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1. INTRODUCTION

The inequality of [1] (see also [2, 3]) was discovered in the analysis of the
two-way complexity [5] of the Hamming distance function. Further analysis
has led to much more general inequalities, culminating in the “4-words
inequality” of [4], where also a program for further studies has been
formulated. The papers [7, 8] make contributions to this program. Whereas
in {8] earlier results of [1] are sharpened to the case of constant (resp.
constant parity) Hamming distances, in [8] a 4-words inequality for another
metric, namely the Lee metric, is proved.

The first result of the present paper is a very general 4-words inequality
for arbitrary additive distortion functions (instead of distances). The 4-words
property used seems to be so natural that we believe our new 4-words
inequality (Theorem 1) to be in final form. Several special cases are stated
as corollaries. _ _

We also settle the constant union problem in an asymptotic sense via an
exact solution of a new quantitative 1-sided constant union problem (Theo-
rems 2, 3). .

Another seemingly basic observation is the Decomposition Lemma in
Section 7, which enables us to extend the asymptotic solution of the
constant union problem to any sum-type function (Theorem 4). For thgse
functions we give an upper bound for the 2-way communicatiqn gomplexuy
(Theorem 5) and we formulate a rule saying when this bound is tight. From
Theorem 1 we get a lower bound, which often can be evaluated._ N .

Many results still hold, if cardinalities are replaced by probabilities. This
has been shown for the 4-words inequality (Theorem 1’) and a 4-word type
generalization of the 1-sided constant union problem (Theorem 2’). The
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76 AHLSWEDE, CAI, AND ZHANG

probability distributions are all assumed to be of product type. There is
much work left to do for more general distributions.

2. A GENERAL 4-WORDS INEQUALITY

Let & and % be two finite sets. We consider functions
[iEXY>Z, (2.1)

where Z is the ring of integers. With f we associate the “sum-type”
function f,: " X #" — Z defined by

Rt ) = L () (22)

for all x" = (xy,...,x,) €Z" and y" = (yy,..., ¥,) € ¥"
We say that the pair (4, B) with 4 C " and B C #" satisfies the
R-4-words property, if

fulam, ") = f(a", 0") + f,(a", b") = [ (a", b") € 2. (23)
Let Z(f, %, n) be the set of those pairs. We are interested in
M(f, ®,n) = max{|4||B|: (4, B) € #(f, ®,n)}. (24

Let 2*(f, Z, n) be the set of those pairs in Z(f, %, n) assuming the
maximal value M( f, Z, n). Our first basic result can now be stated.

THEOREM 1 (General 4-words inequality). For any # C Z

M(f, %,n) <M(f, 2,1)". (i)
Furthermore, if 0 € # and M(f,{0},1) = M(f, ®,1), then equality holds
in (i).

Our proof below proceeds by induction on » and is based on two
lemmas, which we first state and prove. We need a few definitions.
If C is a set of sequences of length » over some alphabet, then we define

C.={(er,...rep1):(err€05eney€ymgsc) €ECH, (2.5)
J(C)={c:C,+ B}, (2.6)
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and

L(C)= max{|D|: DcJ(C), NC # @'}. (2.7)
ceD
LEMMA 1. For (4, B) € P(f, R, n), L(A)|J(B)] < M(f, &,1).

Proof. 1t suffices to show that for every D € J(A) with N, . 4, # I,
necessarily (D, J(B)) € P(f, &, 1).

To see this choose any a, a’ € D and any b, b’ € J(B) and use the fact
that by our assumptions there are g"1, »""! and b""! such that
a" 'a,a" 'a’ € A and b""'b, """ 'b’ € B. Now just verify

.@Bﬂ,(an—la’ bn—lb) _fn(an—la’ brn—lbr)
+f,(a" ', b W) — f,(a""a’, b""'b)
= f(a,b) = f(a,b) + f(a’, b) = f(a’, b),

since

[f"~1(an-l’ bn—l) _fn—l(an_lv bm—l)
+f,_1(am ™t bmY) — £, (@ b )] =0,

LemMa 2. If (A4, B) € P(f, #, n), then (U,c yA4 By) € P(f, &,
n — 1) for all b € J(B).

Proof. For a"~1,a™ ! € U, ¢ ;)44 there exist a, a’ € J(A) such that
a"'e A, and a’""! € A,.. Now for any b"~ 1, "*"! € B,,
> f,(a"a, b~ 1b) — f,(a""a, 6"~ b)
+f,(a™a, ) — f(a e, b7 b)
@577 = (a5
(@™ 07 = fma(@ 7 077,

since [ f(a, b) — f(a, b) + f(d’, b) — f(a’, b)] = 0,

Proof of Theorem 1. Obviously, if for (4, B) € #*(f,{0},1) we have
|4| [B| = M(f, ®#,1), then ([174,TI{B) € #(f,{0}, n) and therefore
M(f, &, n) = (|4]1B)" = M({, Z,1)".

s et
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We now prove (i) by induction on n. (For n = 1 nothing needs to be
proved.) For (A4, B) € #(f, #, n) we have

|A[[Bl= ), |4,- ) |B,

acJ(A) beJ(B)

U 4,

acj(A4)

< L(4) |J(B)| max |B,/

beJ(B)

<M(f, 2,1)

U 4,

a&Jj(A)

B by Lemma 1).
bg%)lbl (by Lemma 1)

The result [A4]|B| < M(f, 2,1)" now follows from Lemma 2 and the
induction hypothesis.

Remark. T. Scheuer kindly pointed out to us that essentially the same
proof gives a more general result: Z can be replaced by any abelian group
and for {0} one can allow any subgroup of Z.

3. OLp AND NEw RESULTS IMPLIED BY THEOREM 1

We show first that the original 4-words inequality of [4] is implied by
Theorem 1.

CoroLLARY 1. If A, B C {1,2,...,a}" and for the Hamming distance
function d g

dy(a”, b") — dy(a®, b)) + dy(a™, ") — dg(a™, b") # 1,2 (3.1)
for all a", a’ € A and all b", b'" € B, then

o fora =2,3,4

*n *
4[1B] < &, where {[a/Z][a/ZJ for a > 4.

Furthermore, the bound is best possible.

Proof. Just notice that condition ‘(3.1) says that (4, B) € #(dy,Z —
{1,2}, n) and that P(dy,Z — {1,2},1) = P(dy,{0},1). Therefore by
Theorem 1, M(dy,Z — {1,2}, n) = M(dg,{0},1)". Finally the equality
M(dy, {0},1) = o* is readily verified.

Next we derive the 4-words inequality of [7] concerning the Lee
metric d.
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CoroLLARY 2. IfA4,B C{0,1,2,...,a — 1}" and

dy(a” b") — dy(a”, b'") + di(a’™, b'") — di(a™, b") #
L2,...,a for all a",am € A and all b",b'" € B, then (3.2)
|A| B} < (max[ea, (|a/4] + D(Jle/2l/2] + 1D)" and this )
bound is best possible.

Proof. Here condition (3.2) says that (4, B) € @(d,,Z —
{L,2,...,a}, n). For n =1 thus necessarily #(d,Z — {1,2,...,a},1) =
P(dy, {0},1) and by Theorem 1, M(d;,Z — {1,2,...,a}, n) =
M(dy,{0},1)" It can be calculated that

o ' fora =2,3,4,
M(dy, {0},1) = 5,6,7,9
(la/4] + 1)([las2]/2] + 1) otherwise.
(3.3)

For a = 2 one has d; = dy. Another metric coinciding with dy for a = 2
is the Taxi metric (L,-metric in analysis), which for a", " € {0,1,...,
a — 1}" is defined by

dr(a”, b") = X la, — b,. (34)
t=1

The following result is new.
CororrLarYy 3. IfA,Bc {0,1,...,a — 1}" and

dr(a” b") — dr(a”, b'") + dr(a™, b'") — d(a’", b") #
1,2,...,2a for all a",a™ € A and all b", b’ € B, then (3.5)
|4]|B| < (max[e, ((a/2] + Dla/2])" and this bound is best )
possible.

Proof. Condition (3.5) says that (4, B) € P(dr,Z — {1,2,...,2a}, n).

Therefore #(d1,Z — {1,2,...,2a},1) = #(dr, {0},1) and by Theorem 1,
M(d.,Z - (1,2,...,2a}, n) = M(dr, {0},1)". It remains to be seen that

M(dTa {O}’l) = max[“’ ([a/2] + 1)[0‘/2” . (3-6)

By choosing (4, B) = ({0}, {0,1,...,a — 1}) or (A4, B) =
(0,1,...,la/2]}, {la/2],...,a — 1}) in P(d, {0},1) we get

M(dr, {0},1) = max[a, (La/2] + )a/2]].
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Now we prove the reverse inequality. Clearly, w.l.o.g. we can assume that
|A| > | B|. Furthermore, we are done if we can show that

a<b(ora=b) forallace 4,be< B. (3.7)

Assume to the contrary that there are a € 4; b, b’ € B with b’ < a <b.
Then b’ < a’ < b must hold for all a’ € 4, because otherwise d(a’, b) —
di(a’,b)=b~ b >dy(a,b) —di(a,b), which contradicts (4, B) €
P(d, {0}, 1).

However, if now b’ < a’ < b for all @’ € A4, then

a'=a' - %[dT(a’ b) - dT(a: b’) + dT(a” b,) - dT(a” b)]
=o' =3[~ a) ~ (a=b) + (a = 5) ~ (b~ @)

=a — i[2a’' — 2a] = a,

and hence |4| = 1 < 2 < |B), which contradicts | 4| > | B|.

As last examples, we consider the Boolean functions union “V” and
intersection “A.” Here it is assumed that 2= % = {0,1}. In earlier work
[1] the Boolean function symmetric difference “A” was studied.

Actually, we are interested in cardinalities of unions and intersections,
that is, the functions p,, A,: " X ¥" — N, where

p‘n(an, bn) = 2 a, Vb, (38)
t=1
n
M(a" by = Y a,Ab, (3.9)
=1

Not only do we consider 2(pt, #, n) and M(p, Z,n), but also the follow-
ing sets and functions

P*(p,8,n)={(4,B): A, BC X" with u,(a", b")
= §forall a" € 4, b" € B}, (3.10)
M*(p,8, n) = max{|4||B|: (4, B) € #*(p,8,n)),  (3.11)
M*(p,n) = max M*(u,8,n). (3.12)
0=8<n

Analogously 2*(A, 8, n), M*(X\, 8, n), and M*(A, n) are defined. Results
for p can be transformed into results for A by complementation. Thus
M*(p, 8, n) = M*(A, n — 8, n), etc. Now obviously M*(p, 8, n) <
M(p, {0}, n) and, by Theorem 1, M(p,Z\ {1,2}, n) = M(u, {0},n) =
M(p, {0})" = 2". On the other hand, (4, B) = ({11...1}, &") €
P*(u, n, n) and |4} |B| = 2".
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COROLLARY 4. M(p,Z — {1,2}, n) = M*(p, n) = 2",

Remark 1. There is another way to show that M*(\, n) = M*(p, n) = 2"
By (3.9) we know that the inner product (a” ") equals A, (a”, b").
Furthermore, if (a”, b") = const. for all a" € 4, b" € B, then also a” o b"
= XJ.1a, A b, with addition understood mod 2 (that is, the inner product
of a”, b" as vectors of a linear space over GF(2)) is constant. From the fact
(x" ® a")ob" = (x"o b") & (a” o b"), we conclude that o’* ® 4 and B are
orthogonal, if a’" € 4. Thus, dim 4 + dim B < n and |4||B| < 2". Actu-
ally, if a”ob" =1, for all a”" € A, b" € B, then it can be shown that
|4]1B] < 21,

4. AN Exact RESULT FOR “ONE-SIDED CONSTANT”
UNIONS CARDINALITIES

Most results of the remainder of this paper originated in attempts to
prove the

Conjecture. M*(p, 8, n) = maxOSmsSZ”’(;:::).

They have led to a positive answer at least in an asymptotic sense
(Section 5). One of the ideas of [4] was to generalize the concept of a
constant distance code pair to that of a one-sided constant distance code
pair, which is better suited for inductive arguments. Further generalization
led to notions of 4-word properties. The same idea also turns out to be
useful for the function u. Actually we introduce a refined, that is, quantita-

tive, notion of 1-sidedness,

Pp, <8,n)={(4,B): 4, BC X" |aV b
=la’Ub|<dforalla,a’ €4,b€ B} (4.1)

M(u, <8, n) =max{|A4||B|:(4,B) € P(p, <8,n)}. (4.2)

THEOREM 2. M(g, < 8, n) = Ei=o(2)-

Proof. Since ({00...0}, {d™X}..b, < 8}) € P(p, < 8,n), we have

M(H‘: = 8, n) = 22-0(:) . .
The opposite inequality can be proved by induction on n. Tht_a cases
n=1,2 are done by inspection. Since (4, B) € #(p, <8, n) implies
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(A, B) € #(p, {0}, n), by Corollary 4 also for & =n, |4||B|<2"=

Thmol )

For the induction we use the familiar definition
Cl= {(CryeevsCro1s Cratsoees €n)i{Cryenns €13 €3 Cpnseaes &) ECY,
ifccxr. (4.3)

n—1-n Whend <n,then 4 CZ"\ {(1,1,...,1)}. Thus for some ¢,
Al # 2. We need the definitions

B(k)={beB:laubl=kforallac A4} (4.4)
B!(k) = B(k) n B (4.5)
Case A} = @.

5
| 4| |B| = |4] 3. |B(k)|
k=0

8 b
= |4yl X | Bj(k)| + |45 L | Bi(k)|
k=0 k=0
8 _1 8-1 1
< X (n k ) + 3 (n N ) (by induction hypothesis)
k=0 k=o' K
5
= Z n i
Z ()

Case A} # @. The relations A} # @ and A! # & have the following
consequences:

B{(0) = @, becaused * O. (4.6)
Bi(k) nBi(l)= @  fork <, because 45 # &. (4.7)
B{(0) = &,  because 4, + @. (4.8)
For b € Bi(k) and all a € 4%, |a U b| = k. (4.9)

For b € Bi(k) U Bi(k)andall a € 4, Ja U b| =k — 1. (4.10)
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‘These facts ensure the following chain of equalities and inequalities:

141 1B = lAlkfolB(k)l

8

= (145] + 145) X (1Bs(k)| + 1Bi(k))

k=0
5 -1

= IABI{ 2 |Bj(k)|+ X |Bi(k + 1)I}
k=0 k=0
5 5

+|A;|{ S 1Bk + Y IB{(k)I} by (4.6), (43)

k=0 k=1

IABI{ X 1B4(k) U Bi(k + 1) + IBS(6)|}

8
+|Ailk§0IBé(k) U B{(k)  (by (4.7))

("2 (")

k=0 k=0

IA

(by induction hypothesis and (4.9), (4.10))

- £ (1)

k=0

5. THE ASYMPTOTIC BEHAVIOUR OF M*(p, é, n)

We assume now that (8(n))%., is a sequence of non-negative integers
with

lim 8(n)n~t=¢€[0,1]. (5.1)

n—»o0

The construction behind our conjecture in Section 4 is

A=1{a"a,=lexactlywhenl <t<m}

B={b”e£&’”: 5 b,=a—-m}. (5.2)

|
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Now choose

o 28(n) — n when 286(n) > n (5.3)
0 when 2(n) < n.
Then
1 _
~log 228(m~n 2n = 25(n) if 28(n) > n,
1 n n—38(n)
“’;103 |4]|B| = "
;log(a(n)) 1f23(n) =n,
1 ife>1
—
h(e) ife<tasn— oo,

where A(e) = —eloge — (1 — &)log(1 — &), is the binary entropy function.
This result is asymptotically best possible.

THEOREM 3. If (5.1) holds, then

1 h(e) for e <
im —log M*(p, 8(n), n) =
lim —log M*(p, 8(n), n) {1 fore >

(S S e
.

Proof. It remains to be seen that the quantities to the right side cannot

be superceded. Since M*(p, 8(n), n) < M(p, < 8(n), n) and since by The-
orem 2,

1 h(e) for € < %;
lim —logM(p, < 8(n),n) = h =
n-l-frolo n 8 (” (n) n) orgfﬁe (p) {1 for e > '%,

this is the case.

6. REPLACING CARDINALITIES BY PRODUCT MEASURES

. In all results of the preceding sections the sets where measured by
cardinality. More generally, now we use a measure P on 4 and a measure
Q on %. Sets in " (resp. #") are measured by the product measure
P =TIy % P (resp. Q" =TT+ Q).

A first result in this setting is a generalization of Theorem 1. Let us define

M(f, ®,n, P,Q) = max{ P"(4)Q"(B)|(4, B) € Z(f, &, n)}. (6.1)

O ——
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Instead of (2.7) we need now
L(4, P) =max{P(D);DcJ(A), N 4, + Qf}. (6.2)
deD

Inspection of the proof of Lemma 1 shows that we have now
LemMma 1. For (A, B) € #(f, &, n),
L(4,P)Q(J(B)) < M(f, 2,1, P, Q).
Lemma 1’ is used in the proof for the following theorem, which general-
izes Theorem 1.

THEOREM 1. Forany #C Z,
M(f, %, n, P,Q)<M(f, 2,1,P,Q)". (i)

Furthermore, if 0 € # and M(f,{0},1, P,Q) = M(f, ,1, P, Q), then
equality holds in (i).

Proof. For (A, B) € #(f, R, n), we have

P'(4)0"(5)
= T P@PTA) - T o(0)0nB)
<104, P)P U 4,)o(s(B)) max 0"X(,)

aceJ(A)
< L(4, B)O(J(B))M(f, #,n=1,P,Q) (byLemma?2)
<M(f, ®,1,P,Q)M(f,Z,n—1,P,Q) (byLemmal’)
< M(f,2,1,P,Q)" (by induction hypothesis).

The last statement of the theorem follows as before.

Qur next result is an extension of Theorem 2 (Section 4) in two directions.
Cardinality is replaced by suitable product measures and the condition
“one-sided constant” is substituted for by a more general 4-words property.

THEOREM 2. Let &= %= {0,1} and let P" and Q" be product measures
on {0,1}" such that
(a) P(0) = P(1) and Q(0) = Q(1). If an (4, B) € #(u,Z — {1}, n)
satisfies
(b) u,(a", b") <8 forall a" € A, b" € B then
(©) P"(A)Q"(B) < max{ PO)"Zi_q(;) 22O,

Q (0)"):2_0(;:)P(l)"P(O)"“"} and this bound is best possible.
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Proof. The last statement is readily verified. For (4, B) = ({(0,...,0)},
(Y Ty, <8}) € P(u,Z — {1}, n), (b) holds and P"(A)Q"(B) =
PO)"ES_o(7)QM*QO)" .

If this is the smaller of the two values, choose the pair (B, 4). We now

prove (b) by induction on n. We can enforce, by exchanging the roles of P
and @ if necessary,

P(0)0(1) = P(1)2(0). (6.3)
This implies
P(0)"2(1)*Q(0)"* = (P(0)2(1))*(P(0)Q(0)) """
> (P(1)2(0)*(P(0)Q(0))"™"
= 0(0)"P(1)*P(0)"""
and we therefore have to prove for (4, B) € #(p,,Z — {1}, n) satisfying
(b),
8
P(4)0"(8) s PO X (Flem e " (64

n =1, 8 = 0. The only choice is 4 = B = {0} and here (6.4) holds.

n=18=1 The case 4 =B = {0,1} does not arise and otherwise
P(A)Q(B) < P(0XQ(0) + 2(1)) by (a) and (6.3}.

n—1 - n If 8 =n, then by Theorem 1’ and (6.3),

P"(4)Q"(B) =< (P(0)(Q(0) + 0(1))"
- P(O)"kgo(Z)Q(l)kQ(O)"—k;

that 1s, (6.4) holds.

If 8 <n then B cannot contain the “all 1 sequence” and therefore
Bj + & for some ¢t € {1,2,..., n}. In case also B} # &, we claim that

AANndl=ga, (6.5)

because otherwise there are 5"~ € B, b""! € B! and a"~! € A N 4],
which satisfy

1+ p,(1a"1,06""1) — p,(1a"~1,15"1)
+p,(0a"" 416" 1Y) — p, (0" 1,067 1) =1,

a contradiction.
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Therefore P"~1(AL) + P*Y(A4}) = P"" Y45 U A)) and the inequalities
in (a) yield

P™(4)Q"(B) = (P(0)P"~}(4h) + P(1) P"~(4f))
x(0(0)0"'(Bf) + 2(1)2"*(B{))
< P(0)P" (45 U 41)0(0)[Q"1(BY) + Q" (B1)].

By Lemma 2 and the induction hypothesis, therefore,
3
P(4)Q"(B) < P(O)Q(O)[P"“I(O) > ("7 )ew e
k=0

n-1 o n—1 k n--k-1j|
+p710) T ("t Jew'e)

)

= P(O)"[ ¥ (n -]-C- I)Q(l)kQ(O)n—k

+ >:( p 1)Q(1)kQ(O)"_k]
n 2 hn k n—k
= 20)" X (¢)ew e

We are left with the cases B{ # & and B{ = &;

P(4)Q"(B) = (P(0) P~ (44} + P(1)P"~1(41))0(0)Q"( Bf)
< P(0)0(0) P~ 45) Q" *(B})
+P(0)Q(0) P~*(45) 0" B;)

and, by Lemma 2 and the induction hypothesis,
&
P"(4)Q"(B) < P(O)"[Q(O) EO(" 2 Hew e
n—1 k —k=-1
+00 T ("5 tew*e" ]
k=0

-20)" £ (1))’
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7. FroM THE UNION FUNCTION g, TO GENERAL
“SuM-TYPE” FUNCTIONS

The Hamming distance and p, are of sum type. Replacing p in the
definitions (3.10) to (3.12) by an arbitrary f: X ¥ — Z we get the set
P*(f, 8, n) and the numbers M*(f, §, n) and M*(f, n). We shall establish

relations to M(f, {0}, n), which was defined in Section 2. For this the
following result is basic.

DECOMPOSITION LEMMA. (A, B) € ([, {0},1) if and only if there exist
functions @4 3. A > Z, y, g2 B — Z such that

f(a, b) = ‘PA,B(“) + "tbA,B(b) for all (a, b) €4 X B. (7-1)

Proof. Clearly, if f satisfies (7.1), then

f(a,b) — f(a', b) + f(a’, b') — f(a, b
= @4, 5(a) — 94, 5(a") + ¥4 p(a’) — Y, p(a) =0

and therefore (A4, B) € Z(f, {0}, 1).

Conversely, for (4, B) € Z(f,{0},1) with 4 = {a,,...,a,} and B =
{bg,...,b,)} the functions

‘PA,B(“) =f(a,b0) and lPA,B(b) =f(a0,b) _f(aOabo) (7-2)

satisfy @, p(a) + ¥, 5(b) = f(a, by) + f(a,, b) — f(ay, by) and, by the
4-word property, thus (7.1).

THEOREM 4. (a) M(f, {0}, n) = M(f,{0},1)"
(b) lim,,_, ,,(1/n)log M*(f, n) = M(f,{0},1).

Proof. (a) is an immediate consequence of Theorem 1. Also from the
definitions,

M*(f,n) < M(f,{0}, n). (7.3)

The issue is to show that asymptotically the reverse inequality also holds.
For this suppose that (4, B) achieves M(f, {0},1) and that ¢, p and
Y, p are defined as in the Decomposition Lemma, then for (4", B") =

(174,117B),

14" |B"| = M(f,{0},1)" (7.4)
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and
£z, y7) = ém,,,g(x,)+¢4,ﬂ(y,) for (x", y") € 4" X B". (1.5)
With the definitions

() = Lous(e), w0 = X basln). (76

we have, therefore,

Fulx", ¥") = @ pr(x") + Y gn go( ") for (x", p") € A" X B".
(7.7)
The key observation now is that @ gz and Y p. have as sum-type
functions a rather small range of values on A" (resp. B") and that by (7.7)
for any u,v €Z f, is constant on U X V, where U= ¢ z(x) and

V = y3i p(v). The formal argument follows.
Deﬁmng

® = maxg,p(x) — ming,p(x) + 1,
xe& xex

Y = maxy,z(y) — miny,z(y) + 1, (7.8)
yev ye¥%

and defining by ||g|| the cardinality of the range of a function g, we derive
with (7.6)

< ny. (7.9)

<n®, |4 4n

L

We conclude now that

|47 18" _ M(f,{0},1)"

o s (7.10)

M*(f, n) =

which together with (7.3) implies (b).

8. APPLICATIONS TO Two-Way CoMMUNICATION COMPLEXITY

A. Preliminaries

After Abelson had raised the issue of information transfer in distributed
computations [9], Yao did his pioneering work on two-way communication
complexity [5]. His success is mainly due to his limitation to functions
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[T EX Y- & with &, %, Z finite, which made a combinatorial treatment
possible. A natural improvement of Yao’s model [10] led to a very smooth
form of Yao’s lower bound for the two-way complexity C(f; 1 « 2), which
we now state without proof:

SXT(ScZ,Tc%)iscalled f-monochromatic,
if f is constant on S X T.
A k-decomposition of f is a partition S = {8, X Ty,..., S X T} of

XX % into f-monochromatic rectangles.
For the decomposition number

D(f) £ min{ k: exists a k-decomposition of f }. (8.1)
Yao’s inequality (in the improved form of [10]) states
C(f;1 < 2) 2 log, D(f). (8.2)

We have not yet defined C(f; 1 ¢ 2). It is actually a quantity which can be
understood without any reference to computing in the context of an
abstract muiti-user source coding theory (see [1])).

The specifica here are:

(1) No probabilistic assumptions on the source (£, ¥, f)
(2) Correct decoding for all source outputs.

The communication model is: & outputs x and % outputs y. A person
P, observes x and another person P, observes y. They can transmit
messages to each other alternately over a binary channel with zero error
probability. Theor goal is to find the value f(x, y) with minimal worst case
transmission time. This quantity is denoted by C(f;1 < 2).

Similar to classical source coding there is a multitude of other communi-
cation models one might consider. There is a trivial general bound on
C(f;1 e 2).

Suppose that P, transmits the output x of 2 of P, who in the
knowledge of x and y calculates f(x, y) and transmits this value to Pq,
then obviously [log, |Z']] + [log, |Z'|] bits suffice, i.e.,

C(f;1 & 2) < [log, |Z|] + [log, |Z]I. (8.3)

There is also a general, but naive, lower bound on D(f).
Denoting the size of the largest monochromatic rectangle of f by M(f),
we clearly have D(f) > |Z}|¥|M(f)~! and thus by (8.2),

C(f;1 © 2) = [iog, 121191M(f) "] (84)
In some cases (8.3) or (and) (8.4) give good estimates on C(f;1 < 2).
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B. A New Lower Bound

‘The use of the 4-words inequality (Theorem 1) for complexity problems
1s due to its property to relate n-dimensional to 1-dimensional problems (or
words to letters). This makes it possible to estimate the decomposition
number in Yao’s inequality. For “sum-type” functions this yields often
asymptotically optimal results for C(f,; 1 <> 2). More specifically, lower
bounds can be derived with the following inequality.

LEMMA 3. For any # C Z and any sum-type function f,,

C(f;1 - 2) = log|Z"|@"|M(f,) ™" = log |21 |M(f, 2,1) "]

Proof. The first inequality follows from Yao’s inequality and (8.4). The
second inequality is a consequence of the inequality M(f,) < M(f, Z, n)
and Theorem 1.

C. An Upper Bound

In the light of Theorem 4 and the idea for its proof, it is natural to assign
to f1 X ¥ — Z the following class G(f) of coarser functions: With every
partition = {8, X T},..., S, X T} of X ¥ into rectangles S; X T,
(S;, T.) € Z(f, {0},1), we associate the function ggz: Z X ¥ -
{1,2,..., n}, where

go(x,y) =i, if(x,y) €S XT. (8.5)
G(f) is the set of functions obtained if & varies over all such partitions.

THEOREM 5. For a sum-type function f,,,

C(f;1e2
U, ) < min C(g;1 - 2). (8.6)
n— o n gEG(S)

——
Q

Proof. Let g be such that the minimum is assumed in (8.6) and let
P={8 XT,...,S, % T} be the partition of £X % on which g was
based. We learned from the proof of Theorem 4 that in case both person Py
and person Py know g"(x", y") = (g(xy, 1), .- 8(X,, ¥,)), only a rela-
tively small additional amount of information is exchanged for both to
know f, (x", y") More precisely, if g”(x", ") =v" = (Y1,-..., Y»), then by
the Decomposition Lemma there are functions ¢: S, = Z, ¢.: T, = Z
with

flx,y)=e(x) +d,(y) for(x,y)E€S XT, (8.7)
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and
f(xn’ yn) = Z (p'y,(xt) + ¢y,(yl)
=1
n
for (x", y") € J18, X T,. (8.8)
=1
Furthermore,
n n
Yo, < 1@, | X ¥, | < 19in. (8.9)
t=1 t=1

Now, by definition, an exchange of C(g;1 < 2)r bits suffices for both
persons to learn that g"(x”, ") = (yy,...,¥,). Using this knowledge Pg
can compute Xj_;p, (x,) and Py can compute X7 ;. (),). By (8.9) an
exchange of log |®|n + log |y|n bits suffices to inform both persons about
f(x", y™). However, since lim , _, . (1/n)log |®| ||n? = 0, the proof is com-
plete.

D. Examples of Sum-Type Functions

The following conclusion can be drawn from the foregoing results: If we
can find a g € G(f) such that for some vy, |g~}(y)| = M(/f,{0},1) and
Yao’s bound for C(g;1 « 2) is tight (which actuaily means that |g~*(v)I
= M(f,{0},1) for all y), then

L CUiled) e
o " S (7, {0}, 1)

and we know a protocol achieving this value.
We analyse now the four functions f@, ..., /™ defined by the tables

Mmza |01 23 N 012 345 ~NN012345

00223 0 loo[22 0] -3-2-5[345 01010333
1(1143 101122 1| 4 5 20123

2{0545 211133 21 2 3 olo12 11022444
311133 3|-2—-3 0/024

41 1 o0 3l|246 21033555
51-1-2 1468

£ f(Z) [ f(4)

For the first 3 functions the decompositions are as indicated in the tables.
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By the principle stated above we get

1
lim —C(f®;1 & 2) = log, 3,

n—oo N

1
lim —C(f®;1 e 2) =1,

n—oo R

1
lim —C(f®;1 e 2)=2.

n—co RN
For instance, for f® the g corresponding to the decomposition drawn is
known in values to Py, who can inform P, with 1 bit, that is, by sending a
0,if y € {0,1} and a 1, if y € {2, 3)}. Applying the principle literally to @
we get the upper bound [log, 3].

However, by replacing g by g™ and considering n’s divisible by m, as
m — oo we obtain the bound log, 3. We leave the analysis of f® to the
reader. It is more interesting to look at f®. A straightforward application
of our principle gives

63 C(f@;1 2
l=log—— < lim U )
9 H— 00
C(f®;1 o2
< Hm ¢/ ) < log3. (8.10)
n

n— o

n

However, since f(x, 3) = f(x,4) = f(x,5) we can identify 3, 4, and 5 and
define

32 0123

0 0103

1 0224

2 0335
f’

Now lim, _, . (1/n)C(f/;1 © 2) > log3, (8.10) and
lim, ., ,(1/n)C(£®1 0 2) = lim,_ ., (1/7)C(f;; 1 & 2)
imply that log 3 is the limiting value.

Finally we comment on the 16 Boolean functions {0,1} X {0,1} —
{0,1}. They fall into 3 groups, namely trivial functions depending on one or

TUE
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no argument, functions equivalent to symmetric difference A, and those
equivalent to union V, which include intersection and difference.

It has been observed by El Gamal and Pang that for 4,: {0,1}" X {0,1}"
— {0,1,..., n} defined by

n

d,(a",b") = Y a,Ab, (8.11)

pe=1

1
lim —C(d,;1 e 2) =1,

n—oo N

Obviously, for trivial Boolean functions f,, lim,, , (1/7)C(f,;1 « 2) = 0.
Already (8.3) and (8.4), in conjunction with Corollary 4, give

o1
lim ~C(p,;1 e 2)=1.

n—o N

That means that for all nontrivial Boolean functions 1-way communication

is asymptotically as efficient as 2-way communication. We conjecture this to
hold in an exact sense.
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