On Extremal Set Partitions in Cartesian Product Spaces

RUDOLF AHLSWEDE and NING CAI

Universität Bielefeld, Fakultät für Mathematik, Postfach 100131, 33501 Bielefeld, Germany Received 8 April 1993; revised 18 August 1993

For Paul Erdős on his 80th birthday

The partition number of a product hypergraph is introduced as the minimal size of a partition of its vertex set into sets that are edges. This number is shown to be multiplicative if all factors are graphs with all loops included.

1. Introduction

Consider $(\mathscr{V},\mathscr{E})$, where \mathscr{V} is a finite set and \mathscr{E} is a system of subsets of \mathscr{V} . For the cartesian products $\mathscr{V}^n = \prod_{1}^n \mathscr{V}$ and $\mathscr{E}^n = \prod_{1}^n \mathscr{E}$, let $\pi(n)$ denote the minimal size of a partition of \mathscr{V}^n into sets that are elements of \mathscr{E}^n if a partition exists at all, otherwise $\pi(n)$ is not defined. This is obviously exactly the case if it is so for n = 1.

Whereas the packing number p(n), that is the maximal size of a system of disjoint sets from \mathcal{E}^n , and the covering number c(n), that is the minimal number of sets from \mathcal{E}^n to cover \mathcal{V}^n , have been studied in the literature, this seems to be not the case for the partition number $\pi(n)$.

Obviously, $c(n) \le \pi(n) \le p(n)$, if c(n) and $\pi(n)$ are well defined. The quantity $\lim_{n\to\infty}\frac{1}{n}\log p(n)$ is Shannon's zero error capacity [11]. Although it is known only for very few cases (see [7]), a nice formula exists for $\lim_{n\to\infty}(1/n)\log c(n)$ (see [1, 10]).

The difficulties in analyzing $\pi(n)$ are similar to those for p(n). For the case of graphs with edge set $\mathscr E$ including all loops, we prove that $\pi(n) = \pi(1)^n$ (Theorem 3). This result is derived from the corresponding result for complete graphs (Theorem 2) with the help of Gallai's Lemma in matching theory [6]. More general results concern products of hypergraphs with non-identical factors. Another interesting quantity is $\mu(n)$, the maximal size of a partition of $\mathscr V^n$ into sets that are elements of $\mathscr E^n$ (again only hypergraphs $(\mathscr V,\mathscr E)$) with a partition are considered). We also call μ the maximal partition number. It behaves more like the packing number (see example 5). Clearly, $\pi(n) \leq \mu(n) \leq p(n)$. It seems to us that an understanding of these partition problems would be a significant contribution to an understanding of the basic, and seemingly simple, notion of Cartesian

products. Another partition problem was formulated in [12]. Among the contributions to this problem, we refer the reader to [5], [9], and [12].

2. Products of complete graphs: first results

For a complete graph $\mathscr{C} = \{\mathscr{V}, \mathscr{E}\}$, let $\mathscr{E}^* = \mathscr{E} \cup \{\{v\} : v \in \mathscr{V}\}$ and define the hypergraph $\mathscr{C}^n = \{\mathscr{V}^n, \mathscr{E}^n\}$, where $\mathscr{V}^n = \prod_{1}^n \mathscr{V}$ and $\mathscr{E}^n = \prod_{1}^n \mathscr{E}^*$.

We study the partition number $\pi(n)$, first for \mathscr{C}^n , and in later sections extend our results to hypergraphs, which are products of arbitrary graphs including all loops.

First we introduce the map $\sigma: \mathscr{E}^n \to \{0,1\}^n$, where

$$s^n = \sigma(E^n) = (\log |E_1|, \dots, \log |E_n|).$$
 (2.1)

As weight of E^n ($w(E^n)$ for short), we choose the Hamming weight $w_H(s^n) = \sum_{t=1}^n s_t$. Notice that the cardinality $|E^n|$ equals $2^{w(E^n)}$.

Instead of partitions, we consider more generally a packing \mathscr{P} of \mathscr{C}^n . We set

$$\mathscr{P}_i = \left\{ E^n \in \mathscr{P} : w(E^n) = i \right\}, P_i = |\mathscr{P}_i|, \tag{2.2}$$

and call $\{P_i\}_{i=0}^n$ the weight distribution of \mathscr{P} .

We associate with \mathcal{P} the set of shadows $\mathcal{Q} \subset \mathcal{Z}^n$ defined by

$$\mathcal{Q} = \{ E^n \in \mathscr{E}^n : E^n \subset F^n \text{ for some } F^n \in \mathscr{P} \}, \tag{2.3}$$

and its level sets

$$\mathcal{Q}_i = \{ E^n \in \mathcal{Q} : w(E^n) = i \}, 0 \le i \le n.$$
(2.4)

It is convenient to write $Q_i = |\mathcal{Q}_i|$. $\{Q_i\}_{i=0}^n$ is the weight distribution of $\mathcal{Q} = \text{shad}(\mathcal{P})$. First we establish some simple connections between these weight distributions.

Lemma 1. For a packing \mathcal{P} of \mathcal{C}^n

$$\sum_{i=k}^{n} 2^{i-k} \binom{i}{k} P_i = Q_k. \tag{2.5}$$

Proof. Consider any edge E^n with weight $w(E^n) = i \ge k$. There are exactly $2^{i-k} \binom{i}{k}$ edges contained in E^n with weight k. Therefore we have always

$$\sum_{i=k}^{n} 2^{i-k} \binom{i}{k} P_i \ge Q_k. \tag{2.6}$$

Lemma 2. For a packing P of Cⁿ

$$|\mathscr{P}| = \sum_{i=0}^{n} P_i = \sum_{k=0}^{n} (-1)^k Q_k. \tag{2.7}$$

Proof. An edge $E^n \in \mathscr{P}_i$ contributes to $\sum_{k=0}^n (-1)^k Q_k$ the amount

$$\sum_{k=0}^{i} (-1)^k 2^{1-k} \binom{i}{k} = (2-1)^i = 1.$$

Lemma 3. For a packing \mathscr{P} of \mathscr{C}^n

$$P_0 = \sum_{k=0}^{n} (-1)^k 2^k Q_k \tag{2.8}$$

and if in addition \mathcal{P} is a partition and $S = |\mathcal{V}|$ is odd,

$$\sum_{k=0}^{n} (-1)^k 2^k Q_k - 1 \ge 0. (2.9)$$

Proof. An edge $E^n \in \mathcal{P}_i$ contributes to $\sum_{k=0}^n (-1)^k 2^k Q_k$ the amount

$$\sum_{k=0}^{i} (-1)^k 2^k 2^{i-k} \binom{i}{k} = 2^i (1-1)^i,$$

which equals 1, if i = 0, and 0, otherwise.

Therefore (2.8) holds.

Furthermore, if S is odd, then so is S^n and there must be an edge in the partition of odd size, that is, $P_0 \ge 1$ or, equivalently, by (2.8), (2.9) must hold.

Remark 1. The last two Lemmas can be derived more systematically from Lemma 1 by Möbius Inversion. Here this machinery can be avoided, but we need it for the more abstract setting of [4].

3. Products of complete graphs: the main results

We shall now exploit Lemma 3 by applying it to classes of subhypergraphs, which we now define. For any $I \subset \{1, 2, ..., n\}$ and any specification $(v_j)_{j \in I^c}$, where $v_j \in \mathscr{V}_j$, we set

$$\mathscr{C}^{n}(I,(v_{j})_{j\in I^{c}}) = \left(\prod_{i=1}^{n} \mathscr{U}_{i}, \prod_{i=1}^{n} \mathscr{F}_{i}\right) = (\mathscr{U}^{n}, \mathscr{F}^{n}), \tag{3.1}$$

where

$$\mathcal{U}_i = \begin{cases} \mathscr{V}_i \\ \{v_i\} \end{cases} \quad \text{and} \quad \mathscr{F}_i = \begin{cases} \mathscr{E}_i & \text{for } i \in I \\ \{v_i\} & \text{for } i \in I^c. \end{cases}$$
 (3.2)

Clearly, for a partition \mathscr{P} of \mathscr{C}^n and $\mathscr{Q} = \operatorname{shad}\mathscr{P}$, the set $\mathscr{Q}(I,(v_j)_{j\in I^c}) = \mathscr{Q} \cap \mathscr{F}^n$ is a downset, and the map

$$\psi: \mathscr{F}^n \to \prod_{i \in I} \mathscr{E}_i, \ \psi\left(\prod_{i=1}^n E_i\right) = \prod_{i \in I} E_i$$
 (3.3)

is a bijection.

Write $\tilde{\mathcal{Z}} = \psi(\mathcal{Z} \cap \mathcal{F}^n)$ and let $\tilde{\mathcal{Z}}_i$ count the members of $\tilde{\mathcal{Z}}$ of weight *i*. Since $\tilde{\mathcal{Z}}$ is a downset in $\prod_{i \in I} \mathscr{E}_i$ and its maximal elements form a partition of $\prod_{i \in I} \mathscr{V}_i$, we know that $\tilde{\mathcal{Z}}_0 = S^m$. This fact and Lemma 3 yield

$$S^{m} + \sum_{k=1}^{m} (-1)^{k} 2^{k} \tilde{\mathcal{Q}}_{k} - 1 \ge 0.$$
 (3.4)

This is the key to the proof of the following important result.

Theorem 1. For a partition \mathscr{P} of $\mathscr{C}^n = (\mathscr{V}^n, \mathscr{E}^n)$ with $\mathscr{V}^n = \prod_{i=1}^n \mathscr{V}_i$, $|\mathscr{V}_i| = S$ for i = 1, 2, ..., n, the weight distribution $(Q_k)_{k=0}^n$ of $Q = \text{shad}\mathscr{P}$ satisfies, for $1 \leq m \leq n$,

$$\binom{n}{m}S^n + \sum_{k=1}^m (-1)^k \binom{n-k}{m-k} 2^k Q_k - \binom{n}{m} S^{n-m} \ge 0.$$
 (3.5)

Proof. The map ψ preserves inclusions and weights. The total number of pairs $(I, (v_j)_{j \in I^c})$ with |I| = m equals $\binom{n}{m} S^{n-m}$. Moreover, each $E^n \in \mathcal{Q}$ with $w(E^n) = k$ is contained in exactly $\binom{n-k}{m-k}$ sets of the form $\mathcal{Q}(I, (v_j)_{j \in I^c})$ and thus for the sets of weight k

$$\binom{n-k}{m-k} Q_k = \sum_{\left(I, (v_j)_{j \in I^c}\right), |I|=m} \left| \mathcal{Q}_k \left(I, (v_j)_{j \in I^c}\right) \right| . \tag{3.6}$$

We have one equation of the form (3.4) for each pair $(I, (v_j)_{j \in I_c})$. Summation of their left-hand sides gives, therefore,

$$\binom{n}{m}S^{n-m}\cdot S^m+\sum_{k=1}^m(-1)^k2^k\binom{n-k}{m-k}Q_k-\binom{n}{m}S^{n-m}\geq 0$$
 and hence (3.5).

Now comes the harvest.

Theorem 2. For a partition \mathscr{P} of \mathscr{C}^n

$$|\mathcal{P}| \geq \left\lceil \frac{S}{2} \right\rceil^n$$
.

Proof. Since $|E^n| \le 2^n$, obviously $|\mathcal{P}| \ge S^n/2^n$, and for $S = 2\alpha$ even, the result obviously holds. Now let $S = 2\alpha + 1$.

Summing the left-hand side expressions in (3.5) for m = 1, 2, ..., n results in

$$\sum_{m=1}^{n} {n \choose m} S^{n} + \sum_{m=1}^{n} \sum_{k=1}^{m} (-1)^{k} {n-k \choose m-k} 2^{k} Q_{k} - \sum_{m=1}^{n} {n \choose m} S^{n-m} \ge 0,$$

or in

$$(2^{n}-1)S^{n} + \sum_{k=1}^{n} (-1)^{k} 2^{k} Q_{k} \sum_{m=k}^{n} {n-k \choose m-k} - \left[(S+1)^{n} - S^{n} \right] \ge 0.$$

This is equivalent to

$$2^n \cdot \left[S^n + \sum_{k=1}^n (-1)^k Q_k \right] - (S+1)^n \ge 0.$$

As $Q_0 = S^n$, we conclude, with Lemma 2,

$$P \ge (S+1)^n \cdot 2^{-n} = \left\lceil \frac{S}{2} \right\rceil^n$$
, if S is odd.

4. Non-identical factors: a generalization

We now consider hypergraphs \mathscr{C}^n with vertex sets $\mathscr{V}^n = \prod_{t=1}^n \mathscr{V}_t$ and edge sets $\mathscr{E}^n = \prod_{t=1}^n \mathscr{E}_t$, where the \mathscr{V}_t 's are finite sets of not necessarily equal cardinalities S_t . The factors \mathscr{E}_t are such that $(\mathscr{V}_t, \mathscr{E}_t)$ is a complete graph with all loops included. We shall write, with positive integers α_t ,

$$|\mathcal{V}_t| = 2\alpha_t + \varepsilon_t, \ \varepsilon_t \in \{0, 1\}. \tag{4.1}$$

Inspection shows that the sizes of factors do not affect the proofs of Lemmas 1 and 2. Also (2.8) in Lemma 2 holds and since $P_0 \ge 1$, if $\varepsilon_t = 1$ for t = 1, 2, ..., n, we can generalize (2.9) to

$$\sum_{k=0}^{n} (-1)^{k} 2^{k} Q_{k} - \prod_{k=1}^{n} \varepsilon_{k} \ge 0.$$
(4.2)

Theorem 1 in Section 3 generalizes to

Theorem 1'. For a partition \mathscr{P} of \mathscr{C}^{ln}

$$\binom{n}{m} \prod_{i=1}^{n} S_i + \sum_{k=1}^{m} (-1)^k \binom{n-k}{m-k} 2^k Q_k - \sum_{I:|I|=m} \prod_{i\in I} \varepsilon_i \prod_{j\in I^c} S_j \ge 0.$$
 (4.3)

Proof. (Sketch) In the proof of Theorem 1, replace S^m by $\prod_{i \in I} S_i$ and inequality (3.4) by

$$\prod_{i \in I} S_i + \sum_{k=1}^n (-1)^k 2^k \tilde{Q}_k - \prod_{i \in I} \varepsilon_i \ge 0.$$

$$(4.4)$$

Theorem 2'. For a partition \mathcal{P} of $\mathcal{C}^{\prime n}$

$$|\mathscr{P}| \ge \prod_{i=1}^n \left\lceil \frac{S_i}{2} \right\rceil. \tag{4.5}$$

Proof. Summing the expressions on the left-hand side in (4.3) for m = 1, 2, ..., n results in

$$0 \leq \sum_{m=1}^{n} {n \choose m} \prod_{i=1}^{n} S_{i} + \sum_{m=1}^{n} \sum_{k=1}^{m} {n-k \choose m-k} (-1)^{k} 2^{k} Q_{k} - \sum_{m=1}^{n} \sum_{I:|I|=m} \prod_{i \in I} S_{i} \prod_{j \in I^{c}} S_{j}$$

$$= (2^{n}-1) \prod_{i=1}^{n} S_{i} + \sum_{k=1}^{n} (-1)^{k} 2^{k} Q_{k} \sum_{m=k}^{n} {n-k \choose m-k} - \sum_{\phi \neq I} \prod_{i \in I} S_{i} \prod_{j \in I^{c}} S_{i}$$

$$= 2^{n} \left[\prod_{i=1}^{n} S_{i} + \sum_{k=1}^{n} (-1)^{k} Q_{k} \right] - \sum_{I} \prod_{i \in I} \varepsilon_{i} \prod_{j \in I^{c}} S_{j}$$

or

$$|\mathscr{P}| \ge 2^{-n} \sum_{I} \prod_{i \in I} \varepsilon_i \prod_{j \in I^c} S_j. \tag{4.6}$$

We evaluate the expression on the right-hand side by introducing $J = \{\ell : 1 \le \ell \le n, \epsilon_{\ell} = 1\}$ and $I^* = J \setminus I$. Then

$$\sum_{I} \prod_{i \in I} \varepsilon_{i} \prod_{j \in I^{c}} S_{j} = \sum_{I \subset J} \prod_{j \in I^{*}} S_{j} \cdot \prod_{j \in J^{c}} S_{j}$$

$$= \prod_{j \in J} (S_{j} + 1) \cdot \prod_{j \in J^{c}} S_{j} = \prod_{j=1}^{n} (S_{j} + \varepsilon_{j}) \text{ and (4.5) follows.}$$

Corollary 1. The partition number $\pi(\mathscr{C}^n)$ equals $\prod_{j=1}^n \left[\frac{s_j}{2}\right]$.

Proof. The partition number of $(\mathscr{V}_j,\mathscr{E}_j)$ is $\left\lceil \frac{S_j}{2} \right\rceil$. Take a product of optimal partitions for the factors. This construction gives the lower bound in Theorem 2'.

5. Products of general graphs

We assume now that the factors $\mathscr{G}_t = (\mathscr{V}_t, \mathscr{E}_t)$ (t = 1, 2, ..., n) are arbitrary finite graphs with all loops included.

Obviously, we have for the partition number

$$\pi(\mathcal{G}_t) = |\mathcal{V}_t| - \nu(\mathcal{G}_t),\tag{5.1}$$

where $v(\mathcal{G}_t)$ is the matching number of \mathcal{G}_t .

Theorem 3. For the hypergraph product $\mathcal{H}^n = \mathcal{G}_1 \times \ldots \times \mathcal{G}_n$

$$\pi(\mathscr{H}^n) = \prod_{t=1}^n \pi(\mathscr{G}_t). \tag{5.2}$$

Here only the inequality

$$\pi(\mathcal{H}^n) \ge \prod_{t=1}^n \pi(\mathcal{G}_t) \tag{5.3}$$

is non-trivial. We make use of a well-known result from matching theory.

Gallai's Lemma. ([6] or [8] page 89) If a graph $\mathscr{G} = (\mathscr{V}, \mathscr{E})$ is connected and, for all $v \in \mathscr{V}$, $v(\mathscr{G} - v) = v(\mathscr{G})$, then \mathscr{G} is factor-critical, that is, for all $v \in \mathscr{V}$, $\mathscr{G} - v$ has a perfect matching.

Proof of 5.3. For every $t \in \{1, 2, ..., n\}$ we modify \mathcal{G}_t as follows: remove any vertex $v \in \mathcal{V}_t$ with $v(\mathcal{G}_t - v) < v(\mathcal{G}_t)$ and reiterate this until a graph \mathcal{G}_t^* with $v(\mathcal{G}_t^* - v) = v(\mathcal{G}_t^*)$ for all $v \in \mathcal{V}_t^*$ is obtained.

Notice that (5.1) ensures that

$$\pi(\mathcal{G}_t) = \pi(\mathcal{G}_t^*). \tag{5.4}$$

Denote the set of connected components of \mathscr{G}_t^* by $\left\{\mathscr{G}_t^{*(j)}\right\}_{i\in J_t}$. Clearly,

$$\pi(\mathscr{G}_t^*) = \sum_{j \in J_t} \pi(\mathscr{G}_t^{*(j)}). \tag{5.5}$$

Moreover, by Gallai's Lemma each component $\mathscr{G}_t^{*(j)}$ has a vertex set $\mathscr{V}_t^{*(j)}$ of odd size and

$$\nu(\mathscr{G}_t^{*(j)}) = (|\mathscr{V}_t^{*(j)}| - 1)2^{-1} \stackrel{\triangle}{=} \alpha_t^j$$
, say.

Thus,

$$\pi(\mathcal{G}_t^*) = \sum_j (\alpha_t^j + 1). \tag{5.6}$$

Now, for $\mathcal{H}^{*n} = \prod_{1}^{n} \mathcal{G}_{t}^{*}$ we have

$$\pi(\mathcal{H}^n) \ge \pi(\mathcal{H}^{*n}),\tag{5.7}$$

because the modifications described above transform a partition of \mathcal{H}^n into a partition of \mathcal{H}^{*n} with no more parts.

Finally, by Theorem 2', we have for the product \mathscr{C}^n of complete graphs with vertex sets $\mathscr{V}_t^{*(j)}$ that

$$\pi\left(\mathscr{G}_{1}^{*(j_{1})}\times\ldots\times\mathscr{G}_{n}^{*(j_{n})}\right)\geq\pi(\mathscr{C}^{n})=(\alpha_{1}^{j_{1}}+1)\ldots(\alpha_{n}^{j_{n}}+1). \tag{5.8}$$

Therefore,

$$\pi(\mathcal{H}^{*n}) = \sum_{j_1 \in J_1, \dots, j_n \in J_n} \pi(\mathcal{G}_1^{*(j_1)} \times \dots \times \mathcal{G}_n^{*(j_n)})$$

$$\geq \sum_{(j_1, \dots, j_n)} (\alpha_1^{j_1} + 1) \dots (\alpha_n^{j_n} + 1)$$

$$= \prod_{t=1}^{n} \sum_{j \in J_t} (\alpha_t^j + 1)$$

$$= \prod_{t=1}^{n} \pi(\mathcal{G}_t^*) = \prod_{t=1}^{n} \pi(\mathcal{G}_t).$$

This and (5.7) imply (5.3).

6. Examples for deviation from multiplicative behaviour

First we give two examples of product hypergraphs $\mathscr{H} \times \mathscr{H}'$ for which the partition number π is not multiplicative in the factors. They are due to K.-U. Koschnick. **Example 1.**

$$\mathscr{V}_1 = \{0, 1, 2, \dots, 6\}, \mathscr{E}_1 = \{E \subseteq \mathscr{V}_1 : |E| \in \{1, 4\}\}.$$

Clearly, $\pi(\mathcal{H}_1) = 4$ and the partition

has 13 members. Therefore

$$\pi(\mathcal{H}_1 \times \mathcal{H}_1) \le 13 < \pi(\mathcal{H}_1)\pi(\mathcal{H}_1) = 16. \tag{6.1}$$

П

While this example seems to be the smallest possible for identical factors, one can do better with non-identical factors:

$$\mathscr{H}_1 \times \mathscr{H}_1'$$
, where $\mathscr{V}_1' = \{0, 1, 2, 3, 4\}$ and $\mathscr{E}_1' = \{E \subset \mathscr{V}_1' : |E| \in \{1, 3\}\}.$

Here, by a similar construction, $\pi(\mathcal{H}_1 \times \mathcal{H}_1') \leq 11$, whereas $\pi(\mathcal{H}_1) \cdot \pi(\mathcal{H}_1') = 4 \cdot 3 = 12$. Example 2. Since π is multiplicative for graphs, one may wonder whether it is multiplicative if one factor is a graph.

Consider $G = (\mathcal{V}, \mathcal{E})$ with $\mathcal{V} = \{0, 1, ..., 4\}$ and $\mathcal{E} = \{\{i, i+1 \mod 5\} : i = 0, 1, ..., 4\} \cup \{i : 0 \le i \le 4\}$, that is, the pentagon with all loops.

Define $\mathscr{H}' = (\mathscr{V}', \mathscr{E}')$ with $\mathscr{V}' = \{1, 2, ..., 14\}$ and $\mathscr{E}' = \{E \subset \mathscr{V}' : |E| \in \{1, 9\}\}.$

Notice that $\pi(G) = 3$, $\pi(\mathcal{H}') = 7$, and that the following construction ensures $\pi(G \times \mathcal{H}') \le 20 < 21 = \pi(G) \cdot \pi(\mathcal{H}')$:

$$\left\{ \{i\} \times \{j+k \bmod 14 : 0 \le k \le 8\} : (i,j) \in \{(0,0),(1,3),(2,6),(3,9),(4,12)\} \right\}$$

$$\cup \quad \left\{ \{1,2\} \times \{j\} : j = 0,1,2 \right\} \cup \left\{ \{2,3\} \times \{j\} : j = 2,3,5 \right\}$$

$$\cup \quad \left\{ \{3,4\} \times \{j\} : j = 6,7,8 \right\}$$

$$\cup \quad \left\{ \{4,0\} \times \{j\} : j = 9,10,11 \right\}$$

$$\cup \quad \left\{ \{0,1\} \times \{j\} : j = 12,13,14 \right\}$$

is a set of $5+5\cdot 3=20$ edges partitioning $\mathscr{V}\times\mathscr{V}'$.

To help orient the reader, we add three examples, which demonstrate that the covering number c, the packing number p and the maximal partition number μ are not multiplicative in the factors either.

Example 3.
$$\mathcal{V}_3 = \{0, 1, 2\}, \mathcal{E}_3 = \{E \subseteq \mathcal{V} : |E| = 2\}$$

We have

$$3 = c(\mathcal{H}_3 \times \mathcal{H}_3) \neq c(\mathcal{H}_3) \cdot c(\mathcal{H}_3) = 4, \tag{6.2}$$

because $\mathscr{C}\{\{0,1\}\times\{0,1\},\{0,2\}\times\{0,2\},\{1,2\}\times\{1,2\}\}\$ covers $\mathscr{V}_3\times\mathscr{V}_3$ and there is no covering with 2 edges.

This is the smallest example in terms of the number of vertices.

Remark 2. Quite generally, even in the case of non-identical factors $\mathcal{H}_t = (\mathcal{V}_t, \mathcal{E}_t), t \in \mathbb{N}$, with $\max_t |\mathcal{E}_t| < \infty$, the asymptotic behaviour of c(n) is known [1]:

$$\lim_{n\to\infty}\frac{1}{n}\left(\log c(n)-\sum_{t=1}^n\log\left(\max_{q\in\operatorname{Prob}(\mathscr{E}_t)}\min_{v\in\mathscr{E}_t}\sum_{E\in\mathscr{E}_t}1_E(v)q_E\right)^{-1}\right)=0,$$

where $\operatorname{Prob}(\mathscr{E}_t)$ is the set of all probability distributions on \mathscr{E} , q_E is the probability of E under q and 1_E is the indicator function of the set E.

Example 4. $\mathscr{V}_4 = \{0, 1, 2, 3, 4\}, \mathscr{E}_4 = \{\{x, x + 1 \mod 5\} : x \in \mathscr{V}_4\}.$

Here we have

$$5 = p(\mathcal{H}_4 \times \mathcal{H}_4) \neq p(\mathcal{H}_4)p(\mathcal{H}_4) = 4. \tag{6.3}$$

It was shown in [11] that this is the smallest example in the previous sense. Notice that it is bigger than the previous one.

Example 5. To avoid heavy notation, we will write $\mathcal{H}_5 = (\mathcal{V}_5, \mathcal{E}_5)$ without an index as $\mathcal{H} = (\mathcal{V}, \mathcal{E})$. It is made up of the 5 vertex sets

$$W_i = \{x_{ij} : j = 1, 2, ..., m\}, 3 \le m(i = 0, 1, 2, ..., 4),$$

the 6 edge sets

$$\mathscr{G}_i = \{(x_{ij}, x_{i+1 \mod 5, j}) : j = 1, 2, ..., m\} (i = 0, 1, 2, ..., 4),$$

and $\{W_0, \dots, W_4\}$. Thus

$$\mathscr{V} = \bigcup_{i=0}^{4} \mathscr{W}_{i}, \mathscr{E} = \{\mathscr{W}_{0}, \dots, \mathscr{W}_{4}\} \cup (\bigcup_{i=0}^{4} \mathscr{G}_{i}).$$

A look at the pentagon with vertex set $\{x_{01}, x_{11}, x_{21}, x_{31}, x_{41}\}$ shows that a partition of \mathscr{H} must contain at least one of the edges \mathscr{W}_i as a member. On the other hand, the vertices $\mathscr{V} \setminus \mathscr{W}_i$ have a maximal partition of size 2m. Therefore we have shown that $\mu(\mathscr{H}) = 2m + 1$. We shall next consider $\mu(\mathscr{H} \times \mathscr{H})$. For this we introduce the superedges

$$\mathscr{G}_i^* = \mathscr{W}_i \cup \mathscr{W}_{i+1 \bmod 5} (i=0,1,\ldots,4)$$

in \mathcal{H} , and the superedges $\mathcal{G}_i^* \times \mathcal{G}_{i'}^*(i,i'=0,1,\ldots,4)$ in $\mathcal{H} \times \mathcal{H}$. Whereas \mathcal{G}_i^* can be partitioned into m edges, they can be partitioned into m^2 edges.

First we divide $\mathscr{V} \times \mathscr{V}$ into 25 parts $\{\mathscr{W}_i \times \mathscr{W}_{i'} : i, i' = 0, 1, ..., 4\}$. Then we pack 5 superedges (as in Shannon's construction) into $\mathscr{V} \times \mathscr{V}$. They cover 20 parts, and the remaining 5 parts are packed with 5 edges of type $\mathscr{W}_i \times \mathscr{W}_{i'}$. Finally, we partition the 5 superedges into the edges of $\mathscr{H} \times \mathscr{H}$. Thus we obtain a desired partition with $5 + 5m^2$ edges. Notice that $\mu(\mathscr{H} \times \mathscr{H}) \geq 5 + 5m^2 > (2m+1)^2 = \mu(\mathscr{H})^2$ for $m \geq 3$. The smallest example in this class has 15 vertices.

Remark 3. The construction was based on the pentagon. Its vertices were replaced by sets of vertices \mathcal{W}_i with a numbering. The vertices with the same number in the \mathcal{W}_i 's form a pentagon. Thus we obtained $m = |\mathcal{W}_i|$ many pentagons. Then we added the \mathcal{W}_i' as further edges. Finally we used the superedges to mimic the original small edges. We can make this construction starting with any hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$. If it has the property $p(\mathcal{H})^2 < p(\mathcal{H} \times \mathcal{H})$, then for m large enough our construction gives an associated hypergraph for which μ is not multiplicative.

7. Acknowledgement

The authors are very much indebted to Klaus-Uwe Koschnick for constructing beautiful examples.

References

- [1] Ahlswede, R. (preprint) On set coverings in Cartesian product spaces, Manuscript 1971. Reprinted in SFB 343 Diskrete Strukturen in der Mathematik, Preprint 92-034.
- [2] Ahlswede, R. (1979) Coloring hypergraphs: A new approach to multi-user source coding, Pt I. Journ. of Combinatorics, Information and System Sciences 4 (1) 76-115.
- [3] Ahlswede, R. (1980) Coloring hypergraphs: A new approach to multi-user source coding, Pt II. Journ. of Combinatorics, Information and System Sciences 5 (3) 220–268.
- [4] Ahlswede, R. and Cai, N. (preprint) On POS partition and hypergraph products. SFB 343 Diskrete Strukturen in der Mathematik, Preprint 93-008.
- [5] Ahlswede, R., Cai, N. and Zhang, Z. (1989) A general 4-words inequality with consequences for 2-way communication complexity. Advances in Applied Mathematics 10 75-94.
- [6] Gallai, T. (1963) Neuer Beweis eines Tutte'schen Satzes. Magyar Tud. Akad. Mat. Kutato Int. Közl. 8 135-139.
- [7] Lovasz, L. (1979) On the Shannon capacity of a graph. IEEE Trans. Inform. Theory IT-25 1-7.
- [8] Lovász, L. and Plummer, M. D. (1986) Matching Theory, North-Holland Mathematics studies 121, North-Holland.
- [9] Mehlhorn, K. and Schmidt, E. M. (1982) Las Vegas is better than determinism in VLSI and distributed computing. Proceedings 14th ACM STOC 330-337.
- [10] Posner, E. C. and Mc Eliece, R. J. (1971) Hide and seek, data storage and entropy. Annals of Math. Statistics 42 1706-1716.
- [11] Shannon, C. E. (1956) The zero-error capacity of a noisy channel. *IEEE Trans. Inform. Theory* IT-2 8-19.
- [12] Yao, A. (1979) Some complexity questions related to distributive computing. *Proceedings 11th ACM STOC* 209-213.