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Abstract

For six natural notions of cloud-antichains in a partially ordered set # we determine
asymptotically their maximal lengths if 2 is the family of all subsets of a finite set. Actually, in
three cases we even have exact results.

1. Introduction

The notion of an antichain in a partially ordered set was generalized [1, 2] to the
seemingly natural notion of a “cloud-antichain” (2/;)’.,. Whereas in antichains
elements of a partially ordered set are compared, in cloud-antichains sets of elements
take their role. Elements in different sets «f;, called clouds, are required to be
incomparable. Formally, for every two clouds «/; and 7, we have

A% Ajfor all Ajeof; and all Aje ;. (1.1)

In [2] further notions of cloud-antichains were introduced. The logical structure of
formula (1.1) suggests the idea of an antichain of type (¥, ¥); the new notions in [2] are
of the types (v, 3), (3,V), and (3, 3).

In the sequel we always consider the partially ordered set 2 =2%" the power set of
Q,={1,2,...,n}, with set-theoretic containment as order relation. (&), is always
a family of subsets of 2. It is said to be of type (3, V) if, for all i#j,

there exists an A;e of; with A; ¢ A; and A4; D A; for all A;je ), (1.2)
it is of type (¥, 3) if, for all i #j,

for all A;e of; there exists an A;e.o; with 4;¢ A; and A; D 4; (1.3)
and it is of type (3, 3) if, for all i #j, there exists an A;e s,

and there exists an A;e of; with A;¢ 4; and 4; D A;. (14)
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The maximal cardinalities N of such systems as functions of n are denoted by N,(3,V),
N,(¥,3), and N,(3, 3), respectively.

Obviously, an analogously defined quantity N,(V, ¥) equals (| n2 ), because in an
optimal configuration |o#;|=1 and Sperner’s classical theorem [6] applies. We also
study systems with disjoint clouds. The maximal cardinalities are then denoted by
M3, V), M,(v,3), and M,(3, 3), respectively.

We call two functions f:N —»N and g:N =N asymptotically equivalent and write

fm)~g(n) if

. fm)

All the six functions measuring maximal lengths of cloud-antichains in the cases

described are determined up to asymptotic equivalence. Three of the functions are
even determined exactly.

2. The results

Theorem 2.1,
M,3,v)~21,

Theorem 2.2.
Nn(ay v)=(L k’/cz _])) Where k =(|_ n'/'2 J)

Theorem 2.3.
M, (v, 3)=> L Te=2
271-1 ifnx3.

Theorem 2.4.

N,(V, 3)~ 222,
Theorem 2.5,

MA@, 3)=( a5 p+| &%M -
Theorem 2.6,

N,@, 3)~22"

The proofs are delegated to the followin

_ g sections. We begin with those for the exact
estimates.
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Throughout the paper we use a representation of the partially ordered set (#, <) as
sequence space ({0, 1}", <), where A€ 2 corresponds to S(4)=(a,, a,,...,a,) With

_J1 ifteA,

"T10 if t¢A,
and the inclusion A c B translates into S(4) < S(B)=(by, b, ..., b,), which means
that a,<b, for t=1,2,...,n.

3. Proof of Theorem 2.2

We view the cloud-antichain {s#;}}-, of type (3, V) in {0, 1}". For x€ {0, 1}" let the
weight w(x) be the number of 1’s in x. Let m be the maximal weight of members of
N o and let {vy,v,,...,0,} be the set of members of | JI ;4 with weight m. We
assume first that m>|n/2]. It is known that there exist different sequences
vy, v, ..., v, of weight m—1 and the following property for corresponding sequences:

for j=1,2,...,1. 3.1)

For every i (i=1,...,N) we replace all members of {vy, 02,...,0} in of; by the
corresponding members of {v, v, ...,v;} and call the new cloud ;.

One readily verifies that {4;}), has again the (3, V)-property. Symmetrically, one
can perform a transformation of the clouds via sequences of smallest weight if it is
smaller than | n/2 ). Iteration of these two kinds of transformation results in a cloud-
antichain {/¥]), with the (3, V)-property involving only sequences of weight| n/2 |.
There are k=(|,},)) such sequences and every ¥ can be represented via the usual
incidence relation as a binary vector u; of length k.

Now observe that the (3, ¥)-property is equivalent to the following one: ; F u; for
all i #j. Sperner’s theorem [6] implies N <(|i}))-

Conversely, by choosing all clouds consisting of | k/2 | sets with | n/ 2 | elements
each, we achieve this bound.

’
ijUj

4. Proof of Theorem 2.3

We make use of an auxiliary result. For X < {0, 1}" let %,(X) be the set of elements
of {0, 1}" which are comparable with at least one element in X.

Lemma 4.1. If X is an (ordinary) antichain in {0, 1}", >4, then |€,(X)|22|X|+3.

Proof. Suppose oe X with w(x)=1 (or w(x)=n—1). Then necessarily |, ({e})\{(0,...,0),
(1., )} =2""1—1 and %,({a})n(X\{z})=0, which implies |€,(X)\{(,....0)
(yeros D21 (ENO, -, O) (1o, DY+ X[ =1=2""1 =24 |X]. Now, 22+
|X|>2|X| holds for n>5, because there 2"~ '—2>( 4} )>|X|, and for n=4,
because here | X|<4 under the supposition w(x)=1 for ae X.
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It remains to consider the case where 2<w(a)<n—2 for all e X. Define now
X*={(a1,az,...,a,_l,d,,)l(al,az,...,a,,)eX} and notice that X, X*c €,(X)\
{(0,...,0),(1,...,1)} and that X*~ X =, because X is an antichain.

Moreover, for every (ay,...,a,)€ X there is some ie[1,n—1] with ¢;=1 and thus
€=(0,...,0,1,0,...,0)€%,(X), e;¢ X U X*. Therefore

G (ONO,..,0,(L, .., DY =X |+ X*+1=2|X|+1. O

Now Theorem 2.3 is readily established. Suppose first that 1=|of,|=|o,|
= =] <2 gy | € €| Ay with I<s<( a2 )

Define then T=%,(| Ji_, #%)\({Ji=; &) and conclude with Lemma 4.1 that
|T|>2s+3~s. Since by the (¥, 3)-property Tr( UK o)=0, we have

N
22 Y ||+ T|>54+2(N—s)+5+3
i=1

and thus
N2 12 for n>4. 4.1)

Furthermore, since {(0,...,0), (1,..., D}n{N, #:=0 we have in the remaining case
2<|e1|< <oyl N<$(2"-2), and thus N2,

On the other hand, we have a simple construction: every .o/, consists of a sequence
%#(0,...,0), (1,...,1) and its complement ;. There are 2"~ ! —1 such clouds. The
(¥, 3)-property holds. Finally, the cases n=2, 3 go by inspection.

In the case n=2 the only optimal configuration has clouds of cardinality 1.
For n=3 there is (up to isomorphics) also the solution {{110}, {101}, {011}} with
clouds of cardinality 1 only. Furthermore, there are three nonisomorphic solutions,
for instance {{110, 001}, {101, 010}, {011, 100} }, {{110, 010}, {101, 001}, {011, 100} },
and {{110, 010}, {101, 100}, {011, 010} }, which clouds of cardinality 2.

Actually, for n>4 our construction is unique, ie. every cloud o is of the form
o ={a, a}. Since by the previous arguments in an optimal configuration all clouds
have cardinality 2, it remains to look at a cloud o ={a, b} with b+4. Then a and
b have a component value in common, say 0 in the first component. But then
(0, 1,...,1) cannot be in any other cloud, it has to be in o and equal, say a. If now
w(b)<n—3, then there is a ¢ with w(e)=w(b)+1, c < a, ¢ >b, and c¢ X, o

This contradicts the equality U =0, )" {(,...,0), (1., . ., 1)}. If, on the other

hand, w(b)=n—2>2 (since n >4), then some d with w(d)= wb)—1andd<b<ais
notin { Y., o,

S. Proof of Theorem 25

There are at most (LnJ2 )) clouds with one member, and the sequences (0, 0,...,0)
and (1, 1,...,1) can be eliminated from all clouds, Therefore

ve(, J)+[2"‘(2"‘2‘<L;J>)-J'
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We abbreviate the right-hand-side expression by R and now construct R clouds with
the (3, 3)-property.

Case n=2I For i=1,...,(}) choose o;={a;} with w(a;)=I. For i=(})+1,...,R
choose of;={b;, b;} with 1 <w(b,)<!.

Case n=21+1: For n=3 the choice &/, = {100}, o/, = {010}, /3= {001}, o/, = {011,
101, 110} works. For n>3 there exists a partition of vectors of weight /[+1 into
| 34)/2 | disjoint pairs & ={c;, d;} with Hamming distance dy(c;, d;)>4. Further,
for the next (¥ ') indices we define ;= {a;} with w(a;)=1, and for all the remaining
indices we set o, ={b;, b;} with 1 <w(b))<L The (3, 3)-property is readily verified.

6. Proof of Theorem 2.1

Since M,(¥, 3)> M, (3, V) we conclude from Theorem 2.3 that M,(3, V)2 -1
The issue is to construct a cloud-antichain satisfying this bound asymptotically. We
make use of the general form of Baranyai's theorem: Let ny, ..., n, be natural numbers
such that ¥i_ n;=(}); then (27) can be partitioned into disjoint sets Py, ..., P, such
that | P,|=n, and each /e, is contained in exactly [ n;-k/n Jor| n;-k/n |members
of P;.

Our main auxiliary result is the following lemma.

Lemma 6.1. For positive integers n, k, A with 2k—n<A<k, (%) has a partition
P(n, k, l)={Pl, Pz, ,PL%C)J} With P,-={a,-, bi}a Iamb,v|=)..

Proof. If 1=0 or 4 =2k —n, then the statement follows from Baranyai’s theorem. We
proceed by induction. If at least one of the numbers ("3'), (3Z1) is even, then we see
that

|P(n, k, )| =|P(n—1, k, )| +|P(n—1, k=1, A=1)].
I (";Y)=(-))=1mod2, then there remain two sets v=("- )\ P(n—1,k, A),

u=(9-)\ P(n—1, k—1, A—1). Using symmetry we can assume that jvnu|=4. O

For even n=2 as well as for odd n=2/+1 we define the cloud-antichain

s=14 (=17 ] I—1
p= | P(n, s,l—s+3l—7—J

3=l—L(l-—I)/7J
and calculate
Li—1)7 J "
p= 3 [
=~ (-1/7]

It remains to be seen that P has the (3, ¥)-property. For this, consider two cleu'ds
{a,b} and {a, b} with |a|=|b|=s, || =|b'|=5 and wlog.s<s' andac d' We claim




14 R. Ahlswede, L.H. Khachatrian | Discrete Mathematics 131 (1994) 9-15

that b¢a', because otherwise aub ca/, in contradiction to

oot il o

I-1 -1
=2]l—6— — |25

We claim also that b4 b, because otherwise anbc a’'nb, in contradiction to
lanbl=I-5+3[ (I-1)/7 |>1-5'+3| (I-1)/7].b' ¢ b and a’ ¢ b obviously hold, be-
cause |a'|=|b’| =5 >s=|b|. Finally, we claim that a ¢ b', because otherwise a < a' " P,
in contradiction to |a|>|anb|>|d’ nb'|. We have shown that {a,b} and {a’, b’} are
not comparable in the sense (3, V).

Remark 6.2. Herwig [5] was the first to show that lim inf, . o Mn(¥,3)27"=c>0. By
arguments based on the marriage theorem he actually proved that ¢> .

7. Proof of Theorem 2.4

Since necessarily (0,0, ...,0),(1, L.,D¢UL o, we have {4}, ,c@
22({0, 1}"\{(0,0,...,0), (1, 1,. ,1)}) and thus N<22"™*, On the other hand, let us

consider {o/;}I", Q , where each &;contains a subset {a, @} and N* is maximal. The
(¥, 3)-property holds.

There are 2"~ ' —1 sets {«, &} and therefore

-1
, zn 1_
21— Z ( ) P

This implies N*=2%"-2_32""' L 92"-2

8. Proof of Theorem 2.6

Consider all clouds containing at least two sequences of weight | n/2 |. This defines
a cloud-antichain of type (3,3) and length

N=2%"_)2"- ij)((u J) ) 27,

Clearly N,(3,3)<2%",
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