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ABSTRACT

We consider two models of parallel multisplitting chaotic iterations for solving
large nonsingular systems of equations Az = b. In the first model each processor can
carry out an arbitrary number of local iterations before the next global approximation
to the solution is formed. In the second model any processor can update the global
approximation which resides in the central processor at any time. This model is a
generalization of a sequential iterative scheme due to Ostrowski called the free
steering group Jacobi iterative scheme and a chaotic relaxation point iterative scheme
due to Chazan and Miranker. We show that when A is a monotone matrix and all the
splittings are weak regular, both models lead to convergent schemes.
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1. INTRODUCTION

The parallel multisplitting iteration algorithm for solving large nonsingular
systems of equations

Ax=b (1.1)
was recently suggested by O’Leary and White (1985), and it has been further

investigated in White (1986a,b), and in Neumann and Plemmons [1987].

According to O’Leary and White, multiple splittings of the coefficient matrix
A into

A=M,~N,, det(M,) =0, I=1,...,k, (1.2)

are formed, and the parallel iterative multisplitting procedure

k k
yW= Y EM'Ny“ D+ Y EM'b (1.3)
=1 =1

is executed. Here E,, 1 < I < k, are nonnegative diagonal matrices, which we
may refer to as masking (or weighting) matrices, such that

Ek:E, =1 (14)
=1

A key idea here is this: There are k processors connected to a host processor.
At each major stage of the iteration the Ith processor computes only those
entries of the vector

M;'Ny® + M;'b (1.5)

which correspond to the nonzero diagonal entries of E,. The processor then
scales these entries so as to be able to deliver the vector

EM;'Ny® + M;'b (1.6)
to a central or host processor.

O’Leary and White (1985) and White (1986a, b) further investigate classes
of matrices A and types of splitting (1.2) which lead to a convergent
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multisplitting procedure (1.3). They show, for example, that if all the split-
tings in (1.2) are weak regular, that is,

M '>0 and M;'N>0, I=1,.,k, (1.7)
and if A is monotone, that is, A is nonsingular and
A7'>0, (1.8)

then the spectral radius

k
p( Yy E,M;lN,)d.
[=1

i 2o = A71b from any starting vector y®. O’Leary
and White also investigate parallel multisplitting iterative technique relative
to the case when A in (1.1) is hermitian positive definite. Systems (1.1) with
such a coefficient matrix will not be considered in this paper.

One aspect of attaining maximum efficiency in the implimentation of
(1.3) is to choose the splittings in (1.2) and the masking diagonal matrices E,,
1<l <k, so that the workload carried by all processors is roughly equally
distributed. When such a balance can be achieved, then the individual
Processors are ready to contribute towards their update of the global iterate
v at the same time, which, in turn, minimizes idle time. However, there are
applications such as finite element methods [arising, for example, from
problems in aeronautical engineering (Przemieniecki, 1963), storm surge
forecasting (Thacker et al., 1980), and semiconductor analysis (Buturla et al.,
1981); see also Axelsson and Barker (1984) and Bykat (1983) for further
references), in which materials or shapes of elements lead to problems (1.1)
which quite naturally divide into subproblems of unequal size. To avoid loss
of time and efficiency in processor utilization, we shall consider here two
models of the so-called parallel chaotic or asynchroneous iterations:

Model A: Each processor can carry out a varying number of local
iterations until a mutual phase time is reached when all processors are ready

to contribute towards the global iteration.
Model B: Each processor can update the global approximation, or
retrieve any subset of the components of the global approximation residing in

the host processor, at any time.

We shall formulate these models mathematically in Section 2, and there it
will be shown that when the matrix A in (1.1) is monotone and all the

This implies that lim,
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splittings in (1.2) are weak regular, then both models lead to convergent
schemes. Roughly speaking, the only other provision which we shall require
for their convergence is that each processor contributes at least one local
iteration to the global approximation infinitely often.

To conclude this introductory section we mention that, interestingly,
Model B can be viewed as a generalization of the “free steering group block
Jacobi method” which was suggested, in the context of sequential iteration,
by Ostrowski (1961). In Section 3 we shall present Ostrowski’s free steering
method and indicate how Model B extends it. In addition we shall show that
a special case of Model B yields the point chaotic relaxation iteration
methods which were suggested by Chazan and Miranker (1969). Finally, the

merits of the standard parallel block Jacobi iteration method will also be
discuss

2. TWO CHAOTIC MODELS

Let A=M,— N, 1<l<k, be k splittings satisfying the conditions of
(1.2), and for each ! define the operator F,: R" — R", where R" is the
n~dimensional real space, as follows:

F(x)=M; N x + M; 'b. (2.1)

This is called one local iteration. Observe that in general F, is an affine
operator. Furthermore, for a nonnegative integer p let

Ff = FioFio---oF pu>0,
I, p=0"

Note that u is the number of compositions of F, with itself.

We are now ready to formulate the mathematical version of Model A in
the previous section.

MopeL A. Let E;, 1 <I<k be k nonnegative diagonal matrices satisfy-
ing (1.4), and let A=M,— N, be k splittings satisfying (1.2). Starting with
an arbitrary vector z©®, perform the iteration

k
2= ¥ EFru(z0-D), (2.2)
I=1
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where the F,’s are the operators given in (2.1) and where the p, ; are positive
integers which can depend on both [, the processor, and i, the index of the
iteration step.

We remark that we have permitted the number of compositions p, ; of F,
to depend not only on the processor, but also on the index of the present
global step of the iteration, to allow for more genenality. In practice we may
expect the number of local iterations which each processor performs between
two major steps of the algorithm to be fixed and to depend only upon A and
the relative amont of work which is involved in computing the vectors (1.6)
forl=1,... k.

The simplest way of tackling the question of the convergence of the
algorithm in (2.2) is to first develop an error analysis. For that purpose, for
i=1,2,... let us associate with the affine operator on the right hand side of
(2.2) the linear operator

k
B:= Y E(M;'N)™, (2.3)
[=1
in which case for some fixed vector r") € R",
k .
Z E,Ffr+(z) =Bz + r vz € R™. (2.4)
=1

Now let ¢ be the exact solution to the system (1.1). Then, as £ = F(§) for
each [=1,..., k, we have that

k
¢= Y EFpFi(§)=BE+r¥, i=12,... (2.5)
[=1
Thus on defining the error vectors
eM=z0-¢ i=0,1,..., (2.6)
we see from (2.2), (2.4), and (2.5) that

e = B,.e(‘—l). (2.7)

It is this relation which permits us to develop, subsequent to a brief
introduction of monotonic norms, sufficient conditions for the convergence of

the algorithm given in (2.2).
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For a vector x € R", x > 0 (x > 0) will denote that all its components are
positive (nonnegative). Similarly, for x, y € R", x > y (x > y) will mean that
x—y>0(x—y=>0). For x € R", |x| will denote the vector whose compo-
nents are the absolute value of the corresponding components of x. We shall
employ similar notation for matrices.

Let x > 0. Then the functional

Y

X

l€ign

is a vector norm on R" which is monotonic in the sense that |u| < |w]| implies
that ||u||, <||w||,. It is well known (see Rheinboldt and Vandergraft, 1973)
that |||B|x |, = || B||,, where ||B||, denotes the matrix norm of B induced by
the monotonic vector norm ||-||,. It easily follows that if x > 0 is a vector and
B = 0 is a scalar for which |B|x < 8x, then || B||, < 8.

In order to introduce our first main result we require the following
lemma.

LEmMma 2.1. Let A=M,—N,, l=1,...,k, be k splittings of the n Xn
matrix A satisfying (1.2), and let E,, 1 =1,..., k, be k nonnegative diagonal
matrices satisfying (1.3). If there exists a vector x > 0 and a scalar 0 < B <1
such that

IMINJx<Bx, 1=1,2,...,Kk, (2.8)
then for each i, 1,2,...,
1Bl <8, (2.9)
where B, is given in (2.3).

Proof. From (2.3) it follows that

k
x < X |E|IM] N
[=1

k
2 E:(M:—lNz)m"
=1

|B|x =

< LEBtx<BY Ex=gx,

=1 =1

showing that (2.9) is valid. =
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We are now in a position to state our main result concerning the chaotic
iteration scheme introduced in Model A.

TrHEOREM 2.1.  Suppose that A is an n X n monotone matrix and that all
the splittings in (1.2) are weak regular. If E,, 1 =1,..., k are k nonnegative
diagonal matrices satisfying (1.4), then the iteration (2.2) converges from
any initial vector 29 whenever

B =1, t=12,...., I=1,... k. (2.10)

Proof. Since A is monotone, there exists a vector x>0 [eg. x=
A™X1 ... 1)T] such that Ax > 0. Thus, as A =M, — N, is a regular splitting
for 1 <1< k, we see that for each such /,

r — M 'N,x = M 'Ax > 0,
yielding

IM[IN)Jx = M{!N;z < x.
Thus for a suitable constant 0 <8< 1,

IBJl. <8, i=12,....
But then, from (2.9), we have that

lim |je®||,= lim [|B;--- B;e”||,
1 =00

i - 00

< hm ”Bt”x o ”Bl“x”ew)”x

f— 00

< lim Bille®, =0

i— o0
for all ¢ € R", proving our claim. =
We remark that the assumption in (2.10) can be weakened as follows:
g, >0, t=12,.., I=12..k (2.11a)
and for infinitely many t’s,
p >l forall I=1,.. .k (2.11b)
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This is because under (2.11), ||B,|, <1 for all t>1 with ||B|,<B for
infinitely many ¢’s. The difference between the conditions (2.10) and (2.11)
is that (2.11) permits, if necessary, for any processor to skip its contribution
to any major step of the iteration provided that infinitely often all processors
contribute simultaneously towards a global iteration.

Although we described Model A as a model for chaotic iterations, a
certain degree of synchronization between the processors is still present in
the model. This is evidently so when we consider that all the processors must
complete their local iterations, however their number may vary between
processor and processor, before the new global iterate can be computed in
(2.2). In our second model any processor can update the global iterate z*,
which resides in the central processor, at any time.

In Model B the typical task of the Ith processor can be divided into three

subtasks which are cyclically implemented. These subtasks can be described
as follows:

(i) If @ is the approximation to the global solution residing in the
processor at the beginning of the cycle, the processor updates some or all of
the components of @ by the corresponding components of the current
approximation to the solution residing in the central processor and sets the
revised approximation to w.

(i) The processor computes the local iteration

U= El(Fi(w)) = EIM‘“{NIW"" ElMl_lb. (2.12)

(iii) If y is the approximation to the solution present in the central
processor when the processor completes the computation of (2.11), the
processor updates the host processor as follows:

z=u+(I-E)y. (2.13)

To simplify our model we shall assume that no two processors update the
central processor at the same instant; otherwise some queueing priorities are
introduced into the algorithm or a more sophisticated processor ring is
exploited. Suppose now that t,¢,,... are the times at which the central
processor is updated by processors i,,i5,..., where 1 < i; < k, j=12,....

DerFiniTioN 2.1, A sequence of integers f,= {i;}9%,, 1<i,<k, k

fixed, is admissible if every one of the integers 1,...,k appears in the
sequence infinitely often. An admissible sequence is regulated if there exists a
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positive integer T such that each of the integers 1,..., k appears at least once
in any T consecutive elements of the sequence.

Algorithmically we can describe the above steps, including the initializa-
tion of the starting vectors, as follows:

MopeL B. Let E, I=1,...,k, be k nonnegative diagonal matrices
satisfying (1.4). Given an admissible regulated sequence Fo={1;}7~, and an
initial vector x@, perform

gD =xlitr® Dl =] n, (2.14)
and
20+ = (I~ E, )2~ D + E, MY [N, 20+ b],
¥ U LY
j=-—k+1,-k+2,...,0,1,2,.... (2.15)
Here, for j <0, i;= — j+1, while for j >0, i, is the processor that has

updated the approximation residing in the central processor with x7.
Finally, 1; is the smallest positive integer such that i,= bjrep §2 — k+1.
Evidently, for i>0,1r-1< T, and it is equal to the number of times which
the approximation residing in the central processor is updated by processors
other than the i fh during the time interval in which the ith processor
executes its subtasks (i) and (ii). 0 <7(i, j)<r,—1 Finally, z("**P=
e e P )

We are now ready to prove our second main result of this paper, in which
we give sufficient conditions for the convergence of the algorithm stipulated

in (2.14) and (2.15).

TrHEOREM 2.2. Suppose that the n X n coefficient matrix A in (1.1) is
monotone and that each of the k splittings in (1.2) is weak regular. If E,,
l=1,...,k, are nonnegative diagonal matrices satisfying (1.4), then for any
initial vector x@ and for any admissible and regulated sequence of integers
FHo= {t'j}'f_l, lsije;k, the sequence of vectors generated by (?.14) and
(2.15) with 0 < r(i, ) < 1= 1, j = —k+1, converges to the solution vector

§= A~'b of the system (1.1).

Proof. In order to analyze the convergence of (2.14) and (2.15) it will be
convenient to embed this iteration procedure in an iteration procedure in
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R"". For that purpose we introduce the following notation:

fN=zD_ g D=y ¢

x e
x .
£=|:|€R", and ¢;=|: € R, (2.16)
,; i=T+1)
Here x > 0 is a vector such that Ax > 0.
It follows from (2.14) and (2.16) that
&= S].+,]_Ej+,r1, (2.17)

where S, is an n X nT matrix such that for each i=1,..., n, the r(i, fth

entry in the ith row is unity and all other remaining entries are zero. Now, by
(2.15) we have that

i) = (1 - Erl)e(jﬂj-l) +E, M; lNijg(j)’ (2.18)
H ]
and so, by (2.16) and (2.17), we can write that

€jrr, = Bj+rj€j+rj-_1y (2-19)

where By,,, is the (nT)X (nT) matrix given by

[ — 1 [ -1 ]
I-E; 0 O [EM NS,
- 1 0 0
Bj+rj - . : + :
L o0 1 o] | 0 .

From (2.19) it follows that
€jror-1= Bj+2T—lBj+2T—2 - By, €410

Thus as B, > 0, » > 1, to show that €, = 0 as v — oo it clearly suffices to show
that a constant 0 <y <1 independent of j can be found such that

B,'+2r— lBj+2T—2 o B,'+1f <YX Vj > 0. (2'20)
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For this purpose let us define

8= min {(El)ppl(El)PP > 0}
l<p<gn
lgli<k

and set
y=1-(1-5)3,
where, similarly to the proof of Theorem 2.1, 0 < 8 <1 is a number such that
IM{!Nx|<Bx, I=1,.. k.

As 8 < 1, it follows that 0 <y <1. Now let

w,=B, B, ;- B g=]" | (2.21)

1 4

where w* e R", 1 <s<T, and 1 <» < 2T — 1. Note that w, depends on j,
but that for convenience we have suppressed this subscript. We next show
that

w <yx, v2T. (2.22)

From the obvious inequality

Bi<i v>1, (2.23)

we have that w! <x, 1 <s<¢, and hence, as S;x =x for all j>1, we can
write for some suitable integer p that

wy = (I-E,)w_, +E,M'N,Sjw,

<(I- Ep)x + EPM;Ipr

<(I-E)x+BEx=x+(B-1E,x. (2.24)
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Suppose now that r € {1,2,...,n}, and observe first that if (Ep),,. =0, then
by the leftmost equality in (2.24), the rth component (w!), =(w}_,),.
However, if (E,),, > 0 so that (E,)., > §, then according to (2.24),

(w}), <vx,.

Next, as the sequence {i; } =1 is regulated all the integers 1,..., k appear in
its subsequence {i,,y,...,;.,}, ¥ > T. Because of (1.4) this means that

whenever v £ T, which proves (2.22).
Finally, from (2.21) and the definition of the B,’s it follows that

1+s

Wyt =wir_, 1, s=1,...,T -1,
which shows that
Wor_) < YX.
Thus (2.20) holds and the proof is done. L

We remark the following:

(i) The requirement in Theorem 2.2 that the sequence ., = {i;}52, be
regulated can be weakened to the assumption that it is only adm1551ble,
provided that we stipulate that there exist an integer T such that

r,—r(i,j)<T -1,
which, in fact, is an implicit implication of the assumptions in (2.14).
(ii) Other requirements in Theorem 2.2 can also be weakened. For
example, the assumption that A is monotone and that each of the k splittings

in (1.2) are regular can be replaced by the following: There exists a positive
vector x and a constant 8 <1 such that each of the splittings in (1.2) satisfies

IM;'Nj|x < Bx.

Only minor modifications in the proof of Theorem 2.2, such as replacing B;
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by |B;| and w,; by ||, are then necessary to accommodate these more
general assumptions in the revised statement of the results.

3. SOME ILLUSTRATIONS: THE OSTROWSKI FREE
STEERING METHODS AND THE CHAZAN-MIRANKER
CHAOTIC ITERATION

In the introduction we alluded to Ostrowski’s (1961) free steering method
and Chazan and Miranker’s chaotic relaxation method as having motivated
our models here and, in particular, Model B. In this short section we wish to
illustrate more specifically the motivating ideas in these works and their
relation to our results. We also wish to show that the usual block Jacobi
iteration method executed in parallel can be viewed as a special case of
Model A.

Suppose that the n X n coefficient matrix A in (1.1) admits the block
partitioning into

A= : ..‘ : s (3'1)

where the diagonal blocks are square and nonsingular of dimensions 7, X 1;,
respectively, with T¥_ n, = n. Partition the solution vector  to (1.1) and the

constant vector b in conformity with (3.1) as follows:

3 b,
¢=|:| and b= :
€x by

(32)

It is simple to check by substituting (3.1) and (3.2) into (1.1) that for each
l=1,...,k,
; 33)
g=— X Ap'A L+ Ap'h. (3.

j=1
j*l

Motivated by (3.3), Ostrowski suggested the followir:)g iterative scheme ff;r-
approximating {: Beginning with an initial vector 2@, for p=12,... pe
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form
1 .2
Z Ac AP V+ A b, m=i,
x(F ]!* e (3.4)
-1 .
xP-b, m#i,,
where {i,}%_, is an admissible sequence. Ostrowski refers to the index i, {or

rather to the indices of the entries of (x®), ] as the steering or active set in
the pth stage of the iteration. He refers to the indices of the remaining
entries of P as the passive set of indices.

Ostrowski’s algorithm can be represented as a special sequential case of
Model B in the sense that the central processor is not updated by another
processor while the [th processor executes subtask (ii) of the previous section.
To see this, for | = 1,..., k define the splitting A = M, — N, as follows:

0 A Ay k- Ak ]
Ay Ay Ag k1 Agyp
A= -1 3 : ST
Ak Ak—l,l Ak—l,z e 0 Ak—l,k
| An Ajs Ak,k—l 0 i

and define the diagonal matrices

—

0

El = I ' (3'6)

s 0

where I occurs in the (1,1) block diagonal position and is the identity matrix
of order n,. Then by (3.5) and (3.6) the vector x®’ in (3.4) can be computed
from x?™ 1 via

x® = E M 'Nx» Y+ E, M. 'b +(1-E, )x®»-D, (3.7)
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It is now evident that with r,=1, p=12,..., and with r(i,p)=0 for
p=1,....,n, (3.7) is just a special case of (2.14) and (2.15). Hence under the
weakened assumptions in the remarks following the proof of Theorem 2.2,
Ostrowski’s algorithm, namely, the process given in (3.4), converges to the
solution £ to (1.1) from any starting vector x©.

. D. Chazan and W. Miranker (1969) considered the following point
lteration scheme for solving the system (1.1), where they assume A to be
given in the form A=1 - B:

x( m# i,

(j+1) n
2t = o (3.8
b,+ Y b, xi TD, m=i, )

i=1

where {i i}j=1 is assumed to be an admissible sequence. They show that
when p(|B|) <1 and there exists a fixed integer T such that

0<r(i,j)<sT-1,

then the iterates generated by (3.8) converge to £ = A~ 'b from every initial
vector x‘%, It is obvious that on taking k = n, M,=1I, N,= B, and E,=(8,;)
for 1 <1< n, the algorithm in (3.8) satisfies all the requirements discussed in
the remarks following Theorem 2.2, and hence Chazan and Miranker’s
algorithm is another special case of a convergent Model B.

We have carried out numerous numerical experiments on Ostrowski’s
sequential free steering method. We have also simulated a parallelized version
of Ostrowski’s method applying Model B to the solution of (1.1) with
A=M, - N,and E, l=1,...,k, as in (3.5) and (3.6), respectively, but with
1, not equal to zero in general. Our numerical results seem to indicate that
the rate of convergence of Ostrowski’s sequential algorithm is better than its
parallelized version. Of course the computation of the iterates in Ostrowski’s
algorithm cannot enjoy the speedup due to the parallelism of the machine.
We comment that a vectorized form of Ostrowski’s sequential free steering
model was recently considered by Hayes (1984).

We finally consider the “usual” parallel block Jacobi method. With the
partitioning of A in (3.1) we can associate k affine operators G;;: R" = R",

I=1,... k, as follows:

G(x)=Hx+b, (3.9)
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where

( 1 0
1
H=|B, --- By ;-y 0 By - By (3.10)
|
0 I

with B;;= — Ap'A,, j#1, 1< j<k and

0

(3.11)

Now let E{, I=1,..., k, be k nonnegative diagonal matrices satisfying (1.4),
and consider a version of Model A applied to the parallel block Jacobi scheme
as follows:

k
2= 3 E;Gprizt—b, (3.12)
=1

where u,;;>1i=12,..., I=1,...,k. One readily observes for each =
1,...,k, H, is a projection matrix and that Gjx =x V¢ > 1. Thus (3.12)
reduces to the parallel block Jacobi method, namely,

k
2= Y E/Gz¢ D, (3.13)
I=1

The relation (3.12) and the fact that it reduces to (3.13) suggest the following:
On the one hand the parallel block Jacobi method can be best utilized when
the diagonal blocks in (3.1) are roughly of the same dimension, since no
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advantage can be gained by allowing the processors to perform more than
one local iteration until a time is reached at which all the processors are ready
to update towards the new global iterate z‘. On the other hand, the error
analysis used in and before the proof of Theorem 2.1 [see, for example,
(2.14)] indicates that generally the rate of convergence increases with an
increase in the number of local iterations carried out by each processor
between any two major steps of the algorithm. Thus in terms of the rate of
convergence, the parallel block Jacobi method already possesses a certain
optimality.

The authors wish to thank the referee and Professor Robert ]. Plemmons
for numerous suggestions which have led to many improvements in the
original manuscript. They also wish to thank several of their colleagues
within and without the University of Connecticut for very helpful comments
and conversations.
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