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RICH COLORINGS WITH LOCAL CONSTRAINTS
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A new hypergraph coloring problem is introduced by defining N(H,e) as the maximal
number of colors in a vertex coloring of 2 hypergraph H = (V,€) , which has not more than
e different colors in every edge. Our main results concern the asymptotic behaviour of
this quantity for the uniform hypergraph H{n, ¢ k) = (Vin,€),E(n, L k) with vertex set
Vin, ) = (%) for @, ={L2,....n} andedgeset E£(n,Ek)= (E=(f):4c (%)}

Tncase £=2 there are connections to Turan's graph.

1. INTRODUCTION

As a natural generalization of the concept of a chromatic number of a graph (which includes
also several of its generalizations suggested by others (see ch. 19 of [6])), Erdés and Hajnal
(1] introduced the chromatic number ¥(H) of 2 hypergraph H = (V,€) oasthe minimal
number of colors needed to color the vertices such that no edge Eef with |€]>1 has
all its vertices with the same color.

A stronger notion requires that all vertices in an edge get different colors. However, this is

equivalent to coloring the graph with vertex set V and any two vertices I

an edge, if for some E€& zy€E.
Related, but weaker, notions of hypergraph coloring where introduced in (2]. There it was
ce coding problems is a statement

demonstrated that the essence of many multi-user sour
he vertices of every edge E &

about vertex colorings of hypergraphs, which assign to t '
certain percentage, that is, €|E| different colors. Another notion requires that in no edge

E = colour occurs more than k resp. §|E| times.

In the study of memories, which we introduced in [3], we encountered still another hy-
pergraph coloring problem. H = (V,£) is said to carry M _colors, if there is a vertex
coloring with M colors, that is, 8 surjective map ¢ : V — {1,2,... .M} , such that
all M colorg occur in every edge.

Let M(V,£) be the maximal number of colors carried by (V,£) . Clearly, M(V,E) £
mingee |E| . A simple probabilistic argument yields a lower bound.
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204 RICH COLORINGS WITH LOCAL CONSTRAINTS

CoLoRrING LEMMA AZ [3]:

I [V|>3,then M(V,£) > (tn|V])") mingee |E| .

Since in typical applications in Information Theory the quantities [V! and [£] grow
exponentially in the blocklength n we have there M(V,€) ~ mingee |E|

if numbers are not in this range it is much harder to derive bounds. The determina-
tion of M{V,£) for any hypergraph (V,£) is a problem of considerable generality.
It includes problems of Ramsey type.

To see this, let us define for positive integers n,k,f with n > k > £ a hypergraph
H{n,6,k) = (V(n,8),E(n,&,k)) with vertex-set V(n,f) = (7)) for Q, ={1,2,...,n}
and edge-set &(n,f k) = {E =(4) :4¢ (ﬂk..)} . Now the classical Ramsey number
n(k,f) isthe smallest integer such that for n > n(k, &)  M{V(n,¢),E(n, L k)}=1.

The work [3] on write-efficient memories has been continued in {4] to include cases where
several persons use the same storage medium subject to certain priority rules. This has
led us to several novel extremal problems. Most of them are very complex. Among the
accessible one’s there is the following coloring problem, which seems to be basic. As in the

previous coloring problem one wants many eolors “in V' ”. However now one wants only
“a few” colors in every edge. The formal deseription follows.

We denote the cardinality of the range of a function by || ¢ || . For the hypergraph
H=(V,€) amap f:V —~N iscalled e-coloring , if

| fig|<eforall E€E, (1.1)

where fig is the restrictionof f to E .

We call an e—coloring f an {N,e)-coloring , if

Ifl=A. (12)

At 2 basic quantity we introduce N(H,e) asthemaximal N for whichan (N,e)-coloring
of H exists. In particular we are interested here in the hypergraph H(n, £, k) . The set
ofits e—colorings is ®(n,k,{¢) .

With the abbreviation N(n,k,¢,¢) € N(H(n,{,k),e) we can thus write

N(n, k¢ e) = max{f o ||: ¢ € ®(n,k,4,¢)} . (1.3)
Since obviously
N(n.k 1) = { e for e<k
n for e>k

Ir.Comb., Inf. & Syst. Sei.



L AHISWEDE, N. CAl AND 2. ZHANG 205

we study cases with €2 2 . Gur bes' results arefor ¢=2 .

They are formulated in terms of the following threshold functions indexed by 1 =1,2; 5 =
0 and 3=1,2,... .

(0, K) = suple : Tm ~N(n,k2,¢)= 0} , (14)

n~—o 1!

eils, K) = supfe : lim ﬁlN(n,k,z,c) - Nin,b2e0s - LK)+ 1] =0} (15)

They were found to be appropriate tools for catching the structure of this coloring problem,
Since the total number of vertices is -’iiz‘-'—]l the order of the number of colors cannot
exceed n? . So we ask how big e has to L2 when this magnitude occurs. Also a linear
growth is interesting.

In the analysis of these functions we use another usefull concept. For fixed £€N we call
F:N—=N an {local- global function, ifforall n>m > ¢

N(n,m,¢,F(m)) € F(n} . (1.6)

For £=2 there are local-global functicns, which are closely related to the Turdn function
tp(n) = Eﬂﬁi'(i{p [*"—:-' J ' [%1 J , which counts the number of edges in the Turén graph
Cy(n)

This is a complete p-partite graph with r vertexsetsofsize ¢+1 and p—r vertex

sets of size ¢ , when n=pg+r,0<r<p.

It is convenient to denote these sets by Qi(f = 1,2,...,p) and tolet Qr contain the
first numbersin Q,,{; the next and so on.

For any graph G = (,,£) we denote by V(m) aset with m vertices, by T, the
set of V{(m) , which are vertex sets of complete subgraphs, and we denote [T,.| by
Tw =1, m(G) '

Turdn's result is that up to relabelling of the vertices Cp(n) is the only graph with a
number of edges equal to max{|£] : Tp41((s, &) = 0} .

The paper is organized as follows;

In Sectjop 2 we givein Theorem 1 a sufficient conditionfor F:N— N tobe #-localglobal

This condition can be expressed in terms of the decrement of density

F F(n
=Tt - -

4

Next we upper bound in Theorem 2 this decrement for N(n,k,4,¢) .

I Section 3 rather exact results are derived for the 2-local-global functions t,(n)
(Theorem 3).
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206 RICH COLORINGS WITH LOCAL OONETRAINTS

In Sectjon 4 this result in conjunction with a probabilistic argument are used to express
threshold functions in terms of Turdn's function.

In_Section §, finally, the method of proof for Theorem 1 is used to derive very general
statements of Turdn-type. Instead of excluding ceriain complete subgraphs a more general
constraint on the number of edges in certain subgraphs is imposed.

2. COLOMING PROPERTIES OF H(n,l,k) IN TERMS OF LOCAL-GLOBAL FUNCTIONS

With every coloring ¢ € B(n, k,{,¢) we sssociate a system of distinct representatives
Ry ={E;:1<i<| ¢ll), where E; €¢~'(i) CV(n,f) and is arbitrary otherwise. We
need below the hypergraph I, = (0., R,) .

THEOREM 1. Let £€N be fixed.
I F:N-—N satisfiesforevery k=0+1,....u

Fk+1)+1 2 F(k) k
GRS R i (2

then forall n and m with t<m<n<u+l

N{n,m,{,F(m)) € F(n).

PROOF: We proceed by induction on n . Clearly, the statement is true for n = m .
Assume now that is true for & > m , but that it is not true for k41 <s+1, thatis,
N(k+1,m,t,F(m)) > F(k +1) . This means that a ¢ € &k +1,m,{, F(m)) exists
with g f=F(k+1)+2 forsome zeN .

Removing now the element j from (x4, we get a subbypergraph H;(Vi(k+1,0),E;(k+
1,4,m)) , where

Vilk +1,6) = (Q"*‘ . b }) and £i(k +1,6,m) = {E = (A) A€ (“*“ - {f})}

£ m

We also get a subhypergraph I,; of I, , which has the vertex set ey ~ {5} and

edgeset R,;={R:ReR,and;j ¢ R} . Let ; be the restriction of H;
By the definition of I,; we have J nYes

Roil <l s Il - (21)
Consequently, the degree d( i) of j in I, satisfies

di)=|{R: RE€ R, and j € R} = |R,| - [R,]
=lel-Roil 219 Il = Il p; 1= F(k + 1)+ 2 s |l - (22)

Jr. Comb,, Inf. & Syst. Sci
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Furthermore, replacing i by a4 - {j} , ¢; induces an isomorphic map ; in
&(k,n,¢, F(m)) and thus by induction hypothesis || ¢; (< F(k) . Hence

d(y) > F{k+1)+z - F(k) (2.3)
and therefore
E+t
(k+1Fk+) +2-FR) €Y dG)=IR|- L=l gl t=UFk+1)+2). (24)
)=l

We show next that (2.4) can be improved to

(k+V)[F(k+1) + - F(b)] +2< 4F(k+1) +2] . (2.5)
From here one readily calculates that

Py, 1
¢ " E+D0)
P4+ +1 2
Tt kD)

[(k+1) - O(F(k+ 1) +2)+2]

a contradiction to the assumptionon F .

We shall prove (2.5) by showing that for at least two j strict inequality holds in (2.3).
Since by assumption F(m) < (7) , we know that for at least one color ¢ € @(V(k+

1,4)) lp=Yc)| > 2 . We distinguish two cases. f Mep-aV = ¢ , then for R €
R, with p(R) = ¢ forall j€ R thereisa V'€ ¢~)c) such that j' ¢ V'.
Therefore we get

Rl +1 <l s f (2.6)

and since |R|=¢>2 strict inequality holds in (2.3) for at least two j .

I NveprigV ¥9 then another color ¢ with |¢~}(¢')] 22 exists, because other-
wise for any j € yeg-1q ¥ the subhypergraph H; has distinct colors for its vertices
and thus in particular for any edgein H; there are (7) > F(m) colorsin contradiction
to ¢ |l€ F(m) .

Select now Vi, V3 € p~(¢), VI, VJ € p~!(¢) such that Vi =R, and V{ = Rs nre
twoedgesin [, . Two subcases arise.

Sucasel: (V\W)In(W Vi) #¢.
Here for j € (Vi \ Va)N(V/ ~ V) we have

Rl + 2l il (2.7)

Vol. 17, Nos. 3-4 (1992)



208 RICH COLORINGS WITH LOCAL CONSTRAINTS

since R, and Ro arenotin I,; but V3 (withcolor ¢ Jand ¥ {withcolor ¢')
arein Hj .

Supcast 2: (Vi\W)n(V{~Vj)=¢ .
There are different jy,j; suchthat jy€VisV; and N1 € V, \ V] . For each of them
we conclude as in the first case above that {2.6) holds and again (2.5).

THECREM 2.
Nin,k, L ¢) N(n+l,k,£,e)> ¢-1 X
> fore < ()
O =) =y 2
(i) «-Ai(n—’(%t’—d is strictly decreasing in n and less than (cT) :
¢ t

{“global density” is smaller than “local density”).

Nin,k,t,a(}))
o

(iv) N(nk2,k—1)=n-1 .

(iii) limneco

ProoF: (i) Justreplace F(k+1)+z and F(k) in the proof of Theorem 1by N(n+
1,k,f,e} and N(n,k,le) .

(ii) is an immdiate consequence of (i) .

(iii) is a direct consequence of (ii) .

(iv) Let @(z,y) =min(z,y) for z,y €0y and notice that ¢ € §(n,k,2,k—1) 2nd
| ¢ l=n—1 . Therefore we have N(n,k,2,k—1)>n—1 and the reverse inequality can
be derived by applying Theorem 1 with F(k) = k —1 . The hypothesis holds, because

k+1 k-1 2 2
- = k+1 k-1Dk+1)]=0 > -
(";") (g) (k+ D)k(k - 1)1( NE=1)= ) (k+ 1)(';)
3. TURAN'S FUNCTION AS 2-LOCAL-GLOBAL FUNCTION
It if often convenient to use the function
ga(n) =ty(n) +1. (3.1)

. THEOREM 3.
(i) Mn,k,2,gp(k) +a)=gp(n)+a for n2k
when 0<a<|phg] -1,k24 and p22 .
(i) N(n,k,2e¢)=a when a<|§]| and k24 .
(i) N(n,3,2,2)=n~1,N(n321)=1,N(n323)=}).

Jr. Comb.,, Inf. & Syst. Sci
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Rematk The ranges for o are sufficiently large for our purposes, but not necessarily
optimal,

et v oy
b e imratree]
-]

PROOF:

(i) Direct part

Recall the definition of Cy(n) and its vertex sets @Qy,...,§, in Section 1. Define ¢
for H{n,2,k} asollows:

The edges in the subgraph Cp(n} get colors 1,2,... t,(n} . For i = 1,...,a the
edge {i,t + 1) gets color t(n) +1 and all other edges get color 0. ¢ isan
{9p(n) + a, gu{k) + a)-coloring , because by assumption & > 2p . We conclude that

Nin k2, gk} +a) > gin)+a for k<n.

Converse part
It is sufficient to verify the hypothesis of Theorem 1 for m = pg+r,0 <r < p and
F(m) = g,{m)+a . We first notice that

oipy +1)) = (f)(q' +17 +1

= (g)(q’ +1% 4+ (p; )q’+p(p-p)q(q +1)+1.

Thus, for the values as specified

(m=1[F(m+1)+ 1 -{m+1)F(m)
= {pg+r—1lgplpg +r + 1)~ gp(pg +r) + 1] - 2gy(pa +r) + af

=(pq+r—1)f(”;1)(q+u’+("“;'1)q=+(r+1)(p-r—1)q(q+1)+1

- (;)((H 1)? - (P;r)q’ ~r(p~r)elg +1)]

—2{(;)(q+ 1+ (“’ ;’“)q’+r(p-r)q(q +1)+1-2a
=(pg+r-Vrlg+ 1= (p~r-1)g* +(p-2r~glg+ )] +{pg+r-1)
~[plp- V¢ +2r{(p—1)g+r{r - 1) +2] - 20

=(pg+r-Dp~1)g+r]=[plp - 1)g* + 2r(p - Ug+rir 1) + 2] +(pg +r - 1)~ 2a

=(r-p+1l)g+pg+r-3-2a=(r+ljg+r-3-2a
%‘L(r,q)—Qa.

Therefore Fm+1)+1 F(m) _L(r,q)-2a (4.2)

C 3 )

Vaol. 17, Nos. 3-4 {1992)



210 RICH COLORINGS WITH LOCAL OONSTRAINTS

and since, %{‘20 , where ¢ >1 ,and since L(0,¢)=¢—3 , wehave L(r,g) — 22 >
g-3-202¢-3-2lk/p)/2+222-2-12-15>-2.

Furthermore, F(¥) < gp(k) + |22 — 1 < (1) nd thus the hypotheses of Theorem 1
hold and the proof is complete.

(ii) Direct pact

‘The coloring function
i for (2,9) = (i +1)

e(z,y)=¢ anda=12,...,a-1
0 otherwise
yields N(n,k,2,a)>a .
Converse part
- _ a _ m-l- _ - k .
For F=za wehave (%,,S @-W) W,F(k) a < (3} and again
by Theorem 1 N(n,k,2,a) < a .

(iii) Here, in the case k =3 , only the first equation is non—obvious. It is the answer, if
no three colors are in a triangle. However, this is covered by Theorem 2, (iv).

4, THE THRESHOLD FUNCTIONS

THEOREM 4. For s=0,1,2,... and k>2(s+2)
(i) ea(s k) = gyqalk) - 1
(i) exlo k) = guns(®) + | | -1 -
We begin with an auxiliary result with a simple probabilistic proof.

LEMMA.

I (Q,60)2%, is a sequence of graphs with Ti(Qn,E,) > 6 n* for some § >0 , then
for meN thereexists an ng =no(é,m,k) and a >0 suchthatfor n>ny there
are m vertices y,...,2m € flp and M =|Bn*1| (k- 1)-subsets of . , say,
Ay,....Ay with

{iJUAjeTifarlSis<m; 1578 M. (4.1)
PROOF: For A€ T, define
J(A)={zeQu:{z}Ude T}, (42)
, bk
Toor = {A:|0(4)] 2 -2—n} : (4.3)

bk
[Tial n+ 7R n*=1> Z {Ih(A)| = kT > & 6 n*
A€T,

Jr. Comb., Inf. & Syst. Sci.
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and hence i
1T, > —2~n‘-‘ . (4.4)

Also,for 7 €0, define Lyfz)={BeTiy: (2)UBET) .

Furthermore, let X),...,Xn, beiid. RV's with uniform distribution on €, . Then
£ =0%,Lx(X;) is a random system of elements of Ti_, which extend to elements of
Ty forevery X;{i=1,...,m) . With the indicator function 1; we can write

$6in
ElC|=) Elc(B)2 Y El(B)> W—xlg-n",—',—}
B BET,_,

nﬂ'l

> ?n*‘l—-‘“——-— > B nt ! or some f§ > o

when n > nolé,m, k) .

PROOF OF THEOREM 4:
(i) From Theorem 3 we know that

N(n,k,2,q,(k)) = gp(n) for k > 4.

So it is sufficient to prove that for any sequence of coloring functions (pa)g%, , where
¢n i 8 coloring of H(n,2,k) with ||y |2 ghqyn® +an® = gays(n) + o’ n? (a,0' >
0} , there exists a sequence of edges {E,)%, with E, € £(n,2,k) and such that
|| @n(Ea) |2 gssa(k) , when n is large enough. As in Section 2 we define the graph

Ivﬂ = (QI! Rw“) '
Then by the Corollary in [9] T4z 2 o’tin**? |
Define now for k=(s+2)g+r, 0<r<s+2

_m{q fori=1,...,842-r
- g+1 fori=s+43-r,...,842,

With the Lemma we get {z1,...,2¢,,,} = Lpy2 C g and Ay(s+2),..., Ap,, (5 +2)

such that for all z; € L,42 and A;(s+2)

{£}UAi(s+2) € Togp and My 2 6,040 .
Let G},, be the minimal subgraph of G, det I, containing {J; Aj(s+?2) . Then
T041(Gyyy) 2 84ean*t! | Repeating this procedure to G}, G5,..., G} one can get
Li41,G3,L,,Ge ), ., L2, G} such that |L;]=€;+1 and the vertex set of G} has
cardinality greater than dn > ¢, for some 6 >0 , when n is big enough. Thus, 'to
be specific, we can take e subset L; with cardinality ¢ +1 from @7 . We can easily

see that for all y; € Li,y; € L;(i # 7} (vi,y;) € Ry

Vol. 17, Nos. 3-4 (1992)



212 RICH COLORINGS WITH LOCAL QONSTRAINTS
Thus by the definition of I,, forall gy € Li , ¥4 € Li(i # J)

vyiFy or y #Y; ealviow) # enlvi, ) -

Now we select any pair {a.)) with a,b € Ly and consider wa(a,b) . We find that
there exists at most one pair (i,j) (f < j) and one pair (y;,y;) with y € Li,y; € L,
such that @4(yi, ¥;) = ¢ala,b) .

We choose now an £yn-subset L% of Ln suchthat y; ¢ L} and ab€ L7 .
Now for E, & U; L;
lon(En)l 2 geralk) .

(ii) By (i) and (i), (i) in Theorem 3

w682+ | 5| -1

On the other hand we define ¢ by

e(1,20) =1 for 1=1,2,...,|n/2]
w(z,y) =0 otherwise, when s =0

and in case s> 0 :
(8) Bach pair (i,2) with i=1,2,...,{|n/s]/2] has a unique color.
(b) Each pair (z,y) with z€ Lj,y€L; (i#7) hasaunique color,
(c) All other pairs have the same color.

Thus e1(s, k) < gora(k) + | |k/s +1]/2] .

5. AN EXTENSION OF TUuRAN’S THEOREM

The method of proof for Theorem 1 can slso be used to derive Turin's Theorem. Actually
a more general result can be obtained, which has other interesting consequences and leads
to a remarkable conjecture. The result is for a sequence of families of hypergraphs with

restrictions on the number of edges. The restrictions are specified by a sequence (e(n));‘";2
of vectors €(n) = (e(n),...,4(n)) with components satisfying 0 < e¢(n) < (3) for
£=23,...,n.

m—

o0
, » Where

The sequence of hypergraphsis (Hq(e(n))), .

Heu(e(n)) = {hypergraph H(Qn, &) : £ has not more than £¢(n) edges of cardinality £}
(5.1)

We are interested in its subset .
[Hn(ae(n), B, K) = {H(Qn,&) € Hule(n)) = allits subhypergraphs on k vertices have

Jr. Comb., Inf. & Syst. Sci



R AHLSWEDE, N. CAI AND Z. ZHANG 213 Ff
not more than K edges } and investigate i
T{n,e(n), &, K) = max{|€] : H(,£) € Ha(eln) b, X))}

This function specializes to Turdn’s function in case es(n) = (7},ee(n) =0 for €#2
ad K=(3)-1.

It is convenient to use for a function t : N — N the increment of density A} ¢) =

v(in+1)  ¢¥(n)

t @

We say that (e(n))™, is & uniform restriction, if Ae)=0 forall n,€.
THEOREM 5.

——

(i) Suppose that (ts(n)):;2 and g:N N satisfy
(1) 0<g(n)<(;) forsome £

(2) For
1(n) = { efn) for £> 4,

gln) for £=4

N
-—l-,l—,“z (N)A f(e;)>--ﬁ!¥l—forN5n,
(fa) 24 ¢ ( Ly )

then for F(N) =30, 5;(N) we have

am—

T(n,e(n), k, F(K)) < F(n).

Particularly,

(i) B (e(n))>., is uniformand g satisfies

B 86> b

then T(n,e(n), &, F(k)) < F(n} .

PROOF: For n=k (i) holds by definition of T . Induction stepfrom n to n+1:

Assume that for some H € Hny1(e(n+ 1),k F(k)) €| =F{n+1)+z for a positive
T . By omitting edges, if nevessary, we can achieve z =1 . Further, we can assume that
€e(n +1) equals the number of ¢-size edges.

Removal of v € Qnyy from H leads to the subhypergraph H, with n vertices and
F(n+1)+1~d(v) edges. By induction hypotesis F(n+1)+ 1 —d(v) < F(n) or

Vol. 17, Nos. 34 (1992)



214 RICH COLORINGS WITH LOCAL CONSTRAINTS

equivalently 3,5, 3(n4+1)+1-d(v) £} 5, €1(n) . With the concept de(v) =

Elv € E,|E| = £} this can be written in the form

Zd,(v =dv) 2 Y eiln+1)41-)_ ein)

>t >4

and summation overall v (2> {, gives
z ng >(n+1) Zet(n-i-l +1-Z€,(n
"Enn-ﬂ. ! (>4, !)fu

Furthermore, since by our restriction on the number of edges for ¢ > {,
1
52 dv)=edn+1)=cei(n +1),
u

we also have

Zdz,(vw (n+1) [Za n+l)+1- Es;(n)] =) tiln+1).

>l >4 30

Now we use the identity

Z% Y div)= el = Fln+1)+1.

t  vEflagr

Here the left hand side expression is minimal if equality holds in (5.4).
Thus,

Zs;(nﬂ)ﬂg—l- zs;(n+1}+1~zez(n)

4y 24 >4,

*—E £ej(n41) S Fin+1)+1
f)lo
=) €i(n+1)+1 (by definition)
24
and equivalently
n+l1-4, nt+l-1¢
to (Ef( +1)+1) EEG +tE n+1 E[ n+l ZE!
>l >

{E €

(5.2)

(5.3)

(5.4)

(5.5)

Jr. Comb., Inf. & Syst, Sei.
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or

n+l-#F n %!‘f‘{ . g5(n)
e 2 () e

t2e,

Y. (?) 87 (61) <0

>0

.

() .
(n:l}

in contradiction to (i).

CoOROLLARY 2: (Turédn):
Suppose that G = (0,,£) is a graph without k-complete subgraph, then [£]| <
ty-1{n) =1 {Secct. 4} and the bound is best possible.

PROOF: Justtake eN)=0 VE#2 and &{N) = (§).9(N) = e3(¥) = ge-s(N) .

By the proof of Theorem 3 AY{ti_,) > —-(-y;-;,-)- as can be see by taking a = ~1 and

by noticing gg.j(N)~1=g(N) .
I G hasno k complete subgraph, then every k-subgraph has not more than (;)-

L= (") 4+ () = 1= () 4k -0+ (k-1 - 1= () 41 (k=22 = gra(k) -1

edges and our proof is complete.
We call the hypergraph H = ({,£) with &=}, (%) k-complete .

CoroLrary 3: Il H =(£,,€) hasno k-complete subhypergraph, then

and this bound is best possible,

Proor: Choose €i(n)=(}) and g=t(n)—1 and proceed asin the proof of Coroliary

1. An optimal configuration is Turén's graph together with all subsets of cardinality > 2

conjectured extension of Turgn's T
For k<n andarbitrary K let

1
Gtk = max{g(n) : g with g(k) = K and AY (g) > _W for k € N <n},
2

then
max{|€]|G = (R, £) without more than K edgesin any k-subgraph} = Gnrx -
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