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1. INTRODUCTION

Let X denote a finite lattice and let f : X — Z be a function mapping X" into some set Z. In
this note we determine the communication complexity of functions f : X x X — Z defined by

f(z,y) = f(z Ay) forall z,y € X. (1)

The communication complexity of a function f : X x )Y — Z (where X, ), and Z are finite sets),
denoted as C(f), is the number of bits that two processors, P; and P, say, have to exchange in
order to compute the function value f(z,y), when initially P; only knows z € X and P, only
knows y € .
More specifically, let Q denote the set of protocols computing f such that finally both processors
know the result and let [p(z,y) be the number of bits transmitted for the input (z,y), when the
protocol P € Q is used. Then the (worst-case) communication complezity is

C(f) = min (x’glea;cxylp(m,y)- (2)
A protocol P is a pair of mappings ¢ : X x {0,1}* — {0,1}*, ¢2: Y x {0,1}* — {0,1}*. So on
input (z,y) the processors, starting with Py, say, alternatively send binary messages Ny, Ny, N3,
etc., until they both know the result. Each message depends on the previous messages and on the
current processor’s input, hence N1 = ¢1(z), Na = ¢2(y, ¢1(x)), N3 = ¢1(z, p1(x)d2(y, ¢1(2))),
etc. . It is required that the set of messages a processor is allowed to send at an arbitrary
moment in the course of the protocol is prefiz-free, i. e., no possible message is the beginning
(prefix) of another one. This property assures that the other processor immediately recognizes
the end of the message and can hence start the transmission of its next message without delay.
An upper bound on C(f) for any function f : X x Y = Z (w. L. o. g. |X| <|)Y|) is always
obtained from the following trivial protocol: P; transmits all the bits of its input x € X. P, now
is able to compute the function value and returns the result f(z,y) € Z. Hence

C(f) < [log|X[] + [log| Z]]. (3)

Throughout this paper the logarithm is always taken to the base 2.
The following lower bound is due to Mehlhorn and Schmidt [1]:

C(f) = log(}_ rank M (f))1, (4)

Z2€EZ

where M, (f) := (May)zyex is a Boolean matrix with mg, = 1 exactly if f(z,y) = 2.
2. THE MAIN RESULTS

In the following, we denote by < the underlying order of the lattice X and by u the associated
Mdbius function. Further let

X, :={z € X: there is some & < x with f(&) = z}. (5)



MAIN THEOREM: The communication complexity of the function f defined as in (1) is bounded
from above and below as follows:

[log(D_ HzeX: > pudaz)#0})] <Of) < [log(y_ |X))] + 1. (6)

2€Z ijm,f(i):z 2€Z

If, additionally, > u(#,z) # 0 for all possible z € X and z € Z, i.e., for all x and z for
2=z, f(3)=2

which there exists some & < x with f(Z) = z, then upper and lower bound differ by at most one

bit, namely

[log(D_ |X:D)] < O(f) < [log(H_ 1X:)] + 1. (7)

Z2EZ 2€EZ

The lower bounds are based on the following theorem, which was discovered by Wilf [2] (see also
Lindstrém [3]) and first used in the study of communication complexity by Lovasz [4]. We shall
present Wilf’s short proof from which the succeeding corollary is immediate, since the incidence
matrix of a poset is nonsingular.

THEOREM (WILF): Let X be a finite lattice with order < and Mébius function p. Further, let
{agz : x € X} be a set of arbitrary numbers. Then

det (ax/\y)ac,yeX = det diag ( - u(%,7) - az)ecxr = [1 (X pu(d,z) - az).
<z TEX Tz
PROOF: For arbitrary numbers {b, : # € X'} consider the matrix ¢7 - diag(b)zecx - ¢, where
¢ = (Ciz)apex, with (, = 1 exactly if £ < z ({3, = 0 else) is the incidence matrix of (X, <).

By the rules for matrix multiplication this is just the matrix ( Y. bz)syecx-
Tz Ay
Now let a, := Y b; for all z € X. By the Mébius inversion formula then b, = Y u(Z,z) - a;
=<z =<z

for all z € X and the theorem follows.

COROLLARY: Let X and {a; : x € X} be as in the preceding theorem. Then

rank (agay)zyex = rank diag (Z 12, ) - az)eex- (8)

=<z

PROOF OF THE LOWER BOUNDS IN THE MAIN THEOREM:
Observe that the function value matrices M, (f) are just of the form (agny)z,ycr with
agny = 1 exactly if flzAy) =z
With the above corollary for all z € Z it is
rankM,(f) =[{z € X: ¥ u(dz)#0}.

t=z,f(2)=2
The lower bound in (6) follows by application of the Mehlhorn - Schmidt lower bound (4).
PROOF OF THE UPPER BOUND IN THE MAIN THEOREM:
The upper bound in the Main Theorem is obtained via a natural and useful improvement of the
trivial protocol, which was first introduced by Ahlswede and Cai [5]. As the trivial protocol,
it consists of two rounds. In the first round the processor P; encodes its input z € X. The
processor P, then knows both values z and y and hence is able to compute the result f(z,y),
which is returned to P,. However, now the set of possible function values is reduced to

F(e):={f(#): & 2z}, (9)

since the second processor already knows z € X.
Hence, only [log|F(z)|] bits have to be reserved for the transmission of the result f(z,y) such
that the first processor can assign longer messages (code words) to elements with few predecessors



in the poset. So, in contrast to the trivial protocol, the messages {¢1(z) : x € X'} are now of
variable length. Since the prefix property has to be guaranteed, Kraft’s inequality for prefix
codes yields a condition, from which the upper bound can be derived.

Specifically, we require that to each x € X there corresponds a message ¢1(z) € {0,1}* of
(variable) length I(z), say, with the property that for all z € X the sum [(z) + [log| F(z)|] takes
a fixed value, L say.

Kraft’s inequality then states that a prefix code exists, if 3. 27/(®) < 1. This is equivalent to
reX

D 9—(L=[log|F(2)[)) < 1 and to
rzeX B

Z ollog| F(z)[1 -1 < ol-1, (10)

Now, let us choose

L:= [log(z |X.])] + 1. (11)

Then (10) holds, since
> 2l F@II=1 < 5~ gloolP@)| = 5 |f(z)| = 5 [{f(3): & =z}
reX

TeX rzeX zeX

= Y HzeXx:3iwith f(#)=zand & 2z} = ¥ |X.| < 28!
2€Z 2€Z

by definition of X, and L.

REMARK: Observe that in the proof of the Main Theorem we do not exploit the property that
X is a lattice. It suffices to assume that (X', <) is a poset in which the meet z Ay is well defined
for all z,y € X.

The first function of this type studied in this context is the function fi : X x X — {0,1} defined
by fi(z) = 1, exactly if £ = %, where i, denotes the minimal element in the lattice X.
Hence fi(z,y) =1, exactly if z A y = Zpin.

COROLLARY 1: The communication complexity of the function f; is bounded as follows:
[log(2- {z € X' : p(@min, z) # 0} — 1)1 < C(f1) < [log|X[] +1. (12)
If, additionally u(zmin,z) # 0 for all x € X, then
C(f1) = Tlog| X[} +1. (13)

PROOF: Observe that > w2, 2) = pu(Zmin, x) for all z € X and that > ou(z,z) =
&=z, f(2)=1 &<z, f(2)=0

— (T min, ) if & # Tpmin (0 if £ = 2pyi,). Hence, the lower bound in (12) holds.

Further, X; = X and Xy = X — {&min}. With the additional fact in mind that [log(2s —1)] =

[log(2s)] for all positive integers s, it is also clear by (7) that C(f1) > [log|X|] + 1, whenever

p(Tmin, x) # 0 for all z € X. The upper bound C(f1) < [log|X|] + 1 follows from the trivial

protocol (3).

The communication complexity of the function f; was first determined by Hajnal, Maass, and
Turan [6]. They considered a different model, in which communication already stops, when one
processor knows the result. So, the bit for the transmission of fi(z,y) will not be sent in this
case.

Hajnal, Maass, and Turan [6] also introduced the Mdbius function in the study of lower bounds
for the communication complexity. In this context, Lovasz [4] used the Theorem of Wilf [2]
concerning the rank of matrices of the form (azy)gyecx. Bjorner, Karlander, and Lindstrom [7]
determined C(f1) for two special lattices.



Ahlswede and Cai [5] considered the function fo : X x X — X, defined by fo(z,y) = z Ay and
obtained the following result:

COROLLARY 2: Let
I(X) := {(&,z) € X*: & <z}, (14)
then
[log|{(&,2) € X% : p(@,2) # 0} < C(f2) < [log|I(X)[] + 1. (15)

If, additionally, p(2,z) # 0 for all (#,z) € X? with & < 2, then upper and lower bound differ
by one bit only, namely

[log|I(X)[] < C(f2) < [logI(X)] + 1. (16)
PROOF: Observe that > pu(z,x) = p(z,z) if z < . Further, here
&=z, fo(2)=2
X, =1I(z) :={z € X : 2 < z}, and since I(X) = > I(z), Corollary 2 is an immediate

zeX
consequence of the Main Theorem.

Especially for the Boolean lattice, Ahlswede and Cai [5] demonstrated that upper and lower
bound coincide (see also the subsequent section).

In our last example, we assume that the lattice X is equipped with a rank function r. Recall
that the Whitney numbers W (t) count the elements of rank ¢ in X.

We consider the function f3 where f3(z,y) = r(x Ay) for all z,y € X. The following result is
an immediate consequence of the Main Theorem.

COROLLARY 3: Let X be a finite lattice with rank function » and maximum rank n. Then
[logl{z € X : Z p(z,z) # 0} < C(f3) < logz t+1) +1. (17)
=<z,r(2)=t

If >  wu@,z)#0forallz € X and t < r(x), then

=z, (&)=t

loth—i— )] < C(f3) < loth—i— 1+ 1. (18)

3. COMMUNICATION COMPLEXITY IN GEOMETRIC LATTICES

The condition under which upper and lower bound differ by at most one bit in the Main Theorem
is usually hard to check. However, it is well known that in geometric lattices u(Z, z) # 0 whenever
Z < . This is just the condition required in Corollary 2. Especially, then p(z,in, ) # 0 for all
z € X, which guarantees the coincidence of upper and lower bound in Corollary 1.

Now, additionally, we require that in a geometric lattice the Mobius function is of the form

(@, z) = (=)@ 7@ (&, z), where v(&,z) > 0if & < z. (19)

For instance, this holds in the Boolean lattice and in the vector space lattice. In this case,

obviously > w(z,z) #0 for all z € X and t < r(z), since all the summands have the
T=z,r(&)=t
same sign. Hence, the condition of Corollary 3 is fulfilled. Let us summarize our findings

THEOREM 4: In a geometric lattice X with maximum rank n
C(f1) = Tlogl X|] +1, (20)

[log|I(X)[] < C(f2) < [loglI(X)[] + 1. (21)



If, additionally (19) holds, then

loth-l—l )1 <C(fz) < loth-l—l ) - W(H)] + 1. (22)
t=0

Geometric lattices have a further useful property concerning the Whitney numbers
W(0),...,W(n), where n is the maximum rank in the lattice. This property was first discovered
by Dowling and Wilson [8] (see also [9]):

WO+ W) +...+ W) <Wh—-i)+...+4W(n—-1)+W(n) foralli=0,...,n. (23)

We shall use this inequality in the proof of the next theorem, which demonstrates that the lower
bound in (22) differs by at most two bits from the upper bound obtained by the trivial protocol.

THEOREM 5: In a geometric lattice X with maximum rank n, in which (22) holds, always
[log|X| +log(n + 2)] — 1 < C(f3) < [log|X[] + [log(n + 1)]. (24)

If, additionally, X is modular, then, compared to the trivial protocol, one bit of transmission
can be saved for the computation of f3, if

[log|X| + log(n + 2)] = [log|X|]| + [log(n +1)] — 1. (25)

PROOF: The upper bound in (24) is the one obtained from the trivial protocol (3). Concerning

the lower bound, observe that
n n n n
(n+1)-|X[ =2 WH)-E+1)+ 2 WE)-(n—1) =3 W) (t+1)+ 3 3 W)
t=0 t=0 t=04=0

< ZW() (t+1)+t§é:{]W(n—i) (by (23))
<ZW t+1+zn:W =2. zn:W (1) — X (26)
t=0 t=0

We know from (22) that
C(fs) > [log z W(t)- (t+1)] > [log™2]  (by (26)),

from which the lower bound in (24) is immediate.

Especially for modular lattices, like the Boolean lattice and the vector space lattice, we know
that W (i) = W(n—1i) for all i =0,...,n (see e. g. [9]) and hence equality holds in (26). So, in
this case, we can also compare the upper bound obtained from the trivial protocol (3) with the
one obtained with the Ahlswede - Cai protocol. This proves (25).

As an application we now shall study the Boolean lattice (set intersection) and the partition
lattice. For the Boolean lattice the following results have been obtained in [5] and [10] by
different methods.

COROLLARY 6: For the Boolean lattice with maximum rank n
C(f2) = [n-log3], (27)

+ [log(n+1)] =1 < C(f3) <n+[log(n+1)]. (28)

Here

—~

Cfs) = n+ [log(n + 1)] forn=2"-1
7Y n+flogln+1)] =1 forn=2"m>?2,

where m is a positive integer.



PROOF: In order to prove (27), observe that in (7) |X,| = [I(z)| = {z € X : z < z}| = 2""(*) is
a power of 2 for all z € X and hence Kraft’s inequality in this case yields Y 2 [7leg31—loglI(2)| <
zeX

1 such that upper and lower bound coincide for C(fs).

Since |X| = 2" for the Boolean lattice, upper and lower bound in (24) here differ by at most one
bit and (28) is obvious. Further, upper and lower bound coincide for n = 2™ — 1. From (25) we
know that for n = 2™, m > 2 the Ahlswede - Cai protocol uses one bit of transmission less than
the trivial protocol.

COROLLARY 7: For the partition lattice with maximum rank n
C(f2) < [log(Bn+1 — Bn)] + 1, (29)

where B,, denotes the n-th Bell number.

PRrROOF: The partition lattice is geometric, hence the Mobius function does not vanish on any
interval in it. The same property then holds for the partition lattice ’turned upside down’ (cf.
Lovasz [4], p. 234). In this lattice the Whitney numbers are just the Stirling numbers of the
second kind, SJ say. By the well known recursion S = SP |, +¢- S we then have

n n n+1 n+1 11
LD WD) = D41 Sty = 31§57 = S (ST = SP1) = Bu — By

Now the right-hand side of (22) gives (29). ‘Here we cannot obtain a lower bound via (22),
because (19) does not hold in the partition lattice.
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