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ABSTRACT
It is shown that for any two n-by-n complex matrices A, B the inequality

| per( A) — per( B)| < ni}A — Bljmax([|All, [ BI)" -

holds, if || || is either the row-sum or the column-sum norm. It is conjectured that this
result holds for any operator norm.

In [1], R. Bhatia proved that for any two nbyn matrices A, B the
inequality

|per(A) — per(B)|< nllA - B||2rnax(||A||2, ||B||2)ﬂ—1 (1)

holds. Here denotes the spectral norm.
The purll)losllz of this note is to prove an analogous result for the row-sum

and the column-sum norm. We recall that
| Allo = max Ylaul
ik
|All, = mfx Elau:l
i
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are the operator norms for the vector norms

n
=l = 2 jxl and ||z, = max|z/
i=]

respectively, where A =(a,), x =(x,,...,x,)". We show
iper(A) = per(B)| < nl|A - B||, max(||All,, |Bll,)" ",  p=1,c0. (2)

As ||A||, = ||AT)|., it suffices to prove the case p = 1. We make use of the
obvious inequality (see e.g. [3, p. 113])

perA| < la,ll; llagll - - - i@l

where A=(a,,...,a,) and a; denotes the ith column of A. If B=
(by,..., b,), define

Ak=(al,az,..-,ak,bk+l,.-.,b”), k=l,...,ﬂ—1,

Ag=B, A, =A. Then
Iper(A‘) - per(Al'—l)| = Iper(al""sai—]_’ ai - b;’) bi+1""’ bn)l

<lla; ~b,ll, [Tlle i, TT 11,11,
j<i i>i

Hence

per(A) — per(B))| < ilmer(Ai)—per(Ai_m

< nmaxiia, = bl max( TT a,l, TT15s
i<t

i>i
< nllA - B||, max(||Al\,, | Bji,)" "

This establishes (2).

We remark that this proof is completely elementary, while that in [1) uses
nontrivial tools from multilinear algebra.
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Also, (1) and (2) are not comparable, as different operator norms are not
comparable.
It is tempting to state the

ConjecTUurRE. If || || denotes any operator norm for n-by-n matrices,
then

per( A) — per(B)]| < nl|A — Bljmax(||A|l, I BI)" . (3)

We remark finally that S. Friedland has proved (3) for the determinant
function instead of the permanent [2).

Note added in proof. S. Friedland has shown (private communication)
the following related result, which implies (1) and is near to the conjecture:
For any operator norm || ||

per(A) — per(B)| < g[llA ~ Bjmax(||Al, IBJ)" "
+]|A* — B*jmax(j|A*l, | B*I)" "].
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