
Our main discovery is the following identity: 
non-empty subsets of D = [ I, 2. . 11) 

where 

It can be viewed as a sharpening of the famous LYM-inequality. We present also 
generalizations to other poscts. The total impact for combinatorics remains to be 

explored. The identity seems to be particularly useful for uniqueness proofs in 

Sperncr Theory. We also discuss a geometric consequence. 1 IYYO Adrx~~c Prc\,. Inc 

I. THE MAIN IDENTITY 

We give first a slightly different formulation of our main identity in terms 
of concepts, which are needed later. For every XE :Y = 2* and every .d c ./p 
we define 

X,,= (-) A and W,,(W = IX,,/ 
\zz 4 c 4 

Using the functions 

where ,$ is the set of all i-element subsets of R, we can write 

(1.1) 

(1.2) 
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THEOREM 1. For ever)! ,fbmil>~ .d qf’ non-rrnpt?) suh.yet,s nf’Q = ( 1, 2, . . . . tl i 

i w+ 
,=I i 

0 i 
Proof: Note first that only the minimal elements in .d determine X,,, 

and therefore matter. We can assume therefore that .d is an antichain. 
Recall that in Lubell’s proof of Sperner’s Lemma all “saturated” chains 

which pass through members of .d, are counted: 

c IAl! (tz- (Al)!. 
.4 t .d 

No chain is counted twice, because .d is an antichain. Since there are n! 
saturated chains in total, clearly 

or 

c IA(! (tz- IAl)! <n! 
4 E cd 

Our observation is that we can also count the saturated chains not passing 
through d. The key idea is to assign to .d the upset 

“I(= ~XE~:XXA for some AE.~] (1.3) 

and to count saturated chains according to their exits in J&. For this we 
view 9 as a directed graph with an edge between vertices B, C exactly if 
Bx C and IB\C’ = 1. 

Since @ $ &‘, clearly Qr #J&. Therefore every saturated chain starting in 
R E J)/ has a last set, say exit set, in J&. For every I/ E J// we call e = ( U, V) 
an exit edge, if VE B\i2/, and we denote the set of exit edges by fcJ ( U). The 
number of saturated chains /earing JB in lJ is then 

(n- IUl)! I&,,(U)I (IU - l)!. 

Therefore 

C (n- IUI)! IS,,(U)l (IU - l)!=n! (1.4) 
L’t YJ 

and since Kd(X) = @ for XE 9 - &, also 

(1.5) 
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Now just verify that 

IA,(-u = W,,(‘u (1.6) 

&murk. It is surprising that this identity has not been found earlier. 
For instance in [IO] an effort is made to improve the LYM-inequality by 
adding some, but not all, missing terms. 

The simple proof above was the result of an analysis of two somewhat 
more complicated proofs, which are reproduced in Section 6 for readers 
interested in “proof techniques.” It extends to general pose&. 

The name LYM-inequality was introduced in the survey article [S] to 
honour the authors in [4]. [2], and [I+]. More recent books concerned 
with this subject are [6]. [7]. and 181. 

2. CONSEQUENCES FOR FAMILIES OF SETS 

For any antichain .d c ./p set .4 = .~i/ n ,T. Then the LYM-inequality can 
be written in the form 

(2.1) 

The next trick is standard. For any function c’: FV + R, one can rewrite the 
LYM-inequality as 

which yields 

For the ease of reference we state the special case c(i) = i for i= I, 2, ,,., II 
as 

COROLLARY 1. For an?, mtichain xl c .9 
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A. Neux Results ,for Generalized Antichaim 

Theorem 1 together with (1.2) implies: 

THEOREM 2. For an)~,f&nil~~ .d c ./p 

Obviously 15~1 ( 1 .l ) this result implies Corollury 1. Holisezler, it covers also 
other cases of interest. 

DEFINITION. We call j,d( 1 ), . . . . .cj’(M)) a cloud-antichain (CAC), if 
.d(i) c 9 for 1 d id M and if for every i #,j any A, E &(i) and any 
A, E <d(j) are incomparable. 

In case l.d(i)l = 1 for 1 6 i6 M this reduces to the familiar concept of an 
antichain. From Theorem 2 we deduce an extension of Corollary 1. 

THEOREM 3. For the CAC {-d(i): 1 <i<MI xft, Id(i)1 In,.,.,,,i, Al 

6 m( ::, 1. 

Proof: Let ./l(i) be the set of minimal elements in .n/‘( i) and let 
c#=UfL, L,$(i). For XE.d(i) we have 

n nA=n AC A (by incomparability) = X ,, 
AE.J(II X?.4E.//(,l x 7 .A E N 

Thus I;“=, b’(i)1 M-L,..,,,, Al d C;“:, C.ys ,r’,,j W,(X) d Cxt rp W,,(X) 
and the result follows with Theorem 2. 

B. An Estension to Seceral Families 

THEOREM 4. For k furnilies d’ , . . . . .a/” qf non-etnptj, subsets of Q und 
Xc Q define 

and 

Then 

(i) 
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Ulld /+A 
(ii) cw n 

,,I, ,,i.(m 6 max c 0 t 
.\ c: @ 0 5: / c I, A , _ , , , Y 

Proc$ Since by our definitions 

(i) immediately follows from Theorem I. 
To prove (ii), note first that from its definition 

and therefore the numbers ai = W’,y,. ,Ji( y) satisfy 0 < X, 6 1 and by (i) 
xy= , Y, < k. Therefore 

and since C yE,+ W </I,. ,,A (.U = c:‘L , wy, ,,i = C:‘= j sc,i(y), the result (ii) 
follows. 

3. GEOMETRIC CONSEQUENCES 

Proof (i) A hyperplane in tl-dimensional space is determined by a 
vector 2. = (&. 2, , . . . . jk,r) of coeffkients for the linear equation 1.,, = 
C:‘= , i,.r,. 

Let us assume first that i, 2 0 for t = I, 2, . . . . n. A vector y E f” is minimal. 
if x3:‘=, ,?,J’, 3 A,, and if replacement of I by 0 in an>- component of y results 
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in a vector y’, with Cy=, /.,J: < I.,,. Let Y ‘(A) be the set of minimal vectors. 
If an edge (x, x’) is cut by the hyperplane such that Cy_ r i,s, 3 A,, and 
xy=, A,s~ < i.,,, then x and x’ differ in a component in which all vectors 
from Y .(A) below x have a 1. 

The vectors x E C” can be identified with the sets A’= { t: s, = 1 i. Let 
.d( A) be the family of sets corresponding to Y ‘(X). By the foregoing 
remarks the number of edges [ (x, x’): x’ < x ] with vertex x fixed, which are 
cut by the hyperplane, does not exceed W,,,,(X). Denoting the total 
number of edges cut by the hyperplane by F(h), we thus get 

F(h)< 1 W<,,,,(W. (3.1) 
.Yt ip 

For hyperplanes with arbitrary coefficients (j”, , . . . . i”,,) a coordinate trans- 
formation 

T(s,) = 
i 

-yr 
if A,30 

1 -.Y, if i,<O 

leads to the case of non-negative coefficients just treated. By Theorem 2 
therefore 

max F(h) d m 
11 

I !I n2 (3.2) 

The case h. = (rn, 1, . . . . 1) shows that this bound is best possible. 

(ii) For k hyperplanes with the vectors of coefficients 1’ 
(j= 1, 2. . ..) k) we define as before the set &‘(A’) and put A?‘= .d(h’) in 
Theorem 4. The number F(1’, . . . . k’) of edges cut by these hyperplanes is 
bounded by C,Yt +, W,,,. dA(X). Since all edges shall be cut, by (ii) of 
Theorem 4 

and since II 2” ’ = Cz=, r(y), necessarily k 3 n. That on the other hand tz 
hyperplanes suffice, can be seen by the example I’= (j, 1, . . . . 1 ) for 
j= 1, 2, . . . . n or also by the example 

for j=t 

for j# t’ 

2’ = 1 0 for j,f=l,2 ,..., n. 
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Remark. According to [9] it has been conjectured by S. Poljak that 
(even without any restrictions on the coefficients) it takes II hyperplanes to 
cut all edges of the )I-dimensional unit cube. Note, however, that for li <II 

the bound Co<,<,z k Ci’r_:+, . . Y(:!) is not an upper bound on the number of 

edges cut by li hyperplanes with arbitrary coefficients. Already in case II = 3 
and h- = 2 one can cut 10 edges, whereas 1 ( : ) + 2( :) = 9. 

4. UNIQUENESS PROOFS 

We demonstrate now that simple uniqueness proofs can be given via our 
identity. 

The reader is reminded of our convention 

We also use the elementary facts 

(4.1 1 

(4.2) 

for I # ITZ, 111~ 1, if 12 is even 

i(;‘)<‘Jr(~rr~ {exact1y for I#nr,ifnisodd. 
(4.3) 

For an antichain .c/ in ./P the identity says 

If .oC is maximal, then I.N’l = (Lr,“2,), and therefore by (4.4) 

(4.4) 

(4.5 1 

(4.6) 

Obviously ,n/ = :Yk, if II = 2X-. We show now that for n = 21i + 1 the assump- 
tion & # .&, $,, violates (4.6). 

For this note that W,,, (2’) = 0 for XE .$,\.d implies that in the graph 
defined on .YA u ,‘p,,, by containment X has no connections with .‘p; \.d. Since 
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there are no connections between s& = :‘p,, n .d and .dk = :‘ph n .d, we have 
two connected components .c3,,, u (./p,\.d’ ) and ($,,\ .d ) u ~9”. However, 
;ipn, u $ is obviously connected. 

B. Ukpenrss in Theorem 2 

Since for every family .d with set of minimal elements .// 
W,,(X) = W ft (A’), and since every antichain occurs as a set of minimal 
elements, it suffices to characterize those antichains .d with 

(4.7) 

THEOREM 2’. Equulit~~ occurs in (4.7) j;7r .d = &,, f n = 2k + 1 = PIZ + k, 
und for every antichuin .d c &, v &, \r’hich is “suturuted” in .$,, , (f’ti = 2h-. 

Proof. It follows from (4.7) and our identity that 

W,(X)=O, if 1x1 (,i,) <t?l(::) (4.8) 

For II = 2k + 1 we have therefore W., (A’) = 0, if IX/ # wl, and thus .(3/ = $,,. 
On the other hand for II = 2k, k( ;1) = m( ,J:,) and we can conclude only that 

.o/ c PPp,, u ,$. .d is saturated in :$,,, because otherwise there is an antichain 
,d’=Cdu (X) with XE&,,\,~ and xkEP WCJ’.(Y)=xjFp W,,(Y)+[X1. 
which contradicts the optimality of .d. 

It remains to be seen that equality occurs in (4.7) for these antichains. 
Let .d: be the elements of $,,, which are connected with an element of .dk, 
and let cl(.~Z’, A’) count the number of connections of Cdk with X. Then we 
have 

; W,,(X) = h-l.d,l + (k + 1) ((;t,) - I.43) 

+ 1 (k$l)-d(.d,,X) 
.Y t .cfl: 

2k 
=klsr/kl +(k+ 1) k+ 1 -(n-k) ICR/‘xl 

i > 

=(k+l) ky* 
( ) 

(4.9) 

The notion of antichains .cui’ c gWi”,, u &, which are saturated in &,, but not 
in gk. is meaningful. 
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EXAMPLE. Let (H, HZ. k ) = (4, 3, 2 ) and 

The antichain .d = .c& u .G$ cannot be extended by I 1. 2, 4 ]. i 1, 3. 4 ), or 
’ ? 3 4), however, it can be extended by ( 3.4 I. ,” . 

C. i~tkpwnr~s.s in Corollrrr~~ 1 

Since for an antichain .~i/, x ., F r, I,41 <C,vC p IV,,(X). the equality 

(4.10) 

can occur only for antichains, which are contained in the class charac- 
terized in Theorem 2’. By (4.9) thus necessarily C Vt .gi’ (li + 1 ) = 

x.,-e y; ti(.c&, X) or, equivalently, .d, u ,cJ~ is a connected component of 
.Pk u #,, . This is possible only if XK$ = @ or G$ = .?$. We summarize this 
result. 

In another paper we show that Bollobas’ inequality [ 13. 61 can also be 
lifted to an identity and that this identity enables us to prove the unique- 
ness conjecture [ 14, Remark 11 of Griggs, Stahl, and Trotter. 

5. AK IDENTITY FOR POSETS 

Let now .Y be a finite partially ordered set. In case it doesn’t have a 
unique maximal element, we introduce an element X, , which is above the 
original maximal elements. ./p can also be viewed as a directed graph with 
an edge r = (X, Y) connecting X and Y exactly if X > Y and there is no 
element between X and I’. The idea of using the concept of exit edges of 
an upset /I/ for counting saturated chains applies to any such poset. The 
sets involved in such a count are: 

e(U). the exit edges starting in C,’ 

d(X), the saturated chains ending in X 

‘4 (X), the saturated chains starting in .I’ 

%‘, the set of all saturated chains in .Y. 
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Then clearly 
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More generally we can incorporate the case of a weight function 

F: % --f R. (5.2) 
With ‘G(r) as the set of saturated chains passing through edge t’ we can 
express the identity in the following form. 

THHXEM 6. cl.c q, C<.EC:((.) Cwd(ej F(C) = Cc,,6 F(C). 
Sometimes the quantities in this identity can be fully or partially 

calculated. This was the case in (1.4), other examples are given below. To 
any .d c 9’ we can assign as in ( 1.3) an upset ‘I/ and the sets of exit edges 
~7~ ( U), U E @. Thus Theorem 1 is an immediate consequence of Theorem 6. 
For an upset & # [X, ] there is still another way of using the idea of exit 
edges. Let .// be the set of minimal elements in J)/. We call an edge 
r = (X, Y) free (relative to ‘I/), if 

XE Jk\.ll and YE,& u (9\‘@). 

Let ,P( Y) denote the set of free edges ending in Y. 

THEOREM 7. Cyt ,/a,.++ ~,/I)Cc.t,F,Y)CC.t,d,c,F(C)=CC.t,~ F(C). 

In the poset of subsets we get for FE 1 

c I.F( Y)l (n - ( Y1 ~ 1 )! I YI! = II! 

and 

J(Y)= {xEJ&\.N: x3 Y, IX- Yl= 1;. 

Therefore 

c Is(y)I =1 

y IYI l;l 
( 1 

(5.3) 

Actually, by looking at the upset ‘/I/‘= 2~ - .& we see that the only dif- 
ference between the two identities is that we look at first entrances in the 
second and at last exits in the first. Other equivalent formulations can be 
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obtained by looking at downsets rather than at upsets. Morrowr, IVCJ cm 
gicr a grtwrul ttwthi,fbr prodwing itlmritic~s: For any hlockitzg set .A? c B, 

that is every CE $5’ meets an element BE .A’, we can count the saturated 
chains according to their .fi’rst ~vttruttc~~ (or ICI.S/ csit) in A. Whether nice 
identities come up this way depends on the structures of :4 and 3. Insofar 
we have considered only blocks. which are upsets. For arbitrary .d c ./P we 
have set up identities via associated upsets /// = V,. There are many “hull 
operations” which assign blocking sets to arbitrary .d and which could 
have been used in place of :‘/-,. We analyse now the identity in Theorem 6 
in special cases. 

EXAMPLE I. THE a-REGULAR TREE ,FX,,, OF DEPTH tz. Here the rank 

function is the length of the path from the top to A~. For any A! c ,:‘,,,, 
define the upset ‘l/ = i .YE ,K1,?,: .Y > A for some A E .d I. By Theorem 6 

or 

c- IW)! = ,, 
(:&d’() (5.3) 

If .d is an antichain, then we have IA( U)l = x for UE .d and therefore 

(5.4 1 

which is Kraft’s inequality [ 111. If. in addition, .d is blocking. then 
CcrE& ( l/x”“‘) = 1. 

EXAMPLE 2: CASCADE GRAPHS. It is a small exercise to show that 

Renyi’s inequality [12] in his uniform flow theorem can be replaced by an 
identity. 

EXAMPLE 3. SUBSPACES OVER GF(q). Let Y:,(q) denote the lattice of 

subspaces of a vector space of dimension tl over the field GF(y), ordered by 
inclusion. Then z,(y) has a rank function r(X) = dim(A’) and the number 
N, (Y,,(q)) of subspaces of rank k is the Gaussian coefficient 

t1 
H 

Jy”Ll)(q’~ ‘-I)...($’ kil-1) 

k ‘, (4” - 1 )(cll’ ’ - I)...(y- 1) 
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Now for an .cy’ and the associated ‘u in g,(q) 

that is 

or equivalently 

and finally 

Since the calculation of I&(U)\ is somewhat lengthy, we give only the 
result. For this let (A: UZAE..QJ) = [A, ,..., A,) and for Tc (1.2 ,...,. Y) 
denote by A, r, the subspace spanned by U ,t r A rr then by inclusion- 
exclusion 

6. Two FURTHER PROOFS OF THEOREM I 

In spite of the fact that the proof given in Section 1 is so perspicuous and 
short, we present here two proofs, which preceded it. We hope that this will 
be appreciated by readers interested in “proof techniques.” The first proof 
is by induction on the ground set Q and does not seem to have a parallel 
in Sperner Theory. The second proof resembles Sperner’s pushing opera- 
tions [ 11. 

Proof I. Obviously I,,(&) = C:‘=, ( W(lj/i( :I)) equals one for n = I. 
Assuming this for IL?/ <H we prove it for n. Clearly IV’.;‘= ITI, if 
T=n,E,,,,4. We write t=ITI. 
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For every k E Q = ( 1.2, . . . . tl j and Q\, j k j we define 

.c&,= (AE.“/:AcR’. (k;) 

and for XcQ’, (k) 

I$ ’ ,,cr)(x, I1 ~ I ) = W,,(X). (6.3) 

Since n -( t ,f’,x, A I T, it suffices to consider only sets Xx T. Therefore 

1, if TcQ’: (X) 

0, if Tcf R\jkj! 

and 

(tz -.i) M’,(W 

/=I l\l=, i 

This and (6.4) imply 

(6.4) 

‘i’ c (n -.i) W.,,(X) 
/=I lkl-1 II- 1 

4 
! :i 

=,-I 
I1 

.i 
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or 
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II- I 
c c W,,(f) t -+-= I. ,=I I.\i=/ ,j :’ 

0 
n 

Since t/n = W’,‘J’/H(;:), we have established Z,,(,d) = 1. 

Proqf II. We need a few definitions. For 3-c :“p, we set 

.X+ = [X6,$+,:X3 Y for some YIG.~-). (6.5) 

Also, for A E .yr and BE ;P, + , we set 

if AcB 

if A&B. 
(6.61 

For the given .d let now 1 be the smallest number with ,d/ = .R( n L+$ # @. 
We introduce now an operation on families of subsets, which leaves I,, 
invariant. Repeated application of this operation leads finally to IQ j, for 
which I,, takes the value I, because 

w&u = 
i 
0% if X#Q 

n, if X=Q. 

We define now the “pushing up” trunsjbmution S by 

S(d) = (.d\.4/0 u d,? (6.7) 

and write .oC’ = S(.cI/). 
We analyse now the effect of this transformation. Clearly. Y,# = Y r,, for 
1 YI < l- 1. Next we establish this identity for 1 YI > I+ 2. It suffices to show 
that 

Since IYI>,1+2,forAcYthereareAu{a), Au(h)cYwithintersec- 
tion A. Therefore fi y 3 At ,n’, A 1 n ye Bt ,u’t B and the opposite inclusion is 

obvious. We calculate now the contributibns of the set of cardinality I or 
I+ 1 to I,, (d ) and I,, (XI’ ). Clearly 

W!<> = 1l%Ez;i, w$ = 0 (6.8) 

w!~~“=(l+l)l~c1/,+,\~~~~+ c /+I-d(Y,,d,), (6.9) 
YF d,- 
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where 4 I’. cd;) = C,, F ,,! tl( I’, A ), and 

(l+ 1) I.d,tj. 

Now from these results 
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(6.10) 
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