A Note on the Variation of Permanents

L. Elsner

Universität Bielefeld Fakultät für Mathematik Postfach 8640 4800 Bielefeld I, Federal Republic of Germany

Submitted by Shmuel Friedland

ABSTRACT

It is shown that for any two n-by-n complex matrices A, B the inequality

$$|\operatorname{per}(A) - \operatorname{per}(B)| \le n||A - B||\max(||A||, ||B||)^{n-1}$$

holds, if || || is either the row-sum or the column-sum norm. It is conjectured that this result holds for any operator norm.

In [1], R. Bhatia proved that for any two n-by-n matrices A, B the inequality

$$|\operatorname{per}(A) - \operatorname{per}(B)| \le n ||A - B||_2 \max(||A||_2, ||B||_2)^{n-1}$$
 (1)

holds. Here || ||2 denotes the spectral norm.

The purpose of this note is to prove an analogous result for the row-sum and the column-sum norm. We recall that

$$||A||_{\infty} = \max_{i} \sum_{k} |a_{ik}|,$$

$$||A||_1 = \max_k \sum_i |a_{ik}|$$

LINEAR ALGEBRA AND ITS APPLICATIONS 109:37-39 (1988)

37

are the operator norms for the vector norms

$$||x||_1 = \sum_{i=1}^n |x_i|$$
 and $||x||_{\infty} = \max_i |x_i|$

respectively, where $A = (a_{ik}), x = (x_1, ..., x_n)^T$. We show

$$|per(A) - per(B)| \le n||A - B||_p \max(||A||_p, ||B||_p)^{n-1}, \quad p = 1, \infty.$$
 (2)

As $||A||_1 = ||A^T||_{\infty}$, it suffices to prove the case p = 1. We make use of the obvious inequality (see e.g. [3, p. 113])

$$|\operatorname{per} A| \leq ||a_1||_1 ||a_2||_1 \cdots ||a_n||_1$$

where $A = (a_1, ..., a_n)$ and a_i denotes the *i*th column of A. If $B = (b_1, ..., b_n)$, define

$$A_k = (a_1, a_2, ..., a_k, b_{k+1}, ..., b_n), \qquad k = 1, ..., n-1,$$

 $A_0 = B$, $A_n = A$. Then

$$\begin{split} |\text{per}(A_i) - \text{per}(A_{i-1})| &= |\text{per}(a_1, \dots, a_{i-1}, a_i - b_i, b_{i+1}, \dots, b_n)| \\ &\leq \|a_i - b_i\|_1 \prod_{j \leq i} \|a_j\|_1 \prod_{j \geq i} \|b_j\|_1. \end{split}$$

Hence

$$\begin{split} |\mathrm{per}(A) - \mathrm{per}(B)| &\leqslant \sum_{i=1}^{n} |\mathrm{per}(A_{i}) - \mathrm{per}(A_{i-1})| \\ &\leqslant n \max_{i} ||a_{i} - b_{i}||_{1} \max_{i} \left(\prod_{j < i} ||a_{j}||_{1} \prod_{j > i} ||b_{j}||_{1} \right) \\ &\leqslant n ||A - B||_{1} \max(||A||_{1}, ||B||_{1})^{n-1}. \end{split}$$

This establishes (2).

k

We remark that this proof is completely elementary, while that in [1] uses nontrivial tools from multilinear algebra.

Also, (1) and (2) are not comparable, as different operator norms are not comparable.

It is tempting to state the

Conjecture. If $\| \ \|$ denotes any operator norm for *n*-by-*n* matrices, then

$$|\mathbf{per}(A) - \mathbf{per}(B)| \le n||A - B||\max(||A||, ||B||)^{n-1}.$$
 (3)

We remark finally that S. Friedland has proved (3) for the determinant function instead of the permanent [2].

Note added in proof. S. Friedland has shown (private communication) the following related result, which implies (1) and is near to the conjecture: For any operator norm $\|\cdot\|$

$$|\mathbf{per}(A) - \mathbf{per}(B)| \le \frac{n}{2} [||A - B|| \max(||A||, ||B||)^{n-1} + ||A^* - B^*|| \max(||A^*||, ||B^*||)^{n-1}].$$

REFERENCES

1 R. Bhatia, Variation of symmetric tensor products and permanents, Linear Algebra Appl. 62:269-276 (1984).

2 S. Friedland, Variation of tensor powers and spectra, Linear and Multilinear Algebra 12:81-98 (1982).

3 H. Mine, Permanents, in Encyclopedia of Mathematics and Its Applications, Vol. 6, Addison-Wesley, 1978.

Received 20 September 1987; final manuscript accepted 24 October 1987