

DISCRETE MATHEMATICS

Discrete Mathematics 131 (1994) 9-15

The maximal length of cloud-antichains

Rudolf Ahlswede^{a, *}, Levon H. Khachatrian^b

*Universität Bielefeld, Fakultät für Mathematik, Postfach 8640, 4800 Bielefeld 1, Germany

*Institute of Problems of Information and Automation, Armenian Academy of Sciences, Erevan-44, P. Sevak

Str. 1, Armenia

Received 13 June 1992

Abstract

For six natural notions of cloud-antichains in a partially ordered set \mathcal{P} we determine asymptotically their maximal lengths if \mathcal{P} is the family of all subsets of a finite set. Actually, in three cases we even have exact results.

1. Introduction

The notion of an antichain in a partially ordered set was generalized [1, 2] to the seemingly natural notion of a "cloud-antichain" $(\mathcal{A}_i)_{i=1}^N$. Whereas in antichains elements of a partially ordered set are compared, in cloud-antichains sets of elements take their role. Elements in different sets \mathcal{A}_i , called clouds, are required to be incomparable. Formally, for every two clouds \mathcal{A}_i and \mathcal{A}_i we have

$$A_i \gg A_j$$
 for all $A_i \in \mathcal{A}_i$ and all $A_j \in \mathcal{A}_j$. (1.1)

In [2] further notions of cloud-antichains were introduced. The logical structure of formula (1.1) suggests the idea of an antichain of $type(\forall, \forall)$; the new notions in [2] are of the types (\forall, \exists) , (\exists, \forall) , and (\exists, \exists) .

In the sequel we always consider the partially ordered set $\mathscr{P} = 2^{\Omega_n}$, the power set of $\Omega_n = \{1, 2, ..., n\}$, with set-theoretic containment as order relation. $(\mathscr{A}_i)_{i=1}^N$ is always a family of subsets of \mathscr{P} . It is said to be of type (\exists, \forall) if, for all $i \neq j$,

there exists an
$$A_i \in \mathcal{A}_i$$
 with $A_i \oplus A_j$ and $A_i \Rightarrow A_j$ for all $A_j \in \mathcal{A}_j$, it is of type (\forall, \exists) if, for all $i \neq j$,

for all
$$A_i \in \mathcal{A}_i$$
 there exists an $A_j \in \mathcal{A}_j$ with $A_i \notin A_j$ and $A_i \Rightarrow A_j$ and it is of type (\exists, \exists) if, for all $i \neq j$, there exists an $A_i \in \mathcal{A}_i$ (1.3)

and there exists an
$$A_j \in \mathcal{A}_j$$
 with $A_i \not\in A_j$ and $A_i \not\supset A_j$. (1.4)

^{*}Corresponding author.

•

The maximal cardinalities N of such systems as functions of n are denoted by $N_n(\exists, \forall)$, $N_n(\forall, \exists)$, and $N_n(\exists, \exists)$, respectively.

Obviously, an analogously defined quantity $N_n(\forall, \forall)$ equals $(\lfloor n/2 \rfloor)$, because in an optimal configuration $|\mathcal{A}_i|=1$ and Sperner's classical theorem [6] applies. We also study systems with *disjoint* clouds. The maximal cardinalities are then denoted by $M_n(\exists, \forall)$, $M_n(\forall, \exists)$, and $M_n(\exists, \exists)$, respectively.

We call two functions $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$ asymptotically equivalent and write $f(n) \sim g(n)$ if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=1.$$

All the six functions measuring maximal lengths of cloud-antichains in the cases described are determined up to asymptotic equivalence. Three of the functions are even determined exactly.

2. The results

Theorem 2.1.

$$M_n(\exists, \forall) \sim 2^{n-1}$$

Theorem 2.2.

$$N_n(\exists, \forall) = (\lfloor \frac{k}{n/2} \rfloor), \text{ where } k = (\lfloor \frac{n}{n/2} \rfloor).$$

Theorem 2.3.

$$M_n(\forall, \exists) = \begin{cases} 2 & \text{if } n = 2, \\ 2^{n-1} - 1 & \text{if } n \ge 3. \end{cases}$$

Theorem 2.4.

$$N_n(\forall,\exists) \sim 2^{2^{n-2}}$$

Theorem 2.5.

$$M_n(\exists,\exists) = (\lfloor \frac{n}{2} \rfloor) + \lfloor \frac{2^n - 2 - (\lfloor \frac{n}{2} \rfloor)}{2} \rfloor.$$

Theorem 2.6.

$$N_n(\exists,\exists) \sim 2^{2^n}$$

The proofs are delegated to the following sections. We begin with those for the exact estimates.

Throughout the paper we use a representation of the partially ordered set (\mathcal{P}, \subset) as sequence space ($\{0, 1\}^n$, \prec), where $A \in \mathcal{P}$ corresponds to $S(A) = (a_1, a_2, ..., a_n)$ with

$$a_t = \begin{cases} 1 & \text{if } t \in A, \\ 0 & \text{if } t \notin A, \end{cases}$$

and the inclusion $A \subset B$ translates into $S(A) \prec S(B) = (b_1, b_2, ..., b_n)$, which means that $a_t \leq b_t$ for t = 1, 2, ..., n.

3. Proof of Theorem 2.2

We view the cloud-antichain $\{\mathscr{A}_i\}_{i=1}^N$ of type (\exists, \forall) in $\{0, 1\}^n$. For $x \in \{0, 1\}^n$ let the weight w(x) be the number of 1's in x. Let m be the maximal weight of members of $\bigcup_{i=1}^N \mathscr{A}_i$ and let $\{v_1, v_2, ..., v_t\}$ be the set of members of $\bigcup_{i=1}^N \mathscr{A}_i$ with weight m. We assume first that $m > \lfloor n/2 \rfloor$. It is known that there exist different sequences $v_1', v_2', ..., v_t'$ of weight m-1 and the following property for corresponding sequences:

$$v_i' \le v_i \quad \text{for } j = 1, 2, ..., t.$$
 (3.1)

For every i (i=1,...,N) we replace all members of $\{v_1,v_2,...,v_t\}$ in \mathscr{A}_i by the corresponding members of $\{v_1',v_2',...,v_t'\}$ and call the new cloud \mathscr{A}_i' .

One readily verifies that $\{A_i'\}_{i=1}^N$ has again the (\exists, \forall) -property. Symmetrically, one can perform a transformation of the clouds via sequences of smallest weight if it is smaller than $\lfloor n/2 \rfloor$. Iteration of these two kinds of transformation results in a cloudantichain $\{\mathscr{A}_i^*\}_{i=1}^N$ with the (\exists, \forall) -property involving only sequences of weight $\lfloor n/2 \rfloor$. There are $k = (\lfloor n/2 \rfloor)$ such sequences and every \mathscr{A}_i^* can be represented via the usual incidence relation as a binary vector u_i of length k.

Now observe that the (\exists, \forall) -property is equivalent to the following one: $u_i \not\succ u_j$ for all $i \neq j$. Sperner's theorem [6] implies $N \leq (\lfloor k/2 \rfloor)$.

Conversely, by choosing all clouds consisting of $\lfloor k/2 \rfloor$ sets with $\lfloor n/2 \rfloor$ elements each, we achieve this bound.

4. Proof of Theorem 2.3

We make use of an auxiliary result. For $X \subset \{0, 1\}^n$ let $\mathscr{C}_n(X)$ be the set of elements of $\{0, 1\}^n$ which are comparable with at least one element in X.

Lemma 4.1. If X is an (ordinary) antichain in $\{0, 1\}^n$, $n \ge 4$, then $|\mathscr{C}_n(X)| \ge 2|X| + 3$.

Proof. Suppose $\alpha \in X$ with $w(\alpha) = 1$ (or $w(\alpha) = n - 1$). Then necessarily $|\mathscr{C}_n(\{\alpha\}) \setminus \{(0, ..., 0), (1, ..., 1)\}| = 2^{n-1} - 1$ and $\mathscr{C}_n(\{\alpha\}) \cap (X \setminus \{\alpha\}) = \emptyset$, which implies $|\mathscr{C}_n(X) \setminus \{(0, ..., 0), (1, ..., 1)\}| \ge |\mathscr{C}_n(\{\alpha\}) \setminus \{(0, ..., 0), (1, ..., 1)\}| + |X| - 1 = 2^{n-1} - 2 + |X|$. Now, $2^{n-1} - 2 + |X| > 2|X|$ holds for $n \ge 5$, because there $2^{n-1} - 2 > (\lfloor \frac{n}{2} \rfloor) \ge |X|$, and for n = 4, because here $|X| \le 4$ under the supposition $w(\alpha) = 1$ for $\alpha \in X$.

It remains to consider the case where $2 \le w(\alpha) \le n-2$ for all $\alpha \in X$. Define now $X^* = \{(a_1, a_2, ..., a_{n-1}, \bar{a}_n) | (a_1, a_2, ..., a_n) \in X\}$ and notice that $X, X^* \subset \mathscr{C}_n(X) \setminus \{(0, ..., 0), (1, ..., 1)\}$ and that $X^* \cap X = \emptyset$, because X is an antichain.

Moreover, for every $(a_1, ..., a_n) \in X$ there is some $i \in [1, n-1]$ with $a_i = 1$ and thus $e_i = (0, ..., 0, 1, 0, ..., 0) \in \mathcal{C}_n(X)$, $e_i \notin X \cup X^*$. Therefore

$$|\mathscr{C}_n(X)\setminus\{(0,\ldots,0),(1,\ldots,1)\}| \ge |X|+|X^*|+1=2|X|+1.$$

Now Theorem 2.3 is readily established. Suppose first that $1 = |\mathcal{A}_1| = |\mathcal{A}_2| = \cdots = |\mathcal{A}_s| < 2 \le |\mathcal{A}_{s+1}| \le \cdots \le |\mathcal{A}_N|$ with $1 \le s \le (\lfloor \frac{n}{2} \rfloor)$.

Define then $T = \mathscr{C}_n(\bigcup_{i=1}^s \mathscr{A}_i) \setminus (\bigcup_{i=1}^s \mathscr{A}_i)$ and conclude with Lemma 4.1 that $|T| \ge 2s + 3 - s$. Since by the (\forall, \exists) -property $T \cap (\bigcup_{i=1}^N \mathscr{A}_i) = \emptyset$, we have

$$2^{n} \ge \sum_{i=1}^{N} |\mathcal{A}_{i}| + |T| \ge s + 2(N-s) + s + 3$$

and thus

$$N \le 2^{n-1} - 2$$
 for $n \ge 4$. (4.1)

Furthermore, since $\{(0,\ldots,0),(1,\ldots,1)\}\cap\bigcup_{i=1}^N\mathscr{A}_i=\emptyset$ we have in the remaining case $2\leqslant |\mathscr{A}_1|\leqslant \cdots \leqslant |\mathscr{A}_N|,\ N\leqslant \frac{1}{2}(2^n-2),$ and thus $N\leqslant 2^{n-1}-1$.

On the other hand, we have a simple construction: every \mathcal{A}_i consists of a sequence $\alpha_i \neq (0, ..., 0)$, (1, ..., 1) and its complement $\bar{\alpha}_i$. There are $2^{n-1}-1$ such clouds. The (\forall, \exists) -property holds. Finally, the cases n=2, 3 go by inspection.

In the case n=2 the only optimal configuration has clouds of cardinality 1. For n=3 there is (up to isomorphics) also the solution $\{\{110\}, \{101\}, \{011\}\}\}$ with clouds of cardinality 1 only. Furthermore, there are three nonisomorphic solutions, for instance $\{\{110,001\}, \{101,010\}, \{011,100\}\}, \{\{110,010\}, \{101,001\}, \{011,100\}\},$ and $\{\{110,010\}, \{101,100\}, \{011,010\}\}$, which clouds of cardinality 2.

Actually, for $n \ge 4$ our construction is unique, i.e. every cloud \mathscr{A} is of the form $\mathscr{A} = \{a, \bar{a}\}$. Since by the previous arguments in an optimal configuration all clouds have cardinality 2, it remains to look at a cloud $\mathscr{A} = \{a, b\}$ with $b \ne \bar{a}$. Then a and b have a component value in common, say 0 in the first component. But then (0, 1, ..., 1) cannot be in any other cloud, it has to be in \mathscr{A} and equal, say a. If now $w(b) \le n-3$, then there is a c with w(c) = w(b)+1, c < a, c > b, and $c \notin \bigcup_{i=1}^{N} \mathscr{A}_i$.

This contradicts the equality $\bigcup_{i=1}^{N} \mathscr{A}_i = \{0,1\}^n \setminus \{(0,...,0),(1,...,1)\}$. If, on the other hand, $w(b) = n - 2 \ge 2$ (since $n \ge 4$), then some d with w(d) = w(b) - 1 and d < b < a is not in $\bigcup_{i=1}^{N} \mathscr{A}_i$.

5. Proof of Theorem 2.5

There are at most $(\lfloor n/2 \rfloor)$ clouds with one member, and the sequences (0, 0, ..., 0) and (1, 1, ..., 1) can be eliminated from all clouds. Therefore

$$N \leq \binom{n}{\lfloor \frac{n}{2} \rfloor} + \lfloor 2^{-1} \left(2^n - 2 - \binom{n}{\lfloor \frac{n}{2} \rfloor} \right) \rfloor.$$

We abbreviate the right-hand-side expression by R and now construct R clouds with the (\exists, \exists) -property.

Case n=2l: For $i=1,...,\binom{n}{l}$ choose $\mathcal{A}_i = \{a_i\}$ with $w(a_i)=l$. For $i=\binom{n}{l}+1,...,R$ choose $\mathcal{A}_i = \{b_i, \overline{b}_i\}$ with $1 \le w(b_i) < l$.

Case n=2l+1: For n=3 the choice $\mathscr{A}_1 = \{100\}$, $\mathscr{A}_2 = \{010\}$, $\mathscr{A}_3 = \{001\}$, $\mathscr{A}_4 = \{011, 101, 110\}$ works. For n>3 there exists a partition of vectors of weight l+1 into $\lfloor \binom{2l+1}{l+1}/2 \rfloor$ disjoint pairs $\mathscr{A}_i = \{c_i, d_i\}$ with Hamming distance $d_H(c_i, d_i) \ge 4$. Further, for the next $\binom{2l+1}{l}$ indices we define $\mathscr{A}_i = \{a_i\}$ with $w(a_i) = l$, and for all the remaining indices we set $\mathscr{A}_i = \{b_i, \bar{b_i}\}$ with $1 \le w(b_i) < l$. The (\exists, \exists) -property is readily verified.

6. Proof of Theorem 2.1

Since $M_n(\forall, \exists) \ge M_n(\exists, \forall)$ we conclude from Theorem 2.3 that $M_n(\exists, \forall) \le 2^{n-1} - 1$. The issue is to construct a cloud-antichain satisfying this bound asymptotically. We make use of the *general form of Baranyai's theorem*: Let n_1, \ldots, n_t be natural numbers such that $\sum_{i=1}^t n_i = \binom{n}{k}$; then $\binom{\Omega_n}{k}$ can be partitioned into disjoint sets P_1, \ldots, P_t such that $|P_i| = n_i$ and each $l \in \Omega_n$ is contained in exactly $\lceil n_i \cdot k/n \rceil$ or $\lceil n_i \cdot k/n \rceil$ members of P_i .

Our main auxiliary result is the following lemma.

Lemma 6.1. For positive integers n, k, λ with $2k - n \le \lambda < k$, $\binom{\alpha_n}{k}$ has a partition $P(n, k, \lambda) = \{P_1, P_2, \dots, P_{\lfloor \frac{1}{2} \binom{n}{k} \rfloor}\}$ with $P_i = \{a_i, b_i\}$, $|a_i \cap b_i| = \lambda$.

Proof. If $\lambda = 0$ or $\lambda = 2k - n$, then the statement follows from Baranyai's theorem. We proceed by induction. If at least one of the numbers $\binom{n-1}{k}$, $\binom{n-1}{k-1}$ is even, then we see that

$$|P(n, k, \lambda)| = |P(n-1, k, \lambda)| + |P(n-1, k-1, \lambda-1)|.$$

If $\binom{n-1}{k} \equiv \binom{n-1}{k-1} \equiv 1 \mod 2$, then there remain two sets $v = \binom{\Omega}{k} - 1 \setminus P(n-1, k, \lambda)$, $u = \binom{\Omega_{n-1}}{k-1} \setminus P(n-1, k-1, \lambda-1)$. Using symmetry we can assume that $|v \cap u| = \lambda$. \square

For even n=2l as well as for odd n=2l+1 we define the cloud-antichain

$$P = \bigcup_{s=l-1, (l-1)/7}^{s=l+\lfloor (l-1)/7 \rfloor} P\left(n, s, l-s+3 \left\lfloor \frac{l-1}{7} \right\rfloor\right)$$

and calculate

$$|P| = \sum_{i=-1}^{\lfloor (l-1)/7 \rfloor} \left| \frac{\binom{n}{l+i}}{2} \right| \sim \frac{1}{2} 2^{n}.$$

It remains to be seen that P has the (\exists, \forall) -property. For this, consider two clouds $\{a, b\}$ and $\{a', b'\}$ with |a| = |b| = s, |a'| = |b'| = s' and w.l.o.g. s < s' and $a \subset a'$. We claim

that $b \not= a'$, because otherwise $a \cup b \subset a'$, in contradiction to

$$|a \cup b| = 2s - \left(l - s + 3\left\lfloor \frac{l - 1}{7}\right\rfloor\right) = 3s - 3\left\lfloor \frac{l - 1}{7}\right\rfloor - l \geqslant 3\left(l - \left\lfloor \frac{l - 1}{7}\right\rfloor\right) - 3\left\lfloor \frac{l - 1}{7}\right\rfloor - l$$

$$= 2l - 6\left\lfloor \frac{l - 1}{7}\right\rfloor > l + \left\lfloor \frac{l - 1}{7}\right\rfloor \geqslant s'.$$

We claim also that $b \notin b'$, because otherwise $a \cap b \subset a' \cap b'$, in contradiction to $|a \cap b| = l - s + 3 \lfloor (l - 1)/7 \rfloor > l - s' + 3 \lfloor (l - 1)/7 \rfloor$. $b' \notin b$ and $a' \notin b$ obviously hold, because |a'| = |b'| = s' > s = |b|. Finally, we claim that $a \notin b'$, because otherwise $a \subset a' \cap b'$, in contradiction to $|a| > |a \cap b| > |a' \cap b'|$. We have shown that $\{a, b\}$ and $\{a', b'\}$ are not comparable in the sense (\exists, \forall) .

Remark 6.2. Herwig [5] was the first to show that $\liminf_{n\to\infty} Mn(\forall, \exists) 2^{-n} = c > 0$. By arguments based on the marriage theorem he actually proved that $c \ge \frac{1}{18}$.

7. Proof of Theorem 2.4

Since necessarily (0,0,...,0), $(1,1,...,1)\notin\bigcup_{i=1}^N\mathscr{A}_i$, we have $\{A_i\}_{i=1}^N\subset\Omega'\triangleq\mathscr{P}(\{0,1\}^n\setminus\{(0,0,...,0),(1,1,...,1)\})$ and thus $N\leqslant 2^{2^{n-2}}$. On the other hand, let us consider $\{\mathscr{A}_i\}_{i=1}^{N^*}\subset\Omega'$, where each \mathscr{A}_i contains a subset $\{\alpha,\bar{\alpha}\}$ and N^* is maximal. The (\forall,\exists) -property holds.

There are $2^{n-1}-1$ sets $\{\alpha, \bar{\alpha}\}$ and therefore

$$|\Omega'| - N^* = \sum_{k=0}^{2^{n-1}-1} {2^{n-1}-1 \choose k} \cdot 2^k = 3^{2^{n-1}}.$$

This implies $N^* = 2^{2^{n-2}} - 3^{2^{n-1}} \sim 2^{2^{n-2}}$.

8. Proof of Theorem 2.6

Consider all clouds containing at least two sequences of weight $\lfloor n/2 \rfloor$. This defines a cloud-antichain of type (\exists, \exists) and length

$$N = 2^{2^n} - 2^{2^n - \binom{n}{\lfloor \frac{n}{2} \rfloor}} \binom{n}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} + 1 \sim 2^{2^n}.$$

Clearly $N_n(\exists, \exists) \leq 2^{2^n}$.

References

4

[1] R. Ahlswede and Z. Zhang, An identity in combinatorial extremal theory, Adv. Math. 80 (1990)

- [2] R. Ahlswede and Z. Zhang, On cloud-antichains and related configurations, Discrete Math. 85 (1990) 225-245.
- [3] R. Ahlswede and Z. Zhang, A new direction in extremal theory, J. Combin. Inform. System Sci., to appear.
- [4] Z. Baranyai, On the factorization of the complete uniform hypergraph, in: A. Hajnal, R. Rado and V.T. Sós, eds., Colloquia Mathematica Societatis, János Bolyai 10. Infinite and finite Sets, Keszthely, Hungary (1973) 91-108.
- [5] B. Herwig, private communication, September 1991.
- [6] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928) 544-548.