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In 1975 R, Ahlswede and G. Katona posed the following average distance problem
{Discrete Math. 17 {1977), 10): For cvery cardinality ae {1,.,2"} determine
subsets 4 of {0,1}" with #.4 =a, which have minimal average inner Hamming
distance. Reeently I Althéfer and T. Silike (/. Combin. Theory Ser. B 86 (1992),
296-30t) gave an cxaci solution of this problem for the cecmtral vajue g=2""°
Here we present nearly optimal solutions for a = 2% with 0 < 1 < 1: Asymptaticaily
it is not possible to do better than choosing A, = {{x,, .. x)JIX7_; x,=an |},
where A= —aloga—{i—a}log(l —x) Next we investigate the following more
general problem, which occurs, for instance, in the construction of good write-
efficieni-memories (WEMs). Given any finite set M with an arbitrary cost func-
ton d: M x M - R, the corresponding sum type cost function o4,: M"xM" - R
is defined by &, ((x., ... x,} {¥1, - ¥a)d=XI. dx, »,) The task is to find
scts A, of a given cardinality, which minimize the average inner cost
(1 (#A4,0°) e a, Zaca, duin &’). We prove that asymptotically optimal sets can
be constructed by using “mixed typical sequences” with at most two different local
configurations. As a non-trivial example we look at the Hamming distance for
M={1, . .,m} withmz23. © 194 Academic Preas, Inc.

1. {0, 1}" anD THE HAMMING DISTANCE

For two elements x={(x,,..,X,} and y={(y;, .. y.) in {0,1}" the
Hamming distance is defined by

dix, y)= #{Il-'cx 7&};1}'

For a set A< {0, 1}" the average inner distance is defined by

Y, ¥ dix y)

[#"4)2 xed yed

An important example is given by the set 4= {x|w(x)=k}, where
w(x)= # {t|x,=1}. By symmetry of 4 its average inner distance is

& 1 X rn—k\s k . 2k{n —k)
"‘“E( )(k_,-)-’-“ W

¢

d(A)=
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168 AHLSWEDE AND ALTHOFER
so d(A)/n=2k/n(1 —k/n). Let

d (a) = min dA) forall ae{0,1,.,2"}!

Ac{0,1": #A=a

We derive asymptotically tight bounds for 4,(a), when a= () with a
constant a e (0, 1). In this section we show

THeOREM 1.1. Let {a,);., be a sequence of natural numbers with 0 <

n=1

a,<2" for all n and lim,_ . inf(a, /(] ))>0 for some constant a,
O<a<3. Then

iim inf

n— o0

d,(a,)
n

= 2a(l —a).

The optimally of this bound follows from the example above. Note also

that for 4 =2"""' the subcube—and not the sphere—is the best configura-
tien [5].

Proof of Theorem 1.1. The key idea in the proof is to generalize the
problem by studying probability distributions on {0, 1}" with a given
entropy instead of sets with a given cardinality. Let P=(P(x)),. (o, 1}» bE
a probability distribution on {0, 1}". The average inner distance of P is
defined by

d(P)= Y Y. P(x)P(y)d(x, y).
xe{0, 1} ye {0, 1}
The entropy of P is given by
H(P)= ¥  —P(x)log P(x).
xe {0, 1}
(In this note we take the logarithm with base 2.)
We have 0 < H(P)<n for every distribution P on {0, 1}". Let
d,(A) =min d(P),
where the min is taken over all P with H(P) > 4. A local exchange argument
shows that this minimum is assumed for a distribution P with H(P)}=A.
In this paper d, d, d,, ctc. are functions related to distances or cost functions. When the

same symbol is used for more than one function, their differences are made clear by the symbols

used for the arguments (sets, integers, or probability distributions), As a benefit for this loose
notation the reader is not burdened with too many symbols.
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LemMa 1.2, Let {H,)™_, be a sequence of real numbers with 0 << H, <n

n=1

for all ne N and lim, _, ,, inf(H,/n) 2 A for some constant 1€{0,1]. Then

lim inf ddH,)

H— a0 H

=20(l —a),

where o< (0, ) with A= h(z) := —aloga— (I —a)log(l —a).

The theorem can be derived from this lemma in the following way.
A set A = {0, 1}” corresponds in a natural way to the probability distribu-

tion P,, given by

L, if xeA
P {x)= #A4
0, if x¢Ad
We have
d(A)=d(P )
and

H(P,)=log #A.

Theorem 1.1 follows from Lemma 1.2, as

__L_ bl ax ) é( n ) < 2 mh(Lon Um)
n+2 | an

for all 0<a< 1 and all n (see [6, pp. 284, 285] for an elementary proof).
Hence

lim inf—2 >0

™ (o)

log

implies

im inf 222 > h(a).

T s n

It remains to prove the lemma.

Proof of Lemma 12. For a probability distribution P on 10,1}" we
define marginal one-probabilities

p.= ) P(x)y for t=1,.,n

xel0, 1}ix =1



170 AHLSWEDE AND ALTHOFER

From the properties of the entropy function [6, p. 28] it follows that

n

HPYS S hip)= T3 —pilogpi—(1—pilog(1~p),  (L1)

=1 =1

where equality holds iff P is the product of n distributions (1 — p,, p,) on
{0, 1}. For the average inner distance of P we have

d(Py= Y 2p,(1—p) (1.2)

=1

hence it is completely determined by the p,.

The problem of minimizing 4(P) for a fixed entropy level H(P) is equiv-
alent to maximizing H(P) for a fixed distance level d(P). Thus by (1.1)
and (1.2) it is sufficient to solve the following analytical problem. For

f{pl: PZ: R ) Pn)=zr= 1 h(P,) ﬁﬂd

max F(Ds e P2) under the constraint
Osp=slforr=1, .75

i 2pl —p,)=20{1 —a}n. (L.3)

=1

By the symmetry of A(p) and p(1 — p) in p and (1 — p) we may assume
without loss of generality that 0< p, < § for all «.

The statement of the lemma suggests that the solution of (1.3) is to

choose p,=x for all 1. This will be proved below by a simple exchange
argument between only two coordinate:

Find max  f(p,, p;} vunder the constraint g(p,, p,)

0 py. s 1/2
=2p(1—p)+2p,(1 — p,)

=¢  for some constant ce [0, 1]. (1.4)

Claim. For every constant ce [0, 1], (1.4} is solved by choosing p, = p,.

Proof of the claim. A necessary condition for an innmer point

(£1, P2)€(0, 3)* to be at least a local (maximum or minimum) solution of
{1.4) is that

kp.)y:=log(l—-p)—logp,~x(l1—2p")=0 for r=1,2,

where x € R is a Lagrange multiplier.
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For k<2, k.(-)is strictly positive for alt pe (0, 3). For every x> 2 there
exists some p*(x) € (0, 1) such that

<0, if p*x)<p<i,
kip)s =0, if p¥x)=p,
>0, if 0<p<p*x)

Hence the only candidates for local solutions of (1.4) are inner points
(p;, p,) with p, = p, or boundary points which are of the form (0, p) for
e, or (p, &) for ez 3.

h' -= dh/dp is continuous in p in the interval (0, 11 As #'(0)= + oo and
h(p)< +co for all pe(0, 3], (1.4) has a local minimum at {0, p). Hence
for c <1 (1.4) is solved by the point (py, p2) with p,=p,.

For ce[3,11 let p.g.e[0,3] be the real numbers satisfying

g(Pcs Pc)=c = g(qcs %)
We define

Fe)=flpo, p)—Fg. 4

As (p., p.) and (q,, 3} are the only candidates for a solution of (1.4), we
are done if f(¢) is non-negative for all ce [$. 1]

F(3)>0, f(1)=0, and 7 is continuous in c. If there were some c€ (3, 1)
with f{c) <0, there would have 10 be another parameter c*€ (3, c) with
F{c*)=0. But it cannot be that (p.+, p.-) and (g, 1} (3, .} are the only
candidates for min or max solutions of (1.4), if f(pos, pes)=J(gces )

This completes the proof of both the claim and the lemma. |

Next we extend the analytical method and generalize Theorem L.L

2 ARBITRARY SETS M AND SUM Typre CosT FUNCTIONS

In Section 1 we have investigated the problem of minimizing the average
inner distance of subsets of {0, 1}" of a given cardinality. This is only a

special case of the following more general problem:
Let M= {1, ..,m} be a finite set and let d: M x M — R be an arbitrary

real-valued cost function. For every ne N the corresponding sum type cost
function d,: M" x M” — R is defined by

doix, y) = 3 d(x,, y.)
=1

for all x={(X;, vy Xph ¥V =_{F15 - Yu)EM".

582b/61/2-3
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FTor a set 4 < M" the average inner cost is defined by

1

Y Y d(xp)

xed yed

and for every ae {1, .., m"} we define

d(a)=  min d.(A).
AcM?: fd=n
We are interested in good bounds for the function d,.
This average inner cost plays an important role, for instance, in the design
of good WEM-codes [4].

For the presentation of the general result on asymptotically optimal
configurations of cardinality ~2*, 0 <1 <logm, we need a notation of
typical sequences. Let P=(P(1}),.., P{m)) be a probability distribution
on M. A tuple (x,,..,x,)eM"is of type P, if # {tix,=i}=P(i)n for all
ie{l,..,m} Let T,(P)={xe M"|x has type P}. Then # T, (P)~27F1"
if T.(P)# 3. See, for instance, Refs. [6, Section 12.1; 7] for a more
detailed introduction and discussion of typical sequences.

Consider a constant v, 0 < v< 1, and two probability distributions P and

P on M. The e¢lement (x,,..,x,)eM” is said to be of mixed type
(vP,(1—-v)P'), if

(X15 s X)) is of type P
and

(van_[+ LA xn) is of type y

As an example consider M = {0, 1} and the level set A= {x|{w(x)=k}. Let
P=((n—k)/n, k/n) and let P’ be any other distribution on {0, 1}. All
elements of A are of the mixed type (vP, (1 —v) P') with v=1.

Let T,(v, P, P'y= {xe M"|x is of the mixed type (vP, {1 —v) P')}. Then
# T"(V, P, Pf) ~ 2H(P)wl+H(P‘)(1 —¥) n

THEOREM 2.1. Fix M={1,2,..,m} and a cost function d: M x M - R.
For every A, O<i<logm, there exists a mixed type (v, P, P’} with
vH(P)+ (1 —v) H(P')= A, such that

lim sup [d,(T,(v, P, P'}) —d,(2*)] < + 0.

In case of tim,, , ,, d,(2*)e {+ w0} this means

i (T P P))
e df277)
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In other words, the set T, (v, P, P’) have asymptotically minimal average
inner cosi.

Proof. As in the proofs of Section! we start by generalizing the
problem to probability distributions Q on M”, defining average inner cost
d(Q) and replacing the cardinality condition by a lower bound on the
entropy H(Q). Given ¢,(k) =X ., ., @(x) for all re{l, o ), kEM, we
have

Q)= i [i Y. qik) g () d(k, 1)]

=1 k=1 =1
and

HQ) < ¥, H(g(1), -, g(m)):

=1

In the last line equality holds iff Q is the product of its n one-dimensional
marginal distributions {see [6, p. 28 ] for a proof ). For a fixed 1€ [0, log m},
we want to solve the following analytical optimization problem: Find

min d(Q)  under the constraint 3 H{(g(1), ... gd{m)) = in, (2.1)

=1

where each tuple (g{1). ... 4.(m)} is a probability distribution on A.

Our goal is to show that (2.1) is solved approximately by a combination
of at most two different distributions P and P’ on M, taking P for the first
| vn | coordinates and P’ for the other n—| vn_| coordinates. Of course
P, P'. and v will depend on 1. We start with

LEMMA 2.2, Consider real numbers Xy, ..o Xy ¥is -0 Vns and a probability
distribution {(ji,, .. ft,) on N= {1,..n}. Then there exist two elements

j, ke {l,..,n} and some pe [0, 1], such that

#xj‘l"(l—ﬂ) Xy X = Z He Xy (2.2)
r=1

and

uy,+ (L =) yez Pi= 2 M Yo
=1

Proof of Lemma 2. We replace x; by x,— X and y, by y;— 7. So the
desired inequalities are

px,+ (1 — p) %, <0,
pp;+ (1 — ) v 0.



174 AHLSWEDE AND ALTHOFER

Consider the set of points

S={(x1, ¥ (X2, ¥2) s (X5 ¥} }

in the plane with the center of mass at the origin. The convex hull of this
set is a convex polygon with the origin as an interior point. Some edge of
the polygon must lie at least partially in the second quadrant and this give
the result. |

We are grateful to an unknown referee for this concise proof Our
original proof can be found in [1].

For the next step consider a compact set K< R™, continuous functions
f.g: K—R, and for all ne N the optimization problem

min > f{z,)  under the constraint

(Z1y ey 2} E KT pe 1

Y glz)=cen, where ¢ € R is some fixed constant. {2.3)

r=1
The next lemma shows how a solution of this problem can be approx-

imated by solutions of the simpler form {Z,, Z,, ..., Z,, Z3, Z34 ws Z2)-

LeMMA 2.3, There exist 2|, ;€ K and ve [0, 1], all depending on ¢, such
that

Lvn | g(Z))+(n—Lvn]) g(Z)<en
and
Len | fED+(n—Lvn]) f(2:) = Y fzr)<IA(Z) — f(E)
Jor all ne N, where (z¥ ,,, .., z¥ ) is an optimal solution of (2.3).

Proof. The optimization problem

min : [vf(z,) + (1 —v) f(z2)]

{zy. 23 e K2, ve [0, &
under the constraint vg(z,)+ (1 —v) g(z,)=c (2.4)
has a solution, say (Z,, Z,, v). (2.5)

For the existence of this solution the continuity of f and g is needed.
Without loss of generality assume that g(z,) < g(z,). Now fix ne N.
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Putting x, = f{z},), y,= g(z? ), and 4,=l/nfor t=1, .., n, we can apply
Lemma 2.2 and see that there are j, ke {1, .., n} and ge [0, 1], such that

prf(z¥) + (1= p)afzE )<Y f(z¥,)

and
ung(zr,)+ (1 — u)ng(z} ) = cn.

Thus by {2.4) and (2.5) we also have

wnf(Z)+ (1 —v)nf(E)< Y, flzF,)

=1
and
vng(Z,)+ (1 —v)ng(Z;) = cn

This completes the proof of Lemma 2.3. ||

Let 3,,(&]=min d(Q), where the min is taken over all probability

distributions ) on M” with H(Q) = ni.
For a mixed type (v, P, P') we define the corresponding product distribu-

tion Q, on M" by the marginal probabilities

oo [PEL 1<l
7! )_{P’(k), i lw]<it<n,

for all ke M.

LEMMA 24. For every 2€[0, log m] there exists a mixed type (v, P, P'},
such that
fim sup {d(Q,) — d.(A)] < max d(j, k)— min d(j, k)<

n - Qo ke M LhkeM

and
[vit | H(P)+ (n—vn]) H(P') 2 An.

Proof of Lemma 2.4. For probability distributions P on M we define
two functions,

AP =5 5 PU) PG, k)

j=1 k=1
and
g(P]=H(P)9
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and apply Lemma 2.3. Obviously | f(P)~ f(P'H <max d(j, k) —min d{j, k)
for all P, P’. This completes the proof of Lemma 24. §

Theorem 2.1 follows immediately, as —c<d,(T,(v, P, P} —d(Q,)sc
for all meN, where the finite bound ¢ depends only on m and
dMxM-R |

Theorem 1.1 shows that the special case of a degenerate optimal mixed

type (v, P, P') with v = | occasionally occurs. Let us now apply Theorem 2.1
to a non-trivial example.
Choose M=1{1,2,3} and

0, if x=y,

d(x’y)={1, i ox+y.

Hence 4, is the Hamming distance again, but now for alphabet size 3
instead of size 2.
The results mentioned below have been found by computer runs. We

omit the theoretical proofs which are due to J. Johnen. In the first step we
have to understand the case n=1.

Fact 2.5. Fix some 1€[0,log3]. Among all distributions P on M with
H(P)= A the distribution with minimal average inner cost is of the form

(g, (1 —4)/2, (1 —q)/2) with g = (1 —g)/2.

Minimizing 4, for a given cardinality 2* is equivalent to maximizing the
cardinality under the condition d, € en. The computer results give

Fact 2.6. Among all subsets of {1, 2, 3}" with average inner cost <cn
the following ones have asymptotically maximal cardinality:

. () T,(P), where P=(q,(1—q)/2,(1~q)/2)) with g2 (1 —g)/2 and
dP)=¢, if 0y,

(i) T,v, P P), where P=(3,1, 0, P =(}1L,1), and vd(P) +
(1-v)d(P)=c, if L<c< L.
In the more general case with M= {1, .., M}, m>3, and

0, if x=y

d(x, )=
tx, ¥) {1, i x#

our computer results indicate that the optimal solutions have the following
structure.

Observation 2.7. Fix some 4 € [0,1log m). Among all distributions P on
M with H(P)=4 the one with minimal average inner cost is of the form
(g, (1 —g){m—1),..(1—¢q){m—1)) with ¢ = (1 — g)/(m—1).
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Observation 2.8. For every m>=3 there is some threshold
c* = (2m—3)/m(m — 1) such that among all subsets of M" with average
inner cost <cn the following ones have asymptotically maximal car-
dinality:

(i) TAP) where P=(g (1—q)/(m—1),..(1—¢g)(m—1)) with
g=2{(1—g)im—1)and d(P)=c, il 0K c< .

(ii} T,(v,P, P’), where P=(g%, (1 —grY(m—1), ., (1—gz)/(m—1))
with d(Py=c*, P =(l/m,.,1/m), and vd{(P)+ (1 ~v)d(P)=c, |if
c* < e(m—1)/m.

ACKNOWLEDGMENTS

We are gratefully indebted to two anonymous referees for several helpful comments and to
Professor Johannes Johnen for his proofs of Observation 2.7 and 2.3,

REFERENCES

|. R. AHLSWEDE AND I, ALTHOFER, The asymptotic behaviour of diameters in the average,
Preprint 91099 SFB 343, Bielefeld.

2 R. AHLSWEDE, N. Cai, aNp Z. ZHaNG, Diametric theorems in scquence spaces,
Combinatorica 12, No. 1 (1992), 1-17.

3. R. AHISWEDE AND G. Katowa, Contributions to the geometry of Hamming spaces,
Discrete Math. 17 (1977), 1-22.

4. R. AHLSWEDE AND Z. ZHANG, On write-cfficient memories, Inform. and Comput. B3 {1939},
80-97.

5. I. ALTHOFER AND T. SILLKE, An “average distance” inequality for large subsets of the cube,
J. Combin. Theory Ser. B 56 (1992), 296-301.

6. T. M. COVER AND F. A. TxomaS, “Elements of Information Theory,” Wilcy, New York,
1991,

7. 1. Csiszir Anp J. KOrner, “Information Theory: Coding Theorems for Discrete
Memoryless Systems,” Academic Press, New York, 1982.



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 

