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The partition number of a product hypergraph is introduced as the minimal size of a
partition of its vertex set into sets that are edges. This number is shown to be multiplicative
if all factors are graphs with all loops included.

1. Introduction

Consider (¥, &), where ¥ is a finite set and & is a system of subsets of ¥". For the
cartesian products ¥™ = [[{#" and 6" = [[} &, let n(n) denote the minimal size of a
partition of ™ into sets that are elements of &” if a partition exists at all, otherwise 7 (n)
is not defined. This is obviously exactly the case if it is so for n = 1.

Whereas the packing number p(n), that is the maximal size of a system of disjoint
sets from 4", and the covering number c(n), that is the minimal number of sets from &"
to cover #™, have been studied in the literature, this seems to be not the case for the
partition number 7(n).

Obviously, c¢(n) < =n(n) < p(n), if"c(n) and =n(n) are well defined. The quantity
limy—, ~log p(n) is Shannon’s zero error capacity [11]. Although it is known only for
very few cases (see [7]), a nice formula exists for lim,,,,(1/n) log c(n) (see [1, 10]).

The difficulties in analyzing m(n) are similar to those for p(n). For the case of graphs
with edge set & including all loops, we prove that n(n) = 7(1)" (Theorem 3). This result
is derived from the corresponding result for complete graphs (Theorem 2) with the help
of Gallai’s Lemma in matching theory [6]. More general results concern products of
hypergraphs with non-identical factors. Another interesting quantity is u(n), the maximal
size of a partition of #™ into sets that are elements of &" (again only hypergraphs
(7",&) with a partition are considered). We also call u the maximal partition number.
It behaves more like the packing number (see example 5). Clearly, n(n) < un) < pin).
It seems to us that an understanding of these partition problems would be a significant
contribution to an understanding of the basic, and seemingly simple, notion of Cartesian
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products. Another partition problem was formulated in [12]. Among the contributions to
this problem, we refer the reader to [5], [9], and [12].

2. Products of complete graphs: first results

For a complete graph € = {¥, &}, let " = §U {{v} WEY } and define the hypergraph
@" = {¥™",&"}, where ¥" =[] ¥ and &" =[] &".

We study the partition number z(n), first for %", and in later sections extend our resuits
to hypergraphs, which are products of arbitrary graphs including all loops.

First we introduce the map ¢ : " — {0, 1}", where

" = ¢(E") = (log|Eyl,...,log | En)). 2.1

As weight of E" (w(E") for short), we choose the Hamming weight wy(s") = Y.roq 5t
Notice that the cardinality [E"| equals 2¥&",

Instead of partitions, we consider more generally a packing 2 of ¢". We set
Pi=(E"€ P :w(E") =i},P = |#, 22)

and call {P;}}, the weight distribution of 2.
We associate with 2 the set of shadows 2 c 2 defined by

2={E"€&":E" = F" for some F"c 2}, (2.3)
and its level sets
2={E"€2:wE")=i},0<i<n 24)

It is convenient to write Q; = | 2;]. {O:}1L, is the weight distribution of 2 = shad(#).
First we establish some simple connections between these weight distributions.

Lemma 1. For a packing # of ¢"

Z 2i—k (;C) Pi — Qk- (2.5)

i=k

Proof. Consider any edge E" with weight w(E") = i > k. There are exactly 27 (;) edges
contained in E" with weight k. Therefore we have always

3 gk (;c) P>0, (26)
i=k
[

Lemma 2. For a packing 2 of €

RPN an(—l)kak. 7

i=0 k=0
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Proof. An edge E" € 2; contributes to ¥;_,(—1)%Qy the amount

Z':(—l)"f"‘ (,’c) =@2-1=1

k=0 O
Lemma 3. For a packing # of 6"
n
Po= ) (-1)2Qy 28
k=0
and if in addition P is a partition and S = || is odd,
>=nkg—1>0, (2.9)

k=0

Proof. An edge E" € #; contributes to Y,_,(—1)*2¢Q; the amount

Zl'(_l)kzkzl—k (;C) _ 2!(1 - l)i,

k=0
which equals 1, if i = 0, and 0, otherwise.

Therefore (2.8) holds.
Furthermore, if § is odd, then so is $”* and there must be an edge in the partition of

odd size, that is, Py > 1 or, equivalently, by (2.8), (2.9) must hold. ]

Remark 1. The last two Lemmas can be derived more systematically from Lemma 1
by M&bius Inversion. Here this machinery can be avoided, but we need it for the more
abstract setting of [4].

3. Products of complete graphs: the main results

We shall now exploit Lemma 3 by applying it to classes of subhypergraphs, which we
now define. For any I = {1,2,...,n} and any specification (v;);erc, Where v; € ¥, we set

"(1, (o) jere) = (]’[%, ]'[.gr) (", ), (3.1)

i=1
where
& for iel (3.2)

V‘ Jp—
%im{ {vi} and %; _{ {n} for i€l

Clearly, for a partition & of " and 2 = shad?, the set 2(I, (v))jerc) = 2NF" is a
downset, and the map

n

7 -], v (]’[ Ei) =[1E (3.3)
iel i=1 iel

is a bijection.
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Write 2 = p(2 N #") and let 3; count the members of 2 of weight i. Since 2 is a
downset in [[;¢; €; and its maximal elements form a partition of [[,.; ¥, we know that

9o = §™. This fact and Lemma 3 yield
S+ Y (—1)k2*8 — 1> 0. (34)
k=1
This is the key to the proof of the following important result.

Theorem 1. For a partition P of €" = (¥, &") with ¥™ = My 71 |75 = 8 for i =
L,2,...,n, the weight distribution Q)i of Q = shad? satisfies, for | <m <n,

N an . n—k 1Y anem
(m)s +I§(—1)k(m_k)2kgk—(m)s > 0. (335)

Proof. The map y preserves inclusions and weights. The total number of pairs (I, (t)) jere)

with |I| = m equals (»)S™™. Moreover, each E" € 2 with w(E™) = k is contained in
exactly ("%) sets of the form 2(I, (vj)jere) and thus for the sets of weight k

(;:llcc) %= 2 |2l (36)

(1.@3)jere ) rt=m

We have one equation of the form (3.4) for each pair (I,(v))jes,). Summation of their
left-hand sides gives, therefore,

h n—m  qm u _1kak n—k R\ on—m
(m)s S +]§( 1)%2 (m_k)Qk—(m)s >0

and hence (3.5). O

Now comes the harvest.

Theorem 2. For a partition 2 of €"

Sn
Pl> 1=
HMM.

Proof. Since |E"}j < 2", obviously |2} > §"/2", and for § = 24 even, the result obviously
holds. Now let § = 2¢ + 1.

Summing the left-hand side expressions in (3.5) for m = 1, 2,...,n results in

IS )Y (e T T (PR
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or in

S"+Z —1)k2kg, Z( ) [(S+1)"—8" 0.
m=k
This is equivalent to

2 (8" Y (-] — (S +1)" = 0.
k=1
As Qg = S", we conclude, with Lemma 2,

n
P>(E+4+1)"2""= [‘;—] , if § is odd.

4. Non-identical factors: a generalization

We now consider hypergraphs ¥ with vertex sets %™ = [T, 7"+ and edge sets £" =
[1i-; &., where the ¥"’s are finite sets of not necessarily equal cardinalities S;. The factors
&, are such that (¥, &) is a complete graph with all loops included. We shall write, with
positive integers o;,

I'th = 20(; + &, & € {0, 1} (4.1)

Inspection shows that the sizes of factors do not affect the proofs of Lemmas 1 and
2. Also (2.8) in Lemma 2 holds and since Py > 1, if g, = 1 for ¢t = 1,2,...,n, we can
generalize (2.9) to

n n
Y (=12 g, — [J & = 0. 42)
k=0 k=1
Theorem 1 in Section 3 generalizes to

Theorem 1'. For a partition # of €"
n m _ k
(")]‘[S,-+Z(—1)’°("_k)z"gk- > Tl&]Is =0 43)
m) = k=1 m Iif|=m icl  jele

Proof. (Sketch) In the proof of Theorem 1, replace S™ by [[,c; S; and inequatity (3.4) by

[1s:+ Z(— D42 G —[Ta =0 (44)

il iel

O

Theorem 2'. For a partition P of €

2] >[[[ il @)

=1
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Proof. Summing the expressions on the left-hand side in (4.3) form=1,2,...,n results in

o 5 2 (MIIs+ 3> (2o -3 X [alls

m=1 i=1 m=1 k=1 m=1I|ll=m il  jel
n n R '—k
— _ S, —1)kok (n ) — g S;
(2 I)E ,+k§( ) Q% i ;}q ZEIIIC
n n
= 2 [H S,-+Z(—1)"Qk] - HaIls;
i=1 k=1 1 iel jel
or
21227y [« ]] s (4.6)
I iel  jerIc

We evaluate the expression on the right-hand side by introducing J = {£ : 1 < ¢ <,
¢ =1} and I = J\ 1. Then

}I:‘,]'[sf]'[s,:ZHs,-l'[s,

el jele Icijer  jey

=116+ TI8;=T](s +¢) and @3) foliows. .
jer jege j=1

Corollary 1. The partition number (€™ equals ]'[;;1 [%i]

Proof. The partition number of (V},6)) is [ -S21] Take a product of optimal partitions
for the factors. This construction gives the lower bound in Theorem 2, O

5. Products of general graphs

We assume now that the factors ¢, = (¥, &,
with all loops included.

Obviously, we have for the partition number

) (t=1,2,...,n) are arbitrary finite graphs

G = [V —v(%,), (5.1)

where v(%,) is the matching number of ¥,

Theorem 3. For the hypergraph product " — G1X...X¥

n

268" = [ n(9). (2

t=1
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Here only the inequality

(") > ﬁ n(%,) (5.3)

t=1
is non-trivial. We make use of a well-known result from matching theory.

Gallai’s Lemma. (/6] or [8] page 89) If a graph % = (¥, &) is connected and, for all
VEYV, (G —v) =v(9), then 9 is factor-critical, that is, for all v € ¥, ¥ —v has a perfect
matching,

Proof of 5.3, For every ¢ € {1,2,...,n} we modify %, as follows: remove any vertex v € ¥,
with v(%; — v) < v(%:) and reiterate this until a graph ; with v(&; —v) = V(%)) for all
v € ¥7] is obtained.

Notice that (5.1) ensures that

(&) = n(%,). (54)

Denote the set of connected components of ¢; by {¢;7} jes, Cleatly,

n(@;) = > n(¢4Y). (5.5)

jeJ;

Moreover, by Gallai’s Lemma each component ;% has a vertex set ¥} of odd size
and

W@ = (1719 - 1)271 2 of, say.
Thus,
(@) =D (el +1). (5.6)
J

Now, for #"" = [} %; we have
n(H#") = n(H™), (5.7)

because the modifications described above transform a partition of 4" into a partition
of 2#*" with no more parts. .

Finally, by Theorem 2/, we have for the product " of complete graphs with vertex sets
779 that

2(G x ... x GL0) > m(@") = (@ +1)... (@ + D). (5.8)

Therefore,

(A"

Z n(?IUI) X ... % g;(iu))
jl e, )---)anJll
> Y @+ @+
Ulam,jrl)
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= [[D e+
t=1 jed,
n

= Hn(%’) = H (%)

t=1 t=1

This and (5.7) imply (5.3). [

6. Examples for deviation from multiplicative behaviour

First we give two examples of product hypergraphs # x ' for which the partition

number 7 is not multiplicative in the factors. They are due to K.-U. Koschnick.
Example 1.

Vi={0,12...,6},6 ={Ecv:|E € {1,4}}.
Clearly, n(#1) = 4 and the partition

{}x{0,1,23}:i=0,1,2) U {{i} x {3,4,5,6} :1=4,5,6)
U {{0.1,2,3} x {j} : j =4,56)
U {{34,56} x{j} :j=1{0,1,2}}
U {3 x {3})

has 13 members. Therefore

UH ) X H1) < 13 < n(3y)n(oy) = 16, 6.1)

While this example seems to be the smallest possible for identical factors, one can do
better with non-identical factors:

H1 X 3, where 77 = {0,1,2,3,4} and &, = {Ecv:|El€{1,3}}.

Here, by a similar construction, n(#1 X #1) < 11, whereas n(#1) () =4-3=12

Example 2. Since 7 is multiplicative for graphs, one may wonder whether it is multiplicative
if one factor is a graph.

Consider G = (¥',6) with " = {0,1,...,4} and & = {{1,i+1mod 5} :1 = 0,1,...,4}U
{i:0<i <4}, that is, the pentagon with all loops.
Define 2" = (#7,6) with ¥ = {1,2,..., 14} and & = (Ecv":|El € {1,9}.

Notice that 7(G) = 3, n(#') = 7, and that the following construction ensures (G X
H') <20 <21 = 7(G) - n(#)

{1 x{j+kmod14:0 <k <8} :(,j) € {(0,0),(1,3),(2,6),(3,9), 4 12)}}
U {{1,2}><{j}:j=0,1,2}u{{2,3}><{j}:j=2,3,5}
U {{3,4) x {j} 11=46,7,8}
U {{4,0} x {Jj} 1j=9,10,11}
U {{0,1} x UYii=1213 14}
isaset of 5453 =20 edges partitioning ¥ x ¥,
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To help orient the reader, we add three examples, which demonstrate that the
covering number ¢, the packing number p and the maximal partition number u are
not multiplicative in the factors either.

Example 3. 73 = {0,1,2}, &3 ={E < ¥ : |[E| = 2}
We have

3 = c(#3 X H3) £ c(#3) - c(H3) = 4, (6.2)

because #{{0,1} x {0,1},{0,2} x {0,2},{1,2} x {1,2}} covers #"3 x ¥'3 and there is no
covering with 2 edges.

This is the smallest example in terms of the number of vertices.
Remark 2. Quite generally, even in the case of non-identical factors Hi=(V,6),teN,
with max, [6;] < oo, the asymptotic behaviour of c(n) is known [1]:

-1
.1 ~ . B
’!1_13010 ; (log c(n) — ; log (qe Iglggé(&) %g‘l E;{ 1 E(v)qE) ) =,

where Prob(&;) is the set of all probability distributions on &, gy is the probability of E
under ¢ and 1y is the indicator function of the set E.
Example 4. ¥4 = {0,1,2,3,4},64 = {{xx+1mod 5} :x €74}
Here we have
5=p(#s X Hq) # p(Ha)p(H4) =4 (6.3)

It was shown in [11] that this is the smallest example in the previous sense. Notice that it
is bigger than the previous one.

Example 5. To avoid heavy notation, we will write #5 = (¥’s,&s) without an index as
H = (¥,6). It is made up of the 5 vertex sets

Wi={xj:j=12,...m}3<m(i=0,12,...,4),
the 6 edge sets
% = {(Xip, Xeptmodsy) 1 =1,2...,m}(i=0,1,2,...,4),
and {#,..., #4}. Thus
4 4
v =Jwié={Wo..."s}u (J%)
i=0 i=0

A look at the pentagon with vertex set {Xo,X11,X21,X31, %41} shows that a partition
of 3 must contain at least one of the edges #"; as a member. On the other hand, the
vertices ¥\ #; have a maximal partition of size 2m. Therefore we have shown that
W) = 2m + 1. We shall next consider u(# x #°). For this we introduce the superedges

.@: = Wi UWitimods(=0,1,...,4)

in 3, and the superedges ¢! X €}(,i = 0,1,...,4) in H# x #. Whereas ¥; can be
Partitioned into m edges, they can be partitioned into m? edges.
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First we divide ¥" x ¥ into 25 parts {#"; X #y :i,i’ = 0,1,...,4}. Then we pack 5

superedges (as in Shannon’s construction) into ¥~ x ¥". They cover 20 part-s,. and the
remaining 5 parts are packed with 5 edges of type #'; x #";. Finally, we par'tltlon the g
superedges into the edges of s x #. Thus we obtain a desired partition with 5+ 5m
edges. Notice that u(# x #) > 5+ 5m?> > (2m+ 1)* = u(#)? for m > 3. The smallest
example in this class has 15 vertices.
Remark 3. The construction was based on the pentagon. Its vertices were replaced by
sets of vertices #'; with a numbering. The vertices with the same number in the ¥
form a pentagon. Thus we obtained m = |#" ;| many pentagons. Then we added the
¥ as further edges. Finally we used the superedges to mimic the original small edges.
We can make this construction starting with any hypergraph # = (7, 6). If it has the
property p(#)? < p(s# x 3#), then for m large enough our construction gives an associated
hypergraph for which  is not multiplicative.
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