause P, has to inform P, about x” and this also suffices.
Furthermore, C(BJ; 1 & 2) = 2n because Py (resp., Py) can
recover y" (resp., x") from A(x",y") and x" (resp., ¥"). The
analysis of B} is less obvious, but the answer is again “smooth.”
We summarize our findings.

Lemma I: For the decomposition number, we have D(B3) =
3"

Theorem 1: For the four types of Boolean functions, we have,
for the two-way communication complexities,

C(B51e2)= [nlogil, fori=1,2,34. 2.1

Proof of Lemma I: For fixed z" and x" > 2", thatis, x, 2 7,
for t = 1,2,--, n, consider the sets

S(x", 2" = {(x", y"):x" Ay =2 (2.2)
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the vector-valued functions f": 2" X ¢" - Z", where 2" =
e,y =10y 20 =T, 2, and fRR ) =
(fl(xl* Y )"”' fn(xn‘ ,"n))'
In particular, we sometimes assume that
=9 =%={0,1,,a - 1}. (1.2)

We denote the set of all protocols for calculating " by &+ and
for any protocol Q € Qpr, I,(x",y") is the number of bits
exchanged for inputs x” and v". In the worst case, we get

L(Q) % max  L,(x"y"), (1.3)
e ey
the length of the protocol Q. In this terminology,
C(f";1e2)= min L(Q). (1.4)

Qe

For abstract functions g:.? X % —Z with &, %, Z finite, Yao
(1] introduced a k-decomposition as a partition ¥ = {U; X
Vi U, X V) of #X % into g-monochromatic rectangles.
Thosc are rectangles U X V (U 2, V.C#) on which g is
constant. Let @, be the set of all such decompositions. For the
decomposition number

D(g) £ min |&#, (1.5
PeD,
Yao's inequality (in the improved form of [9]) states that
Clg: 1« 2) >log, D(g). (1.6

The function table (or matrix) associated with g shall be
denoted by M,. We refer to the k-decompositions above also as
k-decompositions of M,. Mchlhorn and Schmidt [2] gave an
important lower bound for D(g). They associated with M, the
class of matrices {A: z € 7}, where

1, iff M(x,y) =2z,

Alx,y) = _ (1.7
0, otherwise,
and established the inequality
D(g) > Y rank; (A,), (1.8)

1€
where the rank is taken over any field F. Here we always choose
the field of rationals and therefore omit the index F.

There is a simple but useful lower bound on D(g). We call
the set {(x,, y)y(x,y)) an independent set of A, if
A(x,,y,) = 1 for t = 1,2,+,i, but no two members of the set
are in the same monochromatic rectangle of A,. The maximum
cardinality of such a set is the independence number ind(4,).
Clearly,

D(g) = Y ind(A,) £1(g). (1.9

) 0
1

1

(=)

The matrix with independence number 4 and rank

0
1

3is an example for “rank (A,) 2 ind(A,)".

For the information of the reader, we mention that other
authors (for example [11]) speak of fooling sets and sizes instead
of independent sets and independent numbers.

There are three scemingly basic observations in the present
paper.

1) The protocol Q: For the set-intersection function A"
(Boolean “and”), the decomposition number is 3" {Lemma 1 in
Section I1) and we found a protocol O whose length achieves
this bound (Theorem 1 in Section I1). Other Boolean functions
are easy to analyze. Moreover, all functions f" = (f,, f) with
1= |%| =2, 12| < 4 fall into four classes, which can be re-
duced to Boolean cases (Corollary 1 in Section III). Here and

=R
o — e
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also for the analysis of meets in abstract lattices, variations of
the basic protocol Q are used (Theorems 7, 8, 9 in Section I1X).

2) General upper bound: Partitions arising in protocols are
more special than k-decompositions. For a function g, we de-
note the class of those “protocol’-generated partitions by %,
and introduce the protocol partition number

D*(g) = min |2|. (1.10)
Fed,
Whereas obviously
Clg;1 © 2) = log D*(g), (1.11)

we found an equally simple upper bound involving the depth
d(P) (defined in Section IV):

C(g:1 o 2) < min (log|2| +d(£)). (1.12)
ped,

Explicit definitions, the resuit (Theorem 2), and proof can be
found in Section IV. Consequences for vector-valued functions,
in particular with constant alphabets, gives Theorem 3 in Section
V. Theorem 4 in Section VI states a probabilistic version of
(1.12). Also in a probabilistic vector-values setting (for so-called
correlated sources), there is an asymptotic result (Theorem 5,
Section VII).

3) Lower bound for vector-valued functions: The independence
number I and the rank function show multiplicative behavior
under the Kronecker product (Lemmas 2, 3 in Section VIID).
Our new observation is that the bounds can be combined on a
letter-by-letter basis, yielding a bound better than the maximum
of the two original bounds (Theorem 6 in Section VIiI). Finally,
this bound along with our upper bound (1.12) enables us to
determine C(f"; 1 & 2) within o(n) for small alphabets. The
precise results are stated in Theorem 10 in Section X.

I1. ExACT SOLUTIONS FOR ALL BooLeaN FuncTioNs

In the Boolean case, that is, #=% =% = {0,1}, one readily
verifies that every Boolean function can be transformed by
exchanges of 0 and 1 into one of the following functions (defined
by tables):

01

{0 0 {00
31'1(0 0)’ BZ‘(l 1)’

{0 0 (1 0
w0 %) el 9)

Here B, is a constant function, B, is the projection on the first
argument, B, is the symmetric difference A, and finally B,
stands for the logical “and” A, which is also called the intersec-
tion function.

Now, obviously C(Bf'; 1 © 2) = 0 and C(B};1 © 2) = n, be-
cause P, has to inform P, about x" and this also suffices.
Furthermore, C(Bf; 1 © 2) = 2n because Py (resp., Py) can
recover y* (resp., x") from A(x", y™) and x” (resp., y"). The
analysis of BY is less obvious, but the answer is again “smooth.”
We summarize our findings.

Lemma I; For the decomposition number, we have D(B}) =
3"

Theorem 1: For the four types of Boolean functions, we have,
for the two-way communication complexities,

C(B';1©2) =[nlogil, fori= 1,2,3,4. Q2D
Proof of Lemma 1: For fixed z" and x" > z" thatis, x, 2 z,
for t = 1,2, n, consider the sets

S(x", z") = {(x", y") X" AY" = ") 2.2)
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Then partition the set
Sz = U Sx", 2"

x">2"

(2.3)

into 2" "% monochromatic rectangles, when k = w(z") counts

the 1’s in z". Since there are (:) sequences z" with weight
w(z") =k, we can therefore partition the whole table into
r=0 : 2"~% = 3" monochromatic rectangles.

Conversely, it suffices to show that the set S(z") requires
27~%" rectangles in any partition. But this is the case, because

{(x",x™): x,=1,if z,=1,1 <t < n},

is an independent (fooling) set of size 2"™*®" in $(z"), if
x"=(1—-x,1-x,).

Proof of Theorem 1: After the discussion preceding Lemma
1, we need to consider only the function Bj. Using inequality
(1.6), Lemma 1 implies

C(B%;1 e 2) > [nlog3l. (24

Since the lower bound in (1.6) is based on prefix codes, it is
natural to look at how close to the trath protocols based on such
codes are in the present case. Surprisingly, these protocols give
an exact bound.

To fix ideas, let us recall a trivial protocol: &, sends x and
Py, sends g(x,y). This shows that C(g; 1 & 2) < [logl21] +
[log |.Z1l. There is a smarter two-rounds protocol!

Knowing x, %, also knows {g(x, y): y € Z}. In case this set is
large, the length /(x) of the codeword for x should be small, and
in case this set is small, x can get a longer codeword in order to
minimize the worst-case total number of bits. #, knows when to
start transmission if 2, uses a prefix code. In the present case,
if #, describes x", then %, must describe all y,’s of y” where
x, is 1. The goal is to have a prefix code encoding x” with /(x")
bits such that L = max . gn ({(x") + w(x")) is minimal. By
Kraft's inequality, L must satisfy L..27*"*¢™ < 1. Since
L 2" = 3" the minimal L equals [n log3].

II1. ExAcT SOLUTIONS FOR THE CASES |#] =

l71=

In case |.Z| < 2, one readily verifies that the functions are
equivalent to one of the Boolean functions B, -, B,. Also, in
case |.Z’| = 4 for an f taking on four values, C(f,; 1 & 2) equals
2n, because here any one of the processors can recover the
other input from the value of f,. Thus we are left with the case
Z ={0,1,2} and without loss of generality (w.Lo.g), with the

tables
{00 {01
M,: (2 ]), M, (2 0).

With the map ¢;, which sends 2 to j and i to i otherwise, we can
write A = ¢y(g) and A = ¢(h) and thus, by Theorem 1,

C(g,; 10 2) > C(B}; 1 2)>[nlog3],
Clh,;12)2C(Bj;1e2) > 2n.

On the other hand, C(h"; 1 & 2) < 2n follows with the simple
protocol, where P, sends x" and P, sends y".

The bound C(g"; 1 & 2) < [nlog3] can be derived with the
protocol Q for B! in the proof of Theorem 1, because g, is a
function of x" and of B because P, knows Bj after learning
x" from P,.

We summarize our findings.

Corollary I: The functions f" = (f,--, f) with |21 = |%| = 2,
|Z1 < 4, fall into classes 2, 25, 25, Z,. The members in Z;
have the same two-way complexity as B,.
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1V. A GeneraL Upper BounD via PROTOCOL-GENERATED
PARTITIONS

The present approach lifts the upper-bound proof of Theorem
1 to a general function f: 27X % — 2 (all sets finite with table
or matrix M,). Whereas Yao considered the set & of all
(abstract) partitions of M, into monochromatic rectangles, here
we use the set &/ of protocol-generated partitions of M, into
monochromatic rectangles. They are defined as follows. Suppose
the partitions &, = {4, X B,,», A, X B} and 2, = {4} X
B, A, X B} divide a rectangle into subrectangles and, for all
A; X B, there exist iy, 1; such that 4] =A4; UA; U - UA,
and B; = B = B,’, then we call &, a Tow- reﬁnement of
P, and write 9’2 > . #,. The column-refinement is defined anal-
ogously. We say that a partition 2 of M, into monochromatic
rectangles is protoco] generated, if there are partitions %, (i =

., k) with

{Mf} =c@(]blqul "'Dk.?k=z@,

where >, means a row-refinement iff > ,_, is a column-re-
finement. The minimal & of such a representation of £ is called
the depth d(2).

Obviously, any # € &} can be produced by a two-way commu-
nication protocol. A basic quantity is D*(f) = min{|#| £ €
/). The lower bound implicit in [9] is

C(f;1 & 2) = log D*(f).

Here is our simple upper bound.
Theorem 2: For all & € &/, there is a protocol Q with L(Q)
< log|#| + d(#). In particular,

“4.D

C(f;1 ©2) < min (log|#| + d()).
Fes,

Proof: We proceed by induction on d. If d() =k
then there are partitions £+, #,_, with
Mo, 2>, 2,0 >R >, P Assuming w.lo.g. that
>, is a row-refinement, we have 2, = (A4, X ¥} ,. Suppose
now that 4; X % contains a; subrectangles in &. Then |#| =
L;a; and the partition &, of A, X % (into the a@; subrectan-
gles) induced by # has depth not greater than d(%) — 1.

By the induction hypothesis for all 4; X %, there are proto-
cols Q;, with

L(Q,,) < log |#,| + d(#,) <loga, + d(#) — 1. (4.2)

Since (a,/%;a;,a,/L;a,, a,/%;a;) is a probability distribu-
tion, by the Noiseless Coding Theorem there is a binary prefix-
code {c,, ¢y, C }w1th length (c;) < log¥,a;/a; + 1 = logL;q;

— log a; + 1. With b, 2 [log¥,a; — log g J ¥ 1 bits, P, can send
i, the label of A; XY, to Py. By (4.2), b; + L(Q;) < logL;a;
+d(2) = log L@l + d(P).

V. AppLicaTiON OF THE UPPER BOUND TO VECTOR-VALUED
Funcrions

The functions " 2" X %" >Z", f" = (f,, [, f,) were
defined in the Introduction. We shall apply the bound of Theo-

rem 2. A simple observation is that, for partitions %, = {D, j}j €
A (t =1,2,~+,n), we have
n
P = {[‘[DM} € . (5.1
=1 Grenda)

Furthermore, we show next that d(#") is controlled by

d(#") < max {2-min(Z],|1Z)) -2} £ 0.

I<t<n

(5.2)
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This is the case, because we can first cut My row-wise by
cutting all component spaces for which the first round in their
protocol partition are row-refinements. In the next step, there
must be column-refinements in all components, etc. We thus
reach 2" after at most # + | rounds.

The once extra round is not needed, because if f,=f
{t=12--,n), then Theorem 2 in conjunction with (5.1) and
{5.2) imply the following “single-letter”™ upper bound.

Theorem 3: Forn € ',

n
Cif* 1< YilogD(f) + 0+ 1.
[
Iff =ffore=1.2n, then
Ciff 1e2)y<nlog D)+ 0.

Even though n log (D*(£)) may be much larger than log D*(f"),
we show in Section X that, quite surprisingly, this is not the case
if one of the alphabets 7 or % is smaller than 5.

VE Arvticanios o 1 Urerr Bouso ro A PRoBasisTic
Mobr.

Let (X, Y ) be a pair of random variables with X taking values
in 2, Y taking values in %, and joint distribution Py,. For
fo 2 X = Z and a protocol Q, {(x.y) is the length of the
protocol in the input tx, ¥). We are interested in the expected
two-way communication complexity

C(f:1e2)4 min El(X.Y).
f oy, tle

For # = (A, A,) €9, consider the entropy
H, 2 H(Py (A, Pyy(AL).
Theorem 4:
Cifit o2 <H,+dP)
for all » €W,

Proof: The derivation is almost the same as that of Theo-
rem 2. The difference is as follows. When we employ'! the
induction hypothesis for {A, X ¥ i =1,2;", m), we give a
protocol Q, for the restriction of fon A, X ¥ This happens

with probability Py, (A4, X %). Conditional on the event A; X /4
for 9 (defined as in the proof of Theorem 2), by the induction

hypothesis,
Ely < Happry + d(P) = L

We have to add the prefix-free coding of {4, X #}; with an
average length not greater than H(Pyy( Ay X ) Pyl A
X #/)). Now, using the grouping axiom of entropy,

H‘f" = ZPXY(AI X y)H;l',;A,x,’ﬂ
+ H(ny(Al X?)i“”PXY(Am x?))'

VII. A~ AsymproTic REsuLT FOR CORRELATED SOURCES

We consider the vector-valued case with identical compo-

nents, that is,
fn - (f’...,f).

Furthermore, we assume that (X, Y- is a sequence of inde-
random variables.

pendent, identically distributed pairs of randon -
Theorem 5: Under the preceding probablllstlc assumptions,

1.
lim —C(f 102 =

1
lim — min Hg.
n—+x N Ed

pox NP i
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Proof: For any € > 0, first choose n(e) such that

] € 1
min H, < — +lim — min H
n(e) gestp ~ " 2~ ngew,

and then choose m*(e) and #* = {A,, "+, 4,+)} € Fnor such
that

1

— min H,.

. (1.1
n ped),

R?Hys <e+ @n«
Use now for any r, the partition 2*7) ={A, X+ XA4;:
1<j,,J, € m*} obtained as product from #*. Then
ﬁ*(’) G,,Wj'll(l)’ and

Hjau(') =rH z.. (72)
By Theorem 4, C(f™"; 1 & 2) < Hyun + d(#*), and thus
by (5.2) and (7.2),

. 1 6
ney. 1 o . . .
C(fMo1e2) < o Het (1.3)

Using the inequality (7.1), we continue with

n(e)r

- 1 9
C(f"or1eo <e+li — min H, + —,
n(e)r o )<e ’_mnaxn‘@“:% ot o
(7.4)
and
Tim, 1c'(“12) + i in H
TN, nerl e < e+ lim — min .
M= e U Dozt ped,
(7.5
Since for n, < n,,
C(fm:1 02 <C(fr3102), (76)

then we also have, for n € [r(eXr — 1), n(e)r],

! S Fn(e)
Sl o) < —— wor 1 o 2). (7.7)
nC(f oD s r—1 n(e)rC(f )

Thus, by (7.5)-(7.7) and since € was arbitrary,
— 1. . 1
lim,, o ;C(f jlo2) <lim ;L@mmﬂHg. (7.8)
The lower bound is immediate from the Noiseless Coding Theo-
rem.
VIIL. Lower BounDps FOR VECTOR-VALUED FuncTions

Using Yao’s bound C(f"; 1 2) > log D(f") and

n
(™ 2 IGm = THD, 8.1
=1
we get the following.
Lemma 2: C(f";1 e 2) 2 Li., log I(f).
Recall now the definition of A, in (1.7) and set
r(f) = 3, rank(4,). 8.2)
1€,
Next observe that, in analogous notation,

n
An= ®A21 (8'3)
=1 ' '

product of matrices, i.€.,
) Bt 30

where ® denotes the Kronecker
Az"(xn’yn) = Azl(xDYI)Azz(xZ’yZ
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ThereforE, ane Fn ZnAz" = z:z”E .“Z'"Zn ®'n= 1A51’ and

r(fy= Y rank(4,)= Y rank( ® Az,)
2"eZ” "eZ" =1
= ¥, Ilrank(a,) =11 Y rank(A,)
egni=l t=1 z'ez
= [1r(£).

=1

We have derived an identity.

Lemma 3: r(f") = 17 ,r(f,).

From (1.6), (1.8), and this identity follows a useful lower bound.

Lemma 4: C(f"; 1o 2= Xr  logr(f).

Especially for the stationary case f” = (f,,f), the bound
depends only on one component f. In information theory, this is
called a “single-letter characterization.”

The bounds in Lemma 2 and Lemma 4 can be combined into
one bound,

C(f;1e2) =max| Y log I(f,), Y log r(f)]. (8.4)

t=1 t=1

Whereas this bound is canonical and perhaps known, we now
derive an improvement to this bound.
Using the independence numbers ind (A,), we can write

I(f)=Y ind(4,). (85)
:e,

We need the local maxima

j(A,) = max(rank (4,),ind (4, )), (8.6)
and their sums
(=3 ji4,).
12
Theorem 6:
C(f";1e2)>log D(f") > Zn:logl(f,). 8.7
t=1

Proof: Denote Yao's decomposition number of A« by
8(A.»). Since

D(f") = Y. 8(A.), (8.8)
and SinCC I_I;x~l‘](f‘l) = Z:LIZ:,EJ,].(Az,) = E:"nr=lj(Az,)*
(8.7) follows by summation over z" if we know that

8(a.) = [T, (8.9)
t=1

In order to verify this inequality, we first introduce an auxiliary
matrix A% as follows. Let €1, be an independent set of A, with
1. = ind(A). Then set A% = A_ if rank(A,) 2 ind(4A,), and
otherwise define

Ay = | b e e,
‘ 0. otherwise.

If we can prove that

8(A,) > 5( ® A*j,’), (8.10)
1=
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then we are done, because

a( ® A";) > [Trank(a%)
=1 !

=1

=

x

= JImax(rank (4, ),ind(A,))

t=1

=

]—[ j(a,).
t=1
Now just observe that a monochromatic partition of A, X A,
restricted to A% X A, (in case A, #A}) gives agam a
monochromatic partltlon and thus 8(A, ® 4,)>8(4% ®
A,)). Finally, (8.10) follows by repetition of thlS argument

IX. GENERALIZATIONS OF THE RESULT ON THE
SETINTERSECTION PROBLEM TO MEETS IN A LATTICE

First consider the case of chains, that is, 2 =% =%, =

{0,1,2,---, @, — 1} and
NG y™) = (x Ay, X, A Y. 9.1
Theorem 7:
Ylog2a, - D < C(A";1 0 2)
‘

< YlogQa, - 1) + 2m,ax a, - 3.
t

Remark: When o, =2 for ¢t = 1,2,--- n, this result is only
slightly weaker than that of Theorem 1, the difference being one
bit in the upper bound.

Proof: The lower bound follows from either Lemma 2 or
Theorem 6. The upper bound is one bit better than what follows
from Theorem 3. This one bit can be saved, because parts of the
second to last partition have sizes which are powers of 2 (cf.
proof of Theorem 1).

Suppose now that % is a finite lattice. Let (!] = {x: x < [},
[D={x: I<x} for all [€% and §={1'): | <!}
Clearly, £, /[l = log|S|.

Considering the family of monochromatic rectangles {(1, x):
x € [}, | €%, Theorem 2 yields

CA;102) <log YD+ 1 =loglS]+ 1.
le¥

(9.2)

We use an additional structure to also get a lower bound.

The element I* €2 is called a pseudocomplement of / €%
iff I* Al=0and ! Ax=0implies x < I*

% is called pseudocomplemented if every element has a
pseudocomplement. Notice that for pseudocomplemented %,
for any /€%, (/) is also pseudocomplemented (a € [/) has a
relative pseudocomplement a* V [, where a* is a pseudocomple-
ment of a in &),

Now the proof of Theorem 1 can be generalized (see also [12])
to yield the following.

Theorem 8: For a finite pseudocomplemented lattice,

Mog ISl < C(A;1 & 2) < [loglSl] + 1.

For general (not necessarily pseudocomplemented) lattices, we
now derive a lower bound on C(A; 1| « 2) along the lines
initiated by Hajnal, Maass, and Turén [3], who introduced the
Mébius function to the study of two-way communication com-
plexity for estimating the rank of the function table. In particu-
lar, we rcly upon an idea of Lovasz and Saks [4), who used the
following result.

Theorem (Lindstrom [5] and Dowling and Wilson [6]): For the
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disjointness indicator T, of a lattice .7 that is, a matrix whose
rows and columns arce labeled by the elements of . and T,(1, k)
=1if | and k are disjoint, and T/, k) = 0 otherwise, the
rank(T,) = il €2 pld.]) # 0), where u is the Mobius in-
verse.

Consider now A: #* - and for all | € #, A, = T, From
C(A: 1 & 2) > log rtA). it follows from the previous theorem
that, for $* £ {1 1'): u(l,I') # 0} C S,

CCA; e 2) 2 logr(A) > [log1S*.

In summary, we thus have the following.
Theorem 9:

flog 8%l < CLA; 1 & 2) < [log|SH + 1.
For Boolean lattices, subspaces of finite fields, and the partition
lattice, 1S*! = |S|. For multisets, |S*| # S, but Theorem 7 shows

that the lower bound in (9.3) is “almost tight.”
This investigation has been continued in [12].

9.3)

X. SHARP REsuLTs FOR VECTOR-VALUED FUNCTIONS OVER
SmatL ALpHABETS ON ONE SIDE

For small alphabets, Theorem 6 in Section VIII can now be
used to derive a “single-letter” lower bound for the complexity
CUf"; 1 & 2), which asymptotically approaches the upper bound
of Thearem 3. In this case. we have the surprising fact that
equality holds in

b < T1oes). (10.1)
=1

Theorem 10: Suppose that ] < min(4,%,]) for 1 € N, then

() D(f)=D(f), (i) J(f)=D(f), (102
and
Ylog D(f)+ 6+ 1>C(f"1e2)2 ) log Df).
! t=1
(10.3)

Particularly, for f" = (f,-, f),
nlog D(f) + 6> C(f" 1 & 2) 2 nlog D(f). (10.4)
Proof: The upper bounds follow from Theorem 3 and iden-
tity (i) in (10.2). The lower bounds in (10.3) and (10.4) follow
from Theorem 6 and the identity (i) in (10.2), which we now
prove.
Clearly, it suffices to show that
8(4) =j(4,), forzeZ.
If rank (A,) = |21, then 8(4,) = |#1 = j(A,). We need to con-
sider only those z for which rank(4,) < 21, For then we can
actually show that

(10.5)

5(a,) = ind(4,), (10.6)

and thus a fortiori, (10.5) holds.
We can assume that there is no all-0 row or column and that

there are no two identical rows or columns in A, bccax.lse
otherwise rows or columns can be removed without changing
any of the parameters of interest. '
Case |21 = 3 Since rank(A,) < 2, wlog. the first row is 2
linear combination of the other two. Therefore, the matrix is of

the form
1 1
A 4 = 1 0 )
0 1

and (10.6) holds.
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Case |21 = 4: The case rank (A,) < 2 being obvious again, we
assume that rank(A,) = 3. We also assume that the last three
rows in A, are linearly independent. The following subcases
arise:

a) The first row vector ¥, is a linear combination of two
others, say ¥, and V5. Thus, we must have

Vi=V,+V,. (10.7)

b) Vl = AZVZ + )l3V3 + A4I/:1_, A,’ > 0.
C) /\1Vl + I\2V2 = A3V3 + A4I/4, /\i > (.

In case a), A, has one of the forms

— ek (D e
oo oo
D = D e
B == ="
—_o oo

1
1
0
l’

N3 e e
o= D
S D e e
D DD e

and in both cases, (10.6) holds.
In case b), there are the forms

or

L=
O o= D e
—_— O e
— D e it
O 2 i ped
—_— O

and again (10.6) holds.
Finally, in case c), we have the forms

—_ S —
—_—ED = D

10
01
0 0
11

O =D -
O = O
O = D =
[ Y
O e D =
—_ O D e
O = -
_— O
bk usamd sk d

and (10.6) holds in all cases!
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